
9 Appendix399

9.1 Guarantees for General Agnostic Algorithm400

In this section, we give proofs for the guarantees of Algorithm 1. We begin with some definitions,401

starting with how empirical loss estimates are made.402

Definition 1. Given a hypothesis h ∈ H, and a set of pairs S = {(xi, yi) : xi ∈ X , yi ∈ Y}Ni=1, let403

LS(h) :=
1

N

(
N∑
i=1

1[h(xi) 6= yi]

)
the standard empirical loss of h on S. Let L∅(h) := 1.404

The convention to let L∅(h) = 1 allows us to “collapse” the two-part loss estimates in the case the405

probability of drawing an unlabeled sample in a specific region is 0; under the specification of the406

algorithm, S = ∅ if and only if the probability of a sample falling in the disagreement region or its407

complement is 0 under Dg , in which case we can safely ignore estimation in one of these regions.408

Definition 2. Given a set of classifiersH′ ⊆ H, we say “H′ agrees on a subset S ⊆ X” if for each409

x ∈ S and for each pair (h, h′) ∈ H′ ×H′, it holds that h(x) = h′(x).410

We now recall the two-part estimator for the loss of a hypothesis introduced above.411

Definition 3. Fix a group distribution Dg, some H′ ⊆ H, a hypothesis h ∈ H′, and some R ⊆ X412

which is measurable with respect to each marginal of Dg and for whichH′ agrees on Rc. Given sets413

of pairs SR,g and SRc,g , and some arbitrarily chosen classifier hH′ ∈ H′, let414

LS;R(h | g) := PDg
(x ∈ R) · LSR,g

(h) + PDg
(x ∈ Rc) · LSRc,g

(hH′).

As mentioned in the main body, hH′ must be used in the estimate of the loss under Dg in the415

“agreement region” for all h ∈ H. The extent to which this estimator is useful can be captured by416

standard uniform convergence arguments. To this end, we first introduce a function that will prove to417

control its deviations nicely.418

Definition 4. Given a confidence parameter δ ∈ (0, 1), a group distribution Dg ∈ G, some R ⊆ X419

that is measurable with respect to each marginal Dg ∈ G, and sample sizes m,m′ > 0, define the420

function421

Γg(δ,R,m,m
′) :=



PDg (x ∈ R)

(
1
m +

√
ln(8/δ)+d ln(2em/d)

m

)
+
√

ln(4/δ)
2m′

if PDg (x ∈ R) > 0,PDg (x ∈ Rc) > 0

1
m +

√
ln(8/δ)+d ln(2em/d)

m

if PDg (x ∈ R) > 0,PDg (x ∈ Rc) = 0√
ln(4/δ)

2m′

if PDg (x ∈ R) = 0,PDg (x ∈ Rc) > 0.

Lemma 1. Fix δ ∈ (0, 1), a set of group distributions G, and a group distribution Dg ∈ G arbitrarily.422

Further, fix a subset R ⊆ X measurable with respect to each marginal of Dg ∈ G, and a set of423

classifiers H′ ⊆ H with the property that H′ agree on Rc. Suppose we query m > 0 unlabeled424

samples from Ug(R), and m′ > 0 samples from Ug(R
c). Suppose further that we label the output via425

calls to Og(·), forming the labeled samples SR,g and SRc,g , respectively; if either PDg (x ∈ R) = 0426

or PDg
(x ∈ Rc), then we set the corresponding sample to be ∅. Then with probability ≥ 1− δ, it427

holds for all h ∈ H′ that428

|LG(h | g)− LS;R(h | g)| ≤ Γg(δ,R,m,m
′).

