
Appendix Outline

This appendix is structured as follows. In Section A we describe the datasets, augmentation policies
and models used in this paper. In Section B we provide details on the methods, implementations
and hyper-parameters, as well as detailed results for the experiments in Section 5. In Section C we
provide additional details on the experiments in Section 6. In Section D we provide results on the
effect of regularization and data augmentation. In Section E we provide additional results on the
MultiNLI dataset. Finally, in Section F we describe the limitation, broader impact, compute and
licenses.

Tools and packages. During the work on this paper, we used the following tools and packages:
NumPy [24], SciPy [87], PyTorch [67], TorchVision [55], Jupyter notebooks [42], Matplotlib [33],
Pandas [57], Weights&Biases [7], timm [90], transformers [92], vissl [21].

A Data and Models

In this section, we describe the datasets, data augmentation policies and models used throughout the
paper.

A.1 Datasets

We perform experiments on 4 image classification and 2 text classification problems. We illustrate
the image datasets in Figure 6 and the text datasets in Figure 7.

Waterbirds. The Waterbirds dataset is described in Figure 6. The dataset contains images of birds
from the CUB dataset [88] pasted on the backgrounds from the Places dataset [102]. The spurious
attribute s describes the type of background (water or land) and the core feature associated with the
target y is the type of the bird (waterbird or landbird). For a detailed description of the data generating
process, see Sagawa et al. [76]. The background is spuriously correlated with the bird type in the
training datasets: waterbirds are more likely to be placed on a water background, and landbirds are
more likely to be placed on a land background. There are 4 groups defined to the tuples (y, s).

CelebA. The CelebA hair color dataset is described in Figure 6. The dataset contains photos of
celebrities from the CelebA dataset Liu et al. [51]. The core attribute associated with the target y is
the hair color (blond vs non-blond). The gender serves as a spurious feature s: the vast majority of
blond people in CelebA are female. There are 4 groups defined to the tuples (y, s).

FMOW. The WILDS-FMOW dataset is described in Figure 6. This dataset is a part of the WILDS
benchmark [43, 77], and was originally collected by Christie et al. [12]. The dataset contains satellite
images, and the target y describes the type of building or land use shown in the image. There
are 62 classes. The spurious attribute s corresponds to the region (Asia, Europe, Africa, America,
Oceania) shown in the image. The training data additionally contains another group Other, which
is dropped during evaluation. For this dataset, following the WILDS benchmark, we define groups
by just the value of the spurious attribute: g = s. In particular, worst group accuracy corresponds
to the worst accuracy across regions. The regions are represented unequally in the data, leading to
unequal performance. Moreover, the test images were taken several years later than the train images,
constituting an additional type of distribution shift. We note that for the DFR evaluation, we use the
validation data to train the last layer of the model, which means that our results would be classified as
non-standard submissions to the WILDS leaderboard.

CXR. The CXR dataset is described in Figure 6. The images are taken from the CXR-14 dataset
[89]. CXR-14 is a multi-label dataset, where each label corresponds to a disease, and one image can
show multiple diseases. We perform the pneumothorax classification task, i.e. all images that have the
pneumothorax label have y = 1 and all images that do not have y = 0. The dataset contains several
images for some of the patients; there is no patient overlap between the train, test and validation splits.
Oakden-Rayner et al. [65] identified a hidden stratification in this dataset: a lot of images showing
patients with pneumothorax showed a chest drain, which is a treatment for the pneumothorax disease.
The neural networks trained on this dataset are using the chest drain as a shortcut feature, and perform
much worse when classifying images without the chest drain. The labels for the spurious feature
are only available on the validation and test datasets, and only for the images showing sick patients,
i.e. there is no (y = 0, s = 1) group. There are 3 groups corresponding to available pairs (y, s).
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Following prior work [e.g. 65, 48, 70], we compute three AUC values: for classifying group 0 against
group 1, group 0 against group 2 and group 0 against the combined groups 0 and 1; instead of worst
group accuracy we report the lower of the first two AUC values, and instead of mean accuracy we
report the last AUC value throughout the experiments.

