Processing math: 100%

ELIAS: End-to-End Learning to Index and Search in Large Output Spaces

Part of Advances in Neural Information Processing Systems 35 (NeurIPS 2022) Main Conference Track

Bibtex Paper Supplemental

Authors

Nilesh Gupta, Patrick Chen, Hsiang-Fu Yu, Cho-Jui Hsieh, Inderjit Dhillon

Abstract

Extreme multi-label classification (XMC) is a popular framework for solving many real-world problems that require accurate prediction from a very large number of potential output choices. A popular approach for dealing with the large label space is to arrange the labels into a shallow tree-based index and then learn an ML model to efficiently search this index via beam search. Existing methods initialize the tree index by clustering the label space into a few mutually exclusive clusters based on pre-defined features and keep it fixed throughout the training procedure. This approach results in a sub-optimal indexing structure over the label space and limits the search performance to the quality of choices made during the initialization of the index. In this paper, we propose a novel method ELIAS which relaxes the tree-based index to a specialized weighted graph-based index which is learned end-to-end with the final task objective. More specifically, ELIAS models the discrete cluster-to-label assignments in the existing tree-based index as soft learnable parameters that are learned jointly with the rest of the ML model. ELIAS achieves state-of-the-art performance on several large-scale extreme classification benchmarks with millions of labels. In particular, ELIAS can be up to 2.5% better at precision@1 and up to 4% better at recall@100 than existing XMC methods. A PyTorch implementation of ELIAS along with other resources is available at https://github.com/nilesh2797/ELIAS.