Further, for all γ > 0, if m ≥ 16(PDg (x∈R))2

γ2 (2d ln(8/γ) + ln(8/δ)) and m′ ≥ 2 ln(4/δ)
γ2 , then429

Γg(δ,R,m,m
′) < γ.430
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Proof. We begin with the case where both PDg (x ∈ R) 6= 0 and PDg (x ∈ Rc) 6= 0. In this case,431

we are able to draw unlabeled samples from both regions, and neither SR,g nor SR,g is ∅.432

By a lemma of Vapnik [28], we have that with probability ≥ 1− δ/2 over the draw of m samples433

from Ug(R) and their labeling via Og(·), that simultaneously for each h ∈ H′:434 ∣∣∣∣LSR,g
(h)− PDg

(h(x) 6= y|x ∈ R)

∣∣∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(2em/d)

m
.

In Rc, all h ∈ H′ agree, and so estimating the conditional loss for each h ∈ H′ in this region is as435

statistically hard as estimating a single Bernoulli parameter, which we do by arbitrarily choosing a436

classifier to use for the loss estimate in this part of space. Thus, by definition of the two-part estimator437

and Hoeffding’s inequality [29], we have with probability ≥ 1− δ/2 for all h ∈ H′ simultaneously438 ∣∣∣∣LSRc,g
(hH′)− PDg

(h(x) 6= y|x ∈ Rc)
∣∣∣∣ ≤

√
ln(4/δ)

2m′
.

By a union bound, with probability ≥ 1− δ, both of these events take place, and so for all h ∈ H′439

simultaneously,440

LG(h | g) = PDg

(
h(x) 6= y | x ∈ R

)
· PDg

(x ∈ R)

+ PDg (h(x) 6= y | x ∈ Rc) · PDg (x ∈ Rc)

≤
(
LSR,g

(h) +
√

(ln(8/δ) + d ln(2em/d)) /m
)
· PDg

(x ∈ R)

+
(
LSRc,g

(hH′) +
√

ln(4/δ)/2m′
)
· PDg

(x ∈ Rc)

≤ LS;R(h | g) + Γg(δ,R,m,m
′).

The lower bound leading to the absolute value is analogous. Vapnik [28] also tells us that for any441

γ′ > 0, a sample of size m ≥ 4
γ′2 (2d ln(4/γ′) + ln(8/δ)) is sufficient to yield442 √

(ln(8/δ) + d ln(2em/d)) /m < γ′.

Let γ′ = γ/2PDg (x ∈ R). Thus, substituting for γ′ and bounding the probability inside the natural443

log above by 1,444

m ≥ PDg
(x ∈ R)

2 16

γ2
(2d ln(8/γ) + ln(8/δ))

implies that445

1

m
+

√
ln(8/δ) + d ln(2em/d)

m
<

γ

2PDg
(x ∈ R)

.

As a corollary to Hoeffding, if m′ ≥ 2 ln(4/δ)/γ2, then
√

log(4/δ)/2m′ < γ/2. Thus, we may446

write447

Γg(δ,R,m,m
′) = PDg (x ∈ R)

(
1

m
+

√
ln(8/δ) + d ln(2em/d)

m

)
+

√
ln(4/δ)

2m′
< γ/2 + γ/2 = γ.

Now suppose that PDg (x ∈ Rc) = 0. In this case, we have SRc,g = ∅. Again, we have that with448

probability ≥ 1− δ/2,449 ∣∣∣∣LSR,g
(h)− PDg (h(x) 6= y|x ∈ R)

∣∣∣∣ ≤ 1

m
+

√
ln(8/δ) + d ln(2em/d)

m
.