Civil Comments The Civil Comments Coarse dataset is described in Figure 7. The dataset was
originally collected in Borkan et al. [8] and is a part of the WILDS benchmark [43, 77]. This dataset
contains comments that are classified as toxic or not toxic. We use the coarse version of the dataset,
following Idrissi et al. [34]. The spurious attribute s determines whether or not the comment mentions
one of the following protected attributes: male, female, LGBT, black, white, Christian, Muslim, other
religions. These protected attributes are mentioned more frequently in toxic comments compared to
neutral comments, constituting a spurious correlation. There are 4 groups corresponding to the pairs
(y, s).

MultiNLI The MultiNLI dataset is described in Figure 7. It contains pairs of sentences, and the
label y describes the relationship between the sentences: contradiction, entailment or neutral. The
spurious attribute s describes the presence of negation words, which appear much more frequently in
the examples from the negation class. There are 6 groups corresponding to the pairs (y, s).

A.2 The nature of the spurious correlations

The nature of the spurious correlation differs between the datasets that we consider. On Waterbirds,
CelebA, Civil Comments and MultiNLI, the spurious attribute is correlated with the target on train,
but is not generally predictive of the class label across the groups. In particular, we wish to train a
model that ignores the spurious attribute in its predictions, as using the spurious attribute hurts the
performance on some of the groups. By applying DFR on a group-balanced validation set, we try to
train a model that ignores the spurious feature.

On the FMOW dataset, the groups correspond to the spurious attribute (region), and not pairs (y, s).
As the regions are not represented equally, standard ERM is incentivised to perform well on the
majority groups, with less weight on the minority groups. In this case, we do not wish to remove
the reliance on the spurious attribute, but instead we wish to find a model that performs well on
the minority groups. We apply DFR to this dataset by retraining the last layer on a group-balanced
validation set, analogously to the other datasets.

Finally, in the CXR dataset, there are no examples showing healthy patients with a chest drain (to the
best of our knowledge). Consequently, the reliance on the spurious attribute s does not necessarily
hurt performance on the other groups, unlike e.g. on the Waterbirds dataset. In this case, we do not
wish to remove ignore the feature s, but instead we wish to find a model that performs well on the
images with s = 0 (no chest drain). Applying DFR to this dataset is not straightforward, as (1) we do
not have examples from the (y = 0, s = 1) group, and (2) we do not wish to remove the reliance on
the s attribute. We found that the best approach in this case was to simply train a logistic regression
model on all of the available validation data, without any balancing. DFR generally provides a smaller
improvement on this dataset, and behaves less consistently, as we see e.g. in Figure 3.

19



Waterbirds Target: bird type; Spurious feature: background type.

Image:

Group g: 0 1 2 3
Target y: 0 0 1 1

Spurious s: 0 1 0 1

Description: landbird
on land

landbird
on water

waterbird
on land

waterbird
on water

# Train data: 3498 (73%) 184 (4%) 56 (1%) 1057 (22%)
# Val data: 467 466 133 133

CelebA hair color Target: hair color; Spurious feature: gender.

Image:

Group g: 0 1 2 3
Target y: 0 0 1 1

Spurious s: 0 1 0 1

Description: non-blond
woman

non-blond
man

blond
woman

blond
man

# Train data: 71629 (44%) 66874 (41%) 22880 (14%) 1387 (1%)
# Val data: 8535 8276 2874 182

Wilds-FMOW Target: land use / building; Spurious feature: region.

Image:

Group g: 0 1 2 3 4
Target y: {0,. . . ,61} {0,. . . ,61} {0,. . . ,61} {0,. . . ,61} {0,. . . ,61}

Spurious s: 0 1 2 3 4
Description: Asia Europe Africa America Oceania
# Train data: 17809 (23%) 34816 (45%) 1582 (2%) 20973 (27%) 1641 (2%)
# Val data: 4121 7732 803 6562 693

CXR-14 Target: pneumothorax; Shortcut feature: chest drain.

Image:

Group g: 0 1 2
Target y: 0 1 1

Spurious s: 0 0 1
Description: not sick, no chest drain sick, no chest drain sick, chest drain
# Train data: 71629 (95%) ? ?
# Val data: 10714 204 300

Figure 6: Image datasets. Group descriptions and example images for Waterbirds, CelebA hair
color, Wilds-FMOW and CXR-14 datasets. Each column corresponds to a group in the dataset. For
CXR-14 group labels are not known on the training data.
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Civil Comments Target: toxic / neutral comment;
Spurious feature: mentions protected categories.

