
Speedup=1.53

1.83
2.18

2.66

4.02

0

1

2

3

4

5

6

7

8

dense 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

Sparsity

Other Conv+Linear Shuffle+Blocking

(a) WideResNet22-2

Speedup=1.56
1.91

2.34

2.94

4.89

0

1

2

3

4

5

6

7

dense 0.5 0.6 0.7 0.8 0.9
Sparsity

Other Conv+Linear Shuffle+Blocking

(b) ResNet18

Speedup=1.46
1.73

2.12

2.72

3.57

0

1

2

3

4

5

6

7

dense 0.5 0.6 0.7 0.8 0.9
Sparsity

Other Conv+Linear Shuffle+Blocking

(c) VGG16

Figure 12: Training time per epoch for different models on CIFAR10.

Speedup=1.65
1.90

2.23

2.71

3.44

0

1

2

3

4

5

6

7

8

dense 0.5 0.6 0.7 0.8 0.9

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

)

Sparsity

Other Conv+Linear Shuffle+Blocking

(a) WideResNet22-2

Speedup=1.60
1.92

2.36

3.16
5.02

0

1

2

3

4

5

6

7

dense 0.5 0.6 0.7 0.8 0.9
Sparsity

Other Conv+Linear Shuffle+Blocking

(b) ResNet18

Speedup=1.47

1.75
2.16

2.77
3.68

0

1

2

3

4

5

6

7

8

9

dense 0.5 0.6 0.7 0.8 0.9
Sparsity

Other Conv+Linear Shuffle+Blocking

(c) VGG16

Figure 13: Training time per epoch for different models on CIFAR100.

A Appendix

A.1 End-to-end speedups

To show the end-to-end speedups with shuffled-block sparsity, we obtain the layer-wise execution
time of dense training on an Nvidia RTX 3090 GPU with PyTorch Profiler [32]. The sparse training
time is estimated by replacing the execution time of dense convolution and linear operations with the
execution time of shuffled-block convolution and linear operations. Fig. 12 shows the average training
time per epoch for WideResNet22-2, ResNet18, and VGG16 on CIFAR10. The batch size is set to
128, and the shuffled block size is set to 16. We can see that convolution and linear operations account
for more than 80% execution time of the dense models. Shuffled-block sparse training effectively
reduces the execution time of these layers at different sparsities, achieving overall 1.46x to 5.02x
speedups. Fig. 13 shows similar speedups for the three models on CIFAR100 dataset.

A.2 Benefits of block-aware drop criterion

Figure 14 shows the accuracy of shuffled-block dynamic sparse training with and without our block-
aware drop criterion for WideResNet22-2, ResNet18, and VGG16 on CIFAR10 dataset. As we
explain in §4, the original drop criterion leads to ineffective drops of small weights and causes the
more important weights to be discarded by the shuffled blocking procedure. The experiments show
that the original drop criterion has apparently lower accuracies than our block-aware drop criterion.
Fig. 15 shows a similar pattern for the three models on CIFAR100 dataset. The results validate the
advantage of our block-aware drop criterion for shuffled-block dynamic sparse training.

A.3 Memory consumption analysis

Table 3 lists the memory consumption of our dynamic shuffled-block training (DSB) and two other
dynamic sparse training methods (RigL [8] and Top-KAST [18]). We only compare the memory
consumption of model weights and gradients since the intermediate activations are of the same size
with different training methods. Suppose the number of parameters in the dense model is N and the
density of the sparse model is d (0 < d  1). In each training iteration, RigL [8] stores Nd weights
and computes their gradients. For model adaptation, RigL needs to compute the gradients for all
the N parameters and select the parameters with the largest gradients for growing. Our DSB has
the same memory consumption as RigL in each training iteration, but we need not compute the full
gradients for model adaptation thanks to our block-wise grow criterion. Top-KAST [18] aims to

14



90

91

92

93

94

95

0.5 0.6 0.7 0.8 0.9

Ac
cu
ra
cy

Sparsity

Block-aware Original Dense

(a) WideResNet22-2

92.5

93

93.5

94

94.5

95

95.5

0.5 0.6 0.7 0.8 0.9
Sparsity

Block-aware Original Dense

(b) ResNet18

91.5

92

92.5

93

93.5

94

94.5

0.5 0.6 0.7 0.8 0.9
Sparsity

Block-aware Original Dense

(c) VGG16

Figure 14: Test accuracy (%) of shuffled-block dynamic sparse training with and without our block-
aware drop criterion on CIFAR10.

64
65
66
67
68
69
70
71
72
73
74
75

0.5 0.6 0.7 0.8 0.9

Ac
cu
ra
cy

Sparsity

Block-aware Original Dense

(a) WideResNet22-2

72

73

74

75

76

0.5 0.6 0.7 0.8 0.9
Sparsity

Block-aware Original Dense

(b) ResNet18

68

69

70

71

72

73

0.5 0.6 0.7 0.8 0.9
Sparsity

Block-aware Original Dense

(c) VGG16

Figure 15: Test accuracy (%) of shuffled-block dynamic sparse training with and without our block-
aware drop criterion on CIFAR100.

avoid the computation of full gradients for model adaption. It computes the gradients for a superset
of the active weights (with ND +M parameters) in each iteration. After updating the ND +M

parameters, it selects ND parameters with the largest magnitudes from all parameters as the active
weights for the next iteration. Thus, it needs to store all the N parameters. Compared to RigL and
Top-KAST which needs to store either dense gradients or dense weights, our DSB stores sparse
gradients and weights throughout the training process.

Table 3: Memory consumption of model weights and gradients with different sparse training methods.
N is the number of parameters in the dense model, d represents the density of the sparse model, and
M represents the extra number of gradients that need to be computed in Top-KAST. “Train” refers to
the memory consumption in each training iteration, and “Model adaptation” refers to the memory
used for adapting the sparse model.

Train Model adaptation
weights gradients weights gradients

DSB Nd Nd Nd Nd

RigL Nd Nd Nd N

Top-KAST N Nd+M - -

15