When PDg (x ∈ Rc) = 0, it holds that PDg (x ∈ R) = 1, and so450

LG(h | g) = PDg (h(x) 6= y | x ∈ R) · PDg (x ∈ R)

+ PDg
(h(x) 6= y | x ∈ Rc) · PDg

(x ∈ Rc)
= PDg

(h(x) 6= y | x ∈ R)

≤ LSR,g
(h) +

√
(ln(8/δ) + d ln(2em/d)) /m

= LS;R(h | g) + Γg(δ,R,m,m
′),
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where the final equality comes from fact that PDg (x ∈ Rc) = 0 and PDg (x ∈ R) = 1, as451

well as the definitions of LS;R(h | g) and Γg(δ,R,m,m
′). Similarly to the above, if we let452

γ′ = γ/2PDg
(x ∈ R) = γ/2, then453

m ≥ 16

γ2
(2d ln(8/γ) + ln(8/δ))

implies that
1

m
+

√
ln(8/δ) + d ln(2em/d)

m
<
γ

2
,

which by the definition of Γg(δ,R,m,m
′) when PDg

(x ∈ Rc) = 0 gives us Γg(δ,R,m,m
′) <454

γ/2 < γ. The case where PDg
(x ∈ R) = 0 follows the previous argument for when PDg

(x ∈ Rc) =455

0.456

457

Definition 5. Given a collection of group distributions G, someH′ ⊆ H, a hypothesis h ∈ H′, some458

subset R ⊆ X measurable with respect to each marginal of Dg ∈ G, and labeled samples SR,k and459

SRc,k, we define the empirical estimate of the multi-group loss of h parameterized by R via460

Lmax
S;R (h) := max

g∈[G]
LS;R(h | g).

Having recalled the way in which we form empirical estimates for the group worst-case loss of a461

given hypothesis, we can show a simple concentration lemma for this group worst-case loss estimator462

using the concentration property for individual groups proved in Lemma 1,463

Lemma 2. Fix δ ∈ (0, 1), a set of group distributions G, a subset R ⊆ X measurable with respect464

to each marginal of Dg ∈ G, and a set of classifiers H′ ⊆ H that agree on Rc. Suppose for each465

g ∈ [G], we query mg > 0 unlabeled samples from Ug(R), and m′g > 0 samples from Ug(R
c).466

Suppose further that we label the outputs via calls to Og(·), forming the labeled samples SR,g and467

SRc,g, respectively, for each g ∈ [G]; if PDg
(x ∈ R) = 0 or PDg

(x ∈ Rc) = 0, then we set the468

corresponding sample to be ∅. Then with probability ≥ 1− δ, it holds for all h ∈ H′ that469 ∣∣Lmax
G (h)− Lmax

S;R (h)
∣∣ ≤ max

g′∈[G]
Γg′(δ/G,mg′ ,m

′
g′).

Proof. By Lemma 1 and a union bound, it holds with probability ≥ 1 − δ that on all Dg, for all470

h ∈ H′ simultaneously, that471

|LG(h | g)− LS;R(h | g)| ≤ Γg(δ/G,mg,m
′
g).

Thus we may write472 ∣∣∣∣Lmax
G (h)− Lmax

S;R (h)

∣∣∣∣ =

∣∣∣∣max
g′∈[G]

LG(h | g′)− max
g′∈[G]

LS;R(h | g)

∣∣∣∣
≤ max
g′∈[G]

∣∣LG(h | g′)− LS;R(h | g′)
∣∣

≤ max
g′∈[G]

Γg′(δ/G,mg′ ,m
′
g′).

473

We now use Lemma 2 to show that Algorithm 1 is conservative enough that the optimal hypothesis474

h∗ is never eliminated from contention throughout the run of the algorithm with high probability.475

Lemma 3. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with476

d < ∞ arbitrarily. With probability ≥ 1 − δ, it holds after each iteration i of Algorithm 1 that477

h∗ ∈ Hi+1.478

Proof. By Lemmas 1 and 2, and a union bound over iterations, the number of samples labeled at479

each iteration is sufficient for us to conclude that with probability ≥ 1− δ, for for every iteration i480
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and for each h ∈ Hi, it holds that2481

|Lmax
S;Ri

(h)− Lmax
G (h)| ≤ 2I−iε/8.