Example Group g Target y Spur. s # Train
data

# Val
data

“I wouldn’t think this would be so rare on the
plains of eastern Colorado.” 0 0 (Netral) 0 148186 (55%) 25159

“If the person wanted to write to the Bishop, he or she would have.
They wanted the Vatican to know their pain, not to acknowledge it

is a lack of Christian charity and kindness.”
1 0 (Netral) 1 90337 (33%) 14966

“What a gross example of bureaucrats and lawyers showing
everyone in Oregon who our bosses are. Next the jerks will

demand we bow to them. <...>”
2 1 (Toxic) 0 12731 (5%) 2111

“Democrats, RINO’s and atheists won’t be happy until they
have destroyed conservatives and christians.” 3 1 (Toxic) 1 17784 (7%) 2944

MultiNLI Target: contradiction / entailment / neutral;
Spurious feature: has negation words.

Example Group g Target y Spur. s # Train
data

# Val
data

“he was up quickly. [SEP] he sat the entire time and didn’t move.” 0 0 (contr.) 0 57498 (28%) 22814
“for golf enthusiasts, two courses reassure the visitor
you are close to civilization. [SEP] there is no golf

course available anywhere around.”
1 0 (contr) 1 11158 (5%) 4634

“while emergency physicians may not have the time or interest,
the patients do. [SEP] the patients have time and interest,

unlike emergency physicians.”
2 1 (entail.) 0 67376 (32%) 26949

“then it dawned on him that of course the lawyer did not know.
[SEP] he realised that the lawyer had no idea.” 3 1 (entail.) 1 1521 (1%) 613

“disneyland is huge and can be very crowded in summer.
[SEP] going to disneyland is every child’s dream. 4 2 (neutr.) 0 66630 (32%) 26655

“you have raced him, senor? " he asked drew with formal
courtesy. [SEP] drew replied that he had never raced him.” 5 2 (neutr.) 1 1992 (1%) 797

Figure 7: Text datasets. Text examples, class labels, spurious attributes and group labels for the
Civil Comments and MultiNLI datasets. On both datasets, the spurious feature is correlated with the
class label.
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A.3 Data augmentation and preprocessing

On the image datasets, we consider several data augmentation policies. In Figure 8, we provide the
code implementing the No augmentation and Default augmentation policies in torchvision. The
other policies are more involved, so we do not include the code here. All policies normalize the data
analogously to the code in Figure 8.

No augmentation. This policy resizes the data to a fixed resolution and applies channel normaliza-
tion.

Default policy. This policy additionally applies random crops and horizontal flips.

MixUp. For this policy, we use the Default policy to initially preprocess the images, and then apply
MixUp [98] with the mixing parameter α = 0.2.

Random Erasing. This policy is described in Zhong et al. [101]. It randomly erases rectangular
blocks of the image, and replaces them with uniform grey blocks. We use the implementation in
timm.data.random_erasing in the timm package.

Augmix. We adapt the official implementation of the AugMix policy [29] available here.

Text models. For data preprocessing in the experiments on text data, we use the BERT tokenizer:
BertTokenizer.from_pretrained("bert-base-uncased") from the transformers package.

A.4 Models

Here, we list the models used in this paper.

ResNet-50. On the Waterbirds, CelebA and FMOW by default we use the ResNet-50 model
He et al. [26] pretrained on ImageNet. We use the model implemented in the torchvision pack-
age: torchvision.models.resnet50(pretrained=True). In Figure 5, we additionally consider the
randomly initialized model torchvision.models.resnet50(pretrained=False), and the models
pre-trained with SimCLR [11] and Barlow Twins [96] contrastive learning methods, imported from
the vissl package (models available here).

DenseNet-121. On CXR, by default we use the DenseNet-121 model [32] implemented in the
torchvision package: torchvision.models.densenet121(pretrained=True). We also consider
this model without ImageNet pretraining: torchvision.models.densenet121(pretrained=False).