We give an inductive argument conditioned on this high probability event. When i = 1, we have482

h∗ ∈ H1 becauseH1 = H, and h∗ ∈ H by definition. If h∗ ∈ Hi for i ≥ 1, then h∗ ∈ Hi+1 if and483

only if484

Lmax
S;Ri

(h∗) ≤ Lmax
S;Ri

(ĥi) + 2I−iε/4.

When for each h ∈ Hi, it holds that |Lmax
S;Ri

(h)− Lmax
G (h)| ≤ 2I−iε/8, we may write485

Lmax
S;Ri

(h∗)− Lmax
S;Ri

(ĥi) ≤ Lmax
S;Ri

(h∗)− Lmax
G (h∗) + Lmax

G (ĥi)− Lmax
S;Ri

(ĥi)

≤
∣∣Lmax
S;Ri

(h∗)− Lmax
G (h∗)

∣∣+
∣∣∣Lmax
G (ĥi)− Lmax

S;Ri
(ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/8

= 2I−iε/4,

where the first inequality comes from the optimality of h∗. Thus, we must have h ∈ Hi+1.486

Now, using the fact that the optimal hypothesis stays in contention throughout the run of the algorithm,487

we can give a guarantee on the true error of each hypothesis h ∈ Hi+1. The idea is that using488

concentration and the small empirical error of each h ∈ Hi+1, we can say that the true errors of each489

h ∈ Hi+1 are similar to the true errors of the ERM hypothesis ĥi, and then use the true error of ĥi as490

a reference point to which we can compare the true error of h ∈ Hi+1 and h∗.491

Lemma 4. Fix δ ∈ (0, 1), a collection of group distributions G, and a hypothesis class H with492

d <∞ arbitrarily. Then with probability ≥ 1− δ, after every iteration i of Algorithm 1, it holds for493

all h ∈ Hi+1 that494 ∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ 2I−iε.

Proof. If h ∈ Hi+1, then by the specification of the algorithm, it holds that495

Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi) ≤ 2I−iε/4.

Because ĥi is the ERM hypothesis at iteration i, it holds that Lmax
S;Ri

(ĥi)− Lmax
S;Ri

(h) ≤ 0 < 2I−iε/4,496

and thus we may conclude497 ∣∣∣Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi)
∣∣∣ ≤ 2I−iε/4.

By Lemma 2 and the number of samples labeled at each iteration, with probability ≥ 1− δ, it holds498

for all iterations and for all h ∈ Hi that499 ∣∣Lmax
S;Ri

(h)− Lmax
G (h)

∣∣ ≤ 2I−iε/8.

Conditioned on this event, if h ∈ Hi+1, we have500 ∣∣∣Lmax
G (h)− Lmax

G (ĥi)
∣∣∣ =

∣∣∣Lmax
G (h)− Lmax

S;Ri
(h) + Lmax

S;Ri
(h)− Lmax

S;Ri
(ĥi) + Lmax

S;Ri
(ĥi)− Lmax

G (ĥi)
∣∣∣

≤
∣∣Lmax
G (h)− Lmax

S;Ri
(h)
∣∣+
∣∣∣Lmax
S;Ri

(h)− Lmax
S;Ri

(ĥi)
∣∣∣+
∣∣∣Lmax
S;Ri

(ĥi)− Lmax
G (ĥi)

∣∣∣
≤ 2I−iε/8 + 2I−iε/4 + 2I−iε/8

= 2I−iε/2.