Other image models. In Section 6, we additionally consider a broad range of architectures and
pretraining methods, which we briefly list here. We use the following models from torchvision,
all pretrained on ImageNet1k: ResNet-18, ResNet-34, ResNet-50, ResNet-101, ResNet-152 [26];
Wide-ResNet-50-2 [95]; ResNext-50-32 × 4d [94]; DenseNet-121 [32]; VGG-16, VGG-19 [82];
AlexNet [46]. We also use the following models from the timm package: ConvNext-Small, ConvNext-
Base, ConvNext-Large, ConvNext-XLarge [52], pretrained on either ImageNet1k or ImageNet22k;
ViT-Small, ViT-Base, ViT-Large, ViT-Huge [15], pretrained on either ImageNet1k or ImageNet22k;
BEiT-Base, BEiT-Large [6], pretrained on either ImageNet1k or ImageNet22k; DEiT-Small, DEiT-
Base [6], pretrained ImageNet1k. We also use ViT-Small, ViT-Base models with DINO pretraining
on ImageNet1k [10] available here. Finally, we use ViT-Base, ViT-Large and ViT-Huge models
with MAE pretraining on ImageNet1k [25], with or without supervised finetuning on ImageNet1k,
available here.

BERT model. On the text classification problems, we use the BERT for classification model
from the transformers package: BertForSequenceClassification.from_pretrained(’bert-base
-uncased’, num_labels=num_classes).

B Details: ERM vs Group Robustness

B.1 Methods and hyper-parameters

ERM, RWY and RWG. We report the hyper-parameters used on each of the datasets in Table
2. We did not tune the hyper-parameters for ERM, RWY and RWG aside from the learning rate
for the text classification problems. For all vision datasets, we used the default data augmentation
policy (see Section A.3). We describe the default model choices in Section A.4. The RWY method is
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1 import torchvision.transforms as transforms
2 import torch
3

4

5 target_resolution = (224, 224)
6 resize_resolution = (256, 256)
7 IMAGENET_STATS = ([0.485 , 0.456, 0.406] , [0.229 , 0.224, 0.225])
8

9

10 # No Augmentation
11 noaug_transform = transforms.Compose(
12 transforms.RandomResizedCrop(
13 target_resolution ,
14 scale =(0.7, 1.0),
15 ratio =(0.75 , 1.33) ,
16 interpolation =2),
17 transforms.RandomHorizontalFlip (),
18 transforms.ToTensor (),
19 transforms.Normalize (* IMAGENET_STATS)
20 )
21

22 # Default Augmentation
23 aug_transform = transforms.Compose(
24 transforms.Resize(resize_resolution),
25 transforms.CenterCrop(target_resolution)
26 transforms.ToTensor (),
27 transforms.Normalize (* IMAGENET_STATS)
28 )
29

30 # On test , we always use noaug_transform
31 test_transform = noaug_transform

Figure 8: Data augmentation policies. The default data augmentation policies implemented using
the torchvision package.

implemented by providing a sampler to the DataLoader in PyTorch, which samples the datapoints
from different classes with the same frequency. The RWG method is implemented analogously, and
samples datapoints from different groups with the same frequency.

Group DRO. The training objective used in Sagawa et al. [76] is the following:

θ̂ = argmin
θ

max
g∈G

[
E(x,y)∼pg

l(y, fθ(x)) + C/
√
ng

]
,

where fθ(·) is a neural network model with parameters θ, l(·, ·) is a loss function (cross-entropy
for classification), G is a set of all groups, ng is the size of the group g, and C is a generalization
adjustment hyper-parameter. We follow Sagawa et al. [76] to choose hyper-parameter combinations
for tuning group DRO on Waterbirds, CelebA and MultiNLI.

In particular, on Waterbirds we considered the following combinations of the initial learn-
ing rate lr and weight decay wd: (lr = 10−3, wd = 10−4), (lr = 10−4, wd = 0.1) and (lr =
10−5, wd = 1). We varied the parameter C in the range {0, 1, 2, 3, 4, 5} for each combi-
nation of learning rate and weight decay. Additionally, we varied weight decay in range
{0, 10−4, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 · 10−2, 0.1, 0.3, 1} for fixed values of learning rate
10−3 and C = 0.

On CelebA, we considered the following combinations of lr and wd:
(lr = 10−4, wd = 10−4), (lr = 10−4, wd = 10−2) and (lr = 10−5, wd = 0.1), varying C
in the same range as on Waterbirds. For weight decay ablation we considered values in
{0, 10−5, 3 · 10−5, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}.

On MultiNLI, we use learning rate 2 · 10−5, and vary weight decay in the range {0., 0.01, 0.1, 1.0}
and C in the range {0, 1, 3, 5}.
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Method Waterbirds CelebA FMOW CXR MultiNLI CivilComments

ERM 68.9±2.0 44.0±2.1 31.4±0.7 68.8±0.2 67.5±1.1 61.0±0.3

ERM + DFR 91.1±0.8 89.4±0.9 41.6±0.6 71.6±0.5 72.6±0.3 78.8±0.5

RWY 65.4±0.6 46.1±2.1 30.5±0.6 71.3±1.1 68.0±0.4 63.4±0.9

RWY + DFR 90.4±1.0 88.3±0.5 40.9±0.7 72.5±0.1 72.2±1.9 78.5±0.4

RWY-ES 74.5±0.0 76.8±7.7 78.9±1.0

RWY-ES + DFR 89.1±0.7 89.6±0.5 76.9±0.6

RWG 67.7±0.7 49.1±0.9 31.2±0.1 62.0±0.2 73.5±2.2

RWG + DFR 91.3±0.3 85.4±1.5 41.1±0.6 71.6±1.3 79.3±0.5

RWG-ES 77.4±0.0 83.7±0.7 74.7±6.7

RWG-ES + DFR 90.7±0.2 89.8±0.3 77.0±0.2

GDRO 68.5±6.0 66.3±7.8 30.2 70.1 70.6
GDRO + DFR 88.2±1.1 90.4±0.7 40.3 71.8 80.2

GDRO-ES 90.7±0.6 90.6±1.6 33.1 73.5 80.4
GDRO-ES + DFR 89.9±0.5 91.1±0.1 42.5 73.3 77.3

Table 1: Method comparison results. Detailed results for the method comparison presented in
Figure 1. The error bars represent one standard deviation over 3 independent runs. We only evaluate
early stopping (ES) on datasets where it is helpful for the base model performance. On CXR, no group
information is available on the train data, so we can only apply the ERM and RWY methods. We
use a ResNet50 model pretrained on ImageNet on Waterbirds, CelebA and FMOW, a DenseNet-121
model pretrained on ImageNet on CXR, and a BERT model pretrained on Book Corpus and English
Wikipedia data on CivilComments and MultiNLI.

Dataset Optimizer Initial LR LR schedule Batch size Weight decay # Epochs

Waterbirds SGD [71] 3 · 10−3 Cosine annealing 32 10−4 100
CelebA SGD [71] 3 · 10−3 Cosine annealing 100 10−4 20
FMOW SGD [71] 3 · 10−3 Cosine annealing 100 10−4 20

CXR SGD [71] 3 · 10−3 Cosine annealing 100 10−4 20
MultiNLI AdamW [53] 10−5 Linear annealing 16 10−4 10

Civil Comments AdamW [53] 10−5 Linear annealing 16 10−4 10

Table 2: ERM, RWY and RWG hyper-parameters. Default hyper-parameters used on each dataset.
On the image classification datasets, we adapted the hyper-parameters of Kirichenko et al. [40], with
no tuning. On the text classification dataset, we followed Sagawa et al. [76] and Idrissi et al. [34]
in the choice of the optimizer and learning rate scheduler, and chose the learning rate value which
provided the best base model validation mean accuracy.

On CivilComments, we considered the following combinations of lr and wd:
(lr = 10−5, wd = 0.1), (lr = 10−5, wd = 0.01), (lr = 10−4, wd = 0.01); for each combina-
tion we varied C in {0, 3, 5}.

On FMOW, the learning rate and weight decay pairs were (lr = 10−3, wd = 10−3),
(lr = 10−4, wd = 10−3), (lr = 10−4, wd = 10−2), (lr = 10−5, wd = 10−1). For each lr and wd
combination we varied C in the same range as on Waterbirds and CelebA datasets.

For all image datasets, we use the default data augmentation policy (see Section A.3). In all runs
we used the same batch size and train for the same number of epochs as the corresponding hyper-
parameters in ERM (see Table 2).