By Lemma 3, it holds that h∗ ∈ Hi+1 whenever
∣∣Lmax
S;Ri

(h)− Lmax
G (h)

∣∣ ≤ 2I−iε/8 for all h ∈ Hi at501

all iterations. Thus, this bound on the true error difference with the ERM ĥi applies to h∗, and we502

may write for arbitrary h ∈ Hi+1 that503 ∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ ∣∣∣Lmax

G (h)− Lmax
G (ĥi)

∣∣∣+
∣∣∣Lmax
G (ĥi)− Lmax

G (h∗)
∣∣∣ ≤ 2I−iε,

which is the desired result.504

2We do not directly apply Lemma 1 with γ = ε2I−i/8 here. We use this quantity in the outer dependence
on γ of Lemma 1, but for the natural log dependence on γ, we sub in ε/8 to simplify the analysis. Thus we
take slightly more samples than Lemma 1 directly suggests. Because we take the largest probability of the
disagreement region over groups as mi, it holds that mg is at the smallest the sample size suggested by Lemma
1 for each g.
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Definition 6. Given a group distribution Dg ∈ G, a hypothesis h ∈ H, and a radius r ≥ 0, let the505

“Dg - disagreement ball inH of radius r about h” be506

Bg(h, r) := {h′ ∈ H : ρg(h, h
′) ≤ r} ,

where ρg(h, h′) := PDg
(h(x) 6= h′(x)).507

Definition 7. Given a group distribution Dg ∈ G and a hypothesis classH, let the “disagreement508

coefficient” of Dg be defined as509

θg := sup
h∈H

sup
r′≥2ν+ε

PDg (x ∈ ∆(Bg(h, r
′)))

r′
.

We further define the disagreement coefficient over a collection of group distributions G as510

θG := max
g′∈[G]

θg′ .

Given these definitions, we are now ready to state the main theorem. The consistency comes from511

what we showed in Lemma 4: as the true error for each h ∈ Hi+1 decreases with each iteration, after512

enough iterations we will have each h ∈ Hi+1 having ε-optimality.513

The label complexity bound follows standard ideas in the DBAL literature; see for example [9, 24].514

Essentially, what we do is show that at each iteration i, because the true error of any h ∈ Hi on the515

multi-group objective can’t be too large, the disagreement of h and h∗ on any single group cannot be516

too large. This leads to a bound on the size of the disagreement region for each g.517

Theorem 4. For all ε > 0, δ ∈ (0, 1), collections of group distributions G, and hypothesis classesH518

with d <∞, with probability ≥ 1− δ, the output ĥ of Algorithm 1 satisfies519

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and its label complexity is bounded by520

Õ

(
G θ2
G

(
ν2

ε2
+ 1

)(
d log(1/ε) + log(1/δ)

)
log(1/ε) +

G log(1/ε) log(1/δ)

ε2

)
.

Proof. Lemma 4 says that the number of samples drawn at each iteration is sufficiently large521

that with probability ≥ 1 − δ, for all i ∈ [I], it holds that for all h ∈ Hi+1, that we have522 ∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ 2I−iε. Thus, after I = dlog(1/ε)e iterations, the output ĥ satisfies523

the consistency condition.524

To see the label complexity, which is the sum of the number of labels we query at each iteration, we525

note at iteration i, we label no more than526

1024
( mi

ε2I−i

)2
(

2d log

(
64

ε

)
+ ln

(
8Gdlog(1/ε)e

δ

))
+

128 ln(4Gdlog(1/ε)e/δ)
ε2

samples for each group distribution Dg, where mi = maxg′ PDg′ (x ∈ ∆(Hi)). The only term527

here that depends on i is mi

ε2I−i . By Lemma 4, with probability ≥ 1 − δ, it holds for each i > 1528

that
∣∣Lmax
G (h)− Lmax

G (h∗)
∣∣ ≤ 2I−i+1ε; this holds automatically at i = 1 by the setting of I =529

dlog(1/ε)e. Thus, at arbitrary i and for arbitrary g ∈ [G], we may write530

ρg(h, h
∗) = PDg

(h(x) 6= h∗(x))

= PDg (h(x) 6= y, h∗(x) = y) + PDg (h(x) = y, h∗(x) 6= y)

≤ PDg
(h(x) 6= y) + PDg

(h∗(x) 6= y)

= LG(h | g) + LG(h∗ | g)

≤ Lmax
G (h) + Lmax

G (h∗)

= Lmax
G (h)− Lmax

G (h∗) + Lmax
G (h∗) + Lmax

G (h∗)

≤ 2I−i+1ε+ 2ν,
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where we recall ν is the noise rate on the multi-group objective. Thus, with probability ≥ 1− δ, for531

each i ∈ I and g ∈ [G], it holds that532

Hi ⊆ Bg(h∗, 2I−i+1ε+ 2ν).