B.2 DFR implementation and hyper-parameters

In all experiments, we use the DFRVal
Tr variation of the DFR method described in Kirichenko

et al. [40]. We follow the official implementation provided here. Specifically, we use ℓ1 regu-
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Figure 9: Effect of data augmentation. All the results shown use a ResNet50 architecture except
for CXR results, which use a DenseNet-121 model pretrained on ImageNet. AugMix augmentation
policy consistently provides strong performance across all datasets, while random erasing and mixup
hurt performance on Waterbirds and FMOW respectively.

larization for training the logistic regression model implemented in the scikit-learn package:
sklearn.LogisticRegression(penalty="l1", C=c, solver="liblinear"); we tune the regular-
ization strength c within the set {1, 0.7, 0.3, 0.1, 0.07, 0.03, 0.01}, following the procedure described
in Kirichenko et al. [40].

As explained in Section A.2, on CXR we train the logistic regression model on all of the validation set
without group balancing. Further, on CXR we tune the regularization strength parameter according to
the worst AUC, and not worst group accuracy.

We additionally compute DFR s-WGA by using DFR (with the same hyper-parameters and im-
plementation) to predict the spurious attribute s (instead of the class label y) from the learned
features.

B.3 Results

We provide detailed results for all methods on all datasets in Table 1. Group-DRO significantly
improves the base model performance compared to all other methods across the board. After applying
DFR, the performance across the different methods is very similar, although Group-DRO with early
stopping still typically provides a small improvement. The improvement is, however, very small
compared to the improvement from using a better base model (see Section 6).

C Details: Effect of the Base Model

For all experiments in Section 6, we use the default data augmentation policy (see Section A.3). We
consider a broad range of models and architectures (see Section A.4). We ran all models with the
default hyper-parameters provided in Table 2. For CXR-14 dataset, we used class reweighting due to
heavy class imbalance present in the train data (95% of train images are from the negative class).

We note that the default hyper-parameters are suboptimal for some of the ViT models, which lead to
poor performance for some of the models. With more tuning, we expect that it should be possible to
improve the results further for all the considered models, especially ViT-based.

D Effect of Regularization

Regularization is used to combat overfitting, including reliance on spurious features. We consider
two regularization techniques: weight decay and data augmentation.

Effect of weight decay. Using a ResNet-50 model pretrained on ImageNet1k, we run training with
a range of weight decay values on each of the four image datasets, and report the results in Figure
10. We use the default model setup described in Section A.4, and default hyper-parameters in Table
2, and vary the weight decay strength in the range {0, 10−5, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2}.
For the base model WGA performance, it is generally helpful to set the weight decay to non-zero
values (in particular, on Waterbirds, CelebA and FMOW datasets). Indeed, on CelebA the base model
WGA for no weight decay is the worst across all weight decay values, losing to the best weight decay
by ≈ 5%. However, the no weight decay model is in fact the best model according to DFR WGA
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on CelebA! On Waterbirds and CelebA, strong weight decay allows the model to rely less on the
spurious features in the last layer (leading to higher base WGA), but does not improve the learned
feature representations (similar or worse DFR WGA). This observation is especially interesting given
that Sagawa et al. [76] showed that group DRO requires stronger than usual weight decay to achieve
good performance.
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Figure 10: Effect of weight decay. While
zero weight decay underperforms in base
WGA on Waterbirds and CelebA, it provides
near-optimal DFR WGA.

At the same time, on FMOW and CXR non-zero
weight decay appears to be helpful for learning high
quality representations of the core features. We hy-
pothesize that the difference in weight decay effects
on these two pairs of datasets is due to the differ-
ence in the nature of distribution shifts. In particular,
Waterbirds and CelebA are standard benchmarks for
spurious correlations robustness and group robustness,
where for each data point both core and spurious fea-
ture are present and clear. CXR and FMOW are more
challenging datasets with real-world distribution shift.
The groups in FMOW are defined by the regions which
are not equally represented in train data, but the spuri-
ous features (region identity) are more subtle and not
present in all images. Moreover, FMOW additionally
contains a domain shift across time: the validation and
test images were taken after 2016, while the training images were taken before 2016. On CXR the
spurious feature is only present for the positive class and completely absent for the negative class
(see Section A.2 for detailed discussion). Consequently, we observe some differences in the results
between the standard benchmarks and these more realistic datasets.

In Table 6 we report analogous results on the MultiNLI text classification problem.