Given this observation, we may then write, for all g, that533

PDg (x ∈ ∆(Hi)) ≤ PDg (x ∈ ∆(Bk(h∗, 2ν + 2I−i+1ε))),

as if there are h, h′ ∈ Hi that disagree on some x, we have h, h′ ∈ Bg(h∗, 2ν + 2I−i+1ε), and so534

h, h′ also realize disagreement on x for the larger set of classifiers. Recalling the definition of mi,535

this allows us to bound the sum of terms depending on i for each distribution Dg as536

I∑
i=1

( mi

ε2I−i

)2

≤
I∑
i=1

(
maxg′ PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2I−iε

)2

≤
I∑
i=1

(
max
g′

PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε
· 2ν + 2I−i+1ε

2I−iε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

PDg

(
x ∈ ∆(Bg′(h

∗, 2ν + 2I−i+1ε))
)

2ν + 2I−i+1ε

)2

≤ 4

(
ν + ε

ε

)2 I∑
i=1

(
max
g′

sup
h∈H

sup
r≥2ν+ε

PDg
(x ∈ ∆(Bk′(h, r)))

r

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2(
max
g′

θg′

)2

= 4dlog(1/ε)e
(
ν + ε

ε

)2

θ2
G .

The label complexity bound then follows by noting the algorithm labels the same amount of samples537

for all G groups each iteration, and ignoring the factors of log(G) and log(log(1/ε)).538

9.2 Group-Realizable Guarantees539

Theorem 5. Suppose Algorithm 2 is run with the active learner ACAL of [26]. Then for all ε > 0,540

δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of group distributions G that are group541

realizable with respect toH, with probability ≥ 1− δ, the output ĥ satisfies542

Lmax
G (ĥ) ≤ Lmax

G (h∗) + ε,

and the number of labels requested is543

Õ

(
dGθG log(1/ε)

)
.

Proof. The label complexity follows directly from the guarantees given in [15]. By a union bound,544

we with probability ≥ 1− δ, have that for all g ∈ [G], that ACAL returns ĥg with the property that545

LG(ĥg | g) ≤ ε/6.

Fix some g ∈ [G] arbitrarily. Consider a counterfactual training set Sg, unseen by the learner,546

constructed by labeling each example x ∈ S′g via the oracle call Og(x). Then Vapnik [28] tells us547

that mg := |S′g| is sufficiently large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously,548

we have549 ∣∣LG(h | g)− LSg
(h)
∣∣ < ε/6.
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Again by the union bound, this uniform convergence on Sg and the guarantee on the runs of ACAL550

both hold for each g ∈ [G]. Conditioned on this high probability event, we can first note that for551

some arbitrary h ∈ H,552 ∣∣∣LSg (h)− LŜg
(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

= LSg
(ĥg)

≤ LG(ĥg) + ε/6

≤ ε/6 + ε/6

= ε/3,

where the final equality comes from the success of the runs ofACAL. Then for arbitrary h, combining553

Vapnik’s guarantee and the inequality we just showed, we may write:554 ∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg
(h) + LSg

(h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg

(h)
∣∣+
∣∣∣LSg

(h)− LŜg
(h)
∣∣∣

< ε/6 + ε/3

= ε/2.

Given this guarantee on the representativeness of the artificially labeled samples on each group g, we555

have a guarantee for the representativeness over the worst case. For arbitrarily h ∈ H, we may write556 ∣∣∣∣Lmax
G (h)− max

g∈[G]
LŜg

(h)

∣∣∣∣ =

∣∣∣∣max
g∈[G]

LG(h | g)− max
g∈[G]

LŜg
(h)

∣∣∣∣
≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣

≤ ε/2.

Thus, by the fact that ĥ is the ERM, we have557

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ) + ε/2 ≤ max
g∈[G]

LŜg
(h∗) + ε/2 ≤ Lmax

G (h∗) + ε.

558

9.3 Approximation Guarantees559

Theorem 6. Suppose Algorithm 3 is run with the active learner ADHM of [15]. Then for all ε > 0,560

δ ∈ (0, 1), hypothesis classesH with d <∞, and collections of groups D, with probability ≥ 1− δ,561

the output ĥ satisfies562

Lmax
G (ĥ) ≤ Lmax

G (h∗) + 2 · max
g∈[G]

νg + ε ≤ 3 · Lmax
G (h∗) + ε,

and the number of labels requested is563

Õ

(
dGθG

(
log2(1/ε) +

ν2

ε2

))
.

Proof. The proof is almost identical to that of Theorem 2. The label complexity bound follows564

directly from [10]. Similar to before, we have that for all g ∈ [G], ADHM returns ĥg with the565

property that566

LG(ĥg | g) ≤ LG(h∗g | g) + ε/6.

18



Fix some g ∈ [G] arbitrarily. On a counterfactual training set Sg , unseen by the learner, constructed567

by labeling each example x ∈ S′g via the oracle call Og(x), it holds that mg := |S′g| is sufficiently568

large that with probability ≥ 1− δ/2, for each h ∈ H simultaneously, we have569 ∣∣LG(h | g)− LSg
(h)
∣∣ < ε/6.

By the union bound, this uniform convergence and the guarantee on the runs of ADHM both hold.570

Thus, we can first note that for some arbitrary h ∈ H,571 ∣∣∣LSg
(h)− LŜg

(h)
∣∣∣ =

∣∣∣∣∣ 1

mg

mg∑
i=1

1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]

∣∣∣∣∣
≤ 1

mg

mg∑
i=1

∣∣∣1[h(xi) 6= yi]− 1[h(xi) 6= ĥg(xi)]
∣∣∣

≤ 1

mg

mg∑
i=1

1[yi 6= ĥg(xi)]

= LSg (ĥg)

≤ LG(ĥg | g) + ε/6

≤ LG(h∗g | g) + ε/3

= νg + ε/3.

where the second to last inequality comes from uniform convergence over SG, and the final equality572

comes from the correctness guarantee ofADHM . Then for arbitrary h, combining Vapnik’s guarantee573

and the inequality we just showed, we may write:574 ∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ =

∣∣∣LG(h | g)− LSg (h) + LSg (h)− LŜg
(h)
∣∣∣

≤
∣∣LG(h | g)− LSg (h)

∣∣+
∣∣∣LSg (h)− LŜg

(h)
∣∣∣

< ε/6 + νg + ε/3

= νg + ε/2.

Then, as above, we have, for arbitrarily h ∈ H,575 ∣∣∣∣Lmax
G (h)− max

g∈[G]
LŜg

(h)

∣∣∣∣ ≤ max
g∈[G]

∣∣∣LG(h | g)− LŜg
(h)
∣∣∣ ≤ max

g∈[G]
νg + ε/2 ≤ ν + ε/2,

where the the final inequality comes from the fact that if any hypothesis has less than νg error on all576

groups, it would be optimal on group g. Thus, by the fact that ĥ is the ERM, we have577

Lmax
G (ĥ) ≤ max

g∈[G]
LŜg

(ĥ)+νg+ε/2 ≤ max
g∈[G]

LŜg
(h∗)+νg+ε/2 ≤ Lmax

G (h∗)+2ν+ε ≤ 3·Lmax
G (h∗)+ε

578
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