Effect of Data Augmentation. Next, we consider 5 data augmentation policies: (1) no augmenta-
tions, (2) default augmentations, i.e. random crops and horizontal flips, (3) MixUp [98] combined
with default augmentations, (4) Random Erasing [101], and (5) AugMix [29]. We train a ResNet-50
model pretrained on ImageNet1k on each of the four datasets with each of the augmentation policies,
and report the results in Figure 9. We use the default models described in Appendix A.4, and default
hyper-parameters in Table 2, and apply the data augmentation policies desribed in Appendix A.3.

AugMix provides the best performance on each dataset. However, we find that data augmentation
is generally not required to achieve strong performance on any of the datasets with the exception
of CXR: the model trained without augmentations is competitive across the board. Moreover, data
augmentation can hurt the learned features. For example, while MixUp is helpful on Waterbirds
and CelebA, it significantly hurts the preformance on FMOW, with 30% DFR WGA compared to
42% for the model trained without augmentation. We hypothesize that on the FMOW dataset, which
contains highly detailed satellite images, mixing the images makes training overly challenging.

Similarly, Random Erasing hurts the DFR WGA on Waterbirds. We hypothesize that the randomly
erased image block is more likely to fully cover the bird features than the background features, as the
bird occupies a small fraction of the image relative to the background. Consequently, the model is
incentivised to focus on the spurious feature: the model trained with Random Erasing learned the
highest quality representation of the spurious feature across all augmentations with DFR s-WGA of
91.8±0.1% across 3 runs, compared to e.g. 91.4±0.5% for the model trained with no augmentation.

Balestriero et al. [5] report a related observation for models trained on ImageNet: in some cases data
augmentation affects different classes disproportionately, and best data augmentation policies for
mean accuracy can lead to poor worst-class accuracy,

Effect of training length on ERM. We plot the DFR WGA, DFR s-WGA, as well as base model
WGA and mean accuracy as a function of training epoch for ERM training in Figure 11. On all
datasets, we observe that the DFR WGA quickly converges and stays roughly constant throughout
training. On all datasets, 5 epochs is sufficient for near-optimal performance. Longer training
generally does not help or hurt DFR WGA, even when it hurts the base model.

Effect of training length on Group-DRO. We repeat the same experiment, but with Group-DRO
instead of ERM training in Figure 12. Again, we observe that 5 epochs are generally sufficient for
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Figure 11: ERM training length effect. On all datasets, 5 epochs or less is sufficient to achieve
near-optimal DFR WGA performance, but longer training does not hurt performance.
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Figure 12: Group-DRO training length effect. DFR WGA converges to near-optimal performance
in under 5 epochs. On Waterbirds and CelebA the DFR WGA performance is less stable compared to
the ERM results in Figure 11.

near-optimal performance. Interestingly, for Group-DRO, DFR WGA does deteriorate over time on
Waterbirds but not as significantly as the base model WGA.

E Additional results on MultiNLI

For all experiments in this section, we train the models for 5 epochs with learning rate 10−5 and 0
weight decay.

Effect of base model. In Table 3, we report the results for BERT-Base, BERT-Large,
DeBERTa-Base, and DeBERTa-Large models [27, 28]. For BERT models, following Sagawa et al.
[76], we use the cached tokenizer outputs with maximum sequence length 150. For DeBERTa models,
we re-tokenize the dataset with the corresponding tokenizer with a maximum sequence length of

27

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://huggingface.co/microsoft/mdeberta-v3-base
https://huggingface.co/microsoft/deberta-v3-large


Base Model Base Acc Base WGA DFR WGA DFR s-WGA

BERT-Base 82.3 66.1 73.8 83.6
BERT-Large 84.6 70.6 76.6 79.0
DeBERTa-Base 88.9 80.4 82.3 80.2
DeBERTa-Large 90.2 81.2 84.8 68.3

Table 3: MultiNLI: base model effect. Effect of base model on the performance on the MultiNLI
dataset. DeBERTa-Large model provides the best performance in terms of DFR WGA as well as
Base WGA and Base mean accuracy.

Pretraining Base Acc Base WGA DFR WGA DFR s-WGA

Random Init 59.1 26.0 45.4 94.9
Pretrained on Wiki + Book Corpus 82.3 66.1 73.8 83.6

MultiLingual on Wiki 80.5 62.1 72 83.9

Table 4: MultiNLI: effect of pretraining. Results for BERT-Base model with different types of pre-
training on the MultiNLI dataset. Pretraining is required to achieve strong performance. Multilingual
pretraining is competitive but inferior to pretraining on data in English.

220. We train all models for 5 epochs. The advanced DeBERTa-Large model provides the best base
performance and DFR WGA.

Effect of pretraining. In Table 4 we evaluate the results of BERT-Base models with different types
of pretraining on MultiNLI. This experiment is analogous to the experiment for image classification
problems presented in Figure 5(a). We find that pretraining is necessary to achieve strong performance
on this dataset, but different pretraining datasets lead to competitive results.

Effect of training on target data. In Table 5 we evaluate the effect of training on the MultiNLI
dataset for the BERT and DeBERTa pretrained models. This experiment is analogous to the exper-
iment for image classification problems presented in Figure 4. We find that after training on the
target data both the core features (DFR WGA) and the spurious features (DFR s-WGA) become
significantly more decodable. This result is in contrast to the results on Waterbirds in Figure 4, where
DFR WGA is not significantly improved from training.

Effect of weight decay. In Table 6 we report the results of the weight decay ablation for the
BERT-Base model on MultiNLI; this model uses the AdamW optimizer [53], so we consider larger
values of weight decay.

F Broader Impact and Limitations

Limitations. While we consider a wide range of factors that affect the feature learning under
spurious correlations, we inevitably do not cover all the possible factors. In particular, it would be
interesting to consider the effect of regularization methods beyond weight decay and early stopping,
and methods for diverse feature learning such as DivDis [48], or the method of Teney et al. [85].
As another limitation, while DFR performs well in our experiments, it is not guaranteed to learn an
optimal linear classifier with the given features; further improvements in learning the last layer can
be used to refine the results of our study. Despite these limitations, we believe that our work provides
a comprehensive analysis of the feature learning under spurious correlations.

Broader impact. Research on spurious correlations is closely related to ML Fairness [16, 23, 41,
69, 1, 39]. We hope that our work can motivate further research in fairness, where techniques similar
to DFR can be considered to improve the fairness of ML models. A potential negative outcome
that can result from misinterpretation of our analysis is if the practitioners assume that spurious
correlations are not an important issue, as ERM learns high quality representation of the core features.
We emphasize that ERM still performs suboptimally (see Figure 1), as it does not provide a correct
weighting for the features in the final classification layer. Spurious correlations are a significant
practical issue that should be considered carefully in real-world applications.
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Pretraining Init DFR WGA Trained DFR WGA Init DFR s-WGA Trained DFR s-WGA

BERT-Base 37.4 73.8 69.9 83.6
BERT-Large 34.4 76.6 57.6 81

DeBERTa-Base 58.5 82.3 77 80
DeBERTa-Large 61.8 84.8 66.4 68.3

Table 5: MultiNLI: effect of training on target data. Results for different models before and after
training on the MultiNLI dataset. For all the considered models, both the core and the spurious
features are significantly more decodabe after training on the target data.

Weight decay Base Acc Base WGA DFR WGA DFR s-WGA

0 82.3 66.1 73.8 83.6
1 81.4 63.2 74.6 90.1
3 74.5 43.0 66.0 94.4
10 63.5 23.4 39.9 66.0
30 57.0 15.2 28.9 59.3

100 46.4 1.7 3.2 53.0

Table 6: MultiNLI: weight decay. The effect of weight decay on the BERT-Base model on MultiNLI.
Similarly to the results in Figure 10, weight decay 0 provides competitive performance. The best
DFR WGA is achieved with weight decay 1.

Compute. We estimate the total compute used in the process of working on this paper at roughly
3000 GPU hours. The compute usage is dominated by the experiments presented in Figure 3, where
we trained a large number of large-scale models on 4 vision datasets. The tuning of Group-DRO
hyper-parameters was also relatively compute-heavy. The experiments were run on GPU clusters on
Nvidia Tesla V100, Titan RTX, RTX8000, 3080 and 1080Ti GPUs.

Licenses. The Civil Comments dataset is distributed under the CC0 license. The FMOW dataset is
under the FMoW Challenge Public License. The Places dataset is under the CC BY license. For the
details of the license for the MultiNLI dataset, see Williams et al. [91].
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