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Abstract

Many practical settings allow a classifier to defer predictions to one or more costly
experts. For example, the learning to defer paradigm allows a classifier to defer to
a human expert, at some monetary cost. Similarly, the adaptive inference paradigm
allows a base model to defer to one or more large models, at some computational
cost. The goal in these settings is to learn classification and deferral mechanisms to
optimise a suitable accuracy-cost tradeo�. To achieve this, a central issue studied
in prior work is the design of a coherent loss function for both mechanisms. In this
work, we demonstrate that existing losses can underfit the training set when there is
a non-trivial deferral cost, owing to an implicit application of a high level of label
smoothing. To resolve this, we propose two post-hoc estimators that fit a deferral
function on top of a base model, either by threshold correction, or by learning
when the base model’s error rate exceeds the cost of deferring to the expert. Both
approaches are equipped with theoretical guarantees, and empirically yield e�ective
accuracy-cost tradeo�s on learning to defer and adaptive inference benchmarks.

1 Introduction

Supervised classification conventionally considers learning a single model with good average-case
test performance. However, many practical settings allow for choosing amongst multiple models to
classify a given sample. For example, in the learning to defer (L2D) paradigm [18], a base classifier
may be used in conjunction with a human expert. Specifically, the classifier has the option of deferring

to the expert, at the expense of incurring some additional cost (e.g., monetary expense). The goal is
to learn a classifier and deferral function achieving a suitable accuracy-cost tradeo�. This problem
has received a surge of interest [26, 19, 22, 34] given the increasing use of machine learning in
high-stakes decision making. Interestingly, similar considerations are also found in the problem of
adaptive inference for resource-constrained prediction [13]: here, a base model can choose to defer to
one or more experts, which are themselves learning models with higher capacity and inference cost.
Similar to L2D, the goal is to achieve a suitable tradeo� between accuracy and (inference) cost.
A key problem in such settings is deciding when the base model should defer its prediction to the
expert(s). An intuitive strategy is to defer when the model has low prediction confidence (e.g.,
classification margin). While theoretically grounded [8], this strategy can under-perform when the
base model has low capacity [9]. An alternate strategy is to explicitly formulate and optimise a joint
loss function for the base classifier and deferral function. This has been followed with success in the
L2D literature, particularly with the cost-sensitive softmax cross-entropy loss (CSS) of Mozannar and
Sontag [19], and one-versus-all (OvA) loss of Verma and Nalisnick [34].
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Figure 1: Illustration of underfitting of the cost-sensitive softmax cross-entropy (CSS) loss of Mozannar and
Sontag [19]. On CIFAR-100, we consider a learning to defer setting comprising a ResNet-8 base model
and a ResNet-32 “expert” hexp. We assume a cost cexp(x, y) = c0 + 1(y 6= hexp(x)) of deferring to
the expert (see §2 for details on notation), where the fixed cost c0 is varied from [0, 1]. For each c0, we
train the base model using the CSS loss (4), and report the resulting accuracy. For c0 > 0, the base
model exhibits underfitting, evidenced by significant degradation in the training accuracy. In §3.1,
we trace this behaviour to the loss applying a high level of label smoothing [31] to incorrect labels.
Consequently, the entropy of the base model probabilities steadily increase with c0 (right panel).

While the above losses have proven e�ective, they are not without limitations. Indeed, both focus on
the setting where the cost of deferring is only given by the probability that the expert makes a mistake
on a sample; this does not consider the additional fixed cost of querying an expert in the first place.
As we shall see (§3), incorporating any non-zero fixed cost makes these losses prone to underfitting;
cf. Figure 1. This behaviour is owing to the fact that the losses implicitly apply a high level of label

smoothing. The setting of non-zero fixed cost is particularly important in adaptive inference settings,
where querying an expert inherently involves paying an increased computational cost.
In this work, we resolve this issue via deferral schemes based on post-hoc estimators. In a nutshell,
we follow a two-step procedure wherein we fit a deferral function on top of a base model, either by
threshold correction, or by learning to predict when the base model’s error rate exceeds the deferral
cost. This allows us to build on top of the standard (zero fixed cost) CSS and OvA solutions, resulting
in an empirically e�ective strategy with theoretical guarantees. In sum, our contributions are:
(i) we identify limitations in prior losses for L2D, particularly when the cost of deferring to an expert

involves a non-zero fixed cost in addition to the probability of the expert making a mistake (§3)
(ii) we propose new post-hoc estimators for learning a deferral function, which overcome the above

limitation while enjoying theoretical guarantees (§4, Theorem 2, Theorem 4)
(iii) we empirically show that the new post-hoc estimators work well on synthetic and real-world

benchmark datasets for both L2D and adaptive inference settings (§5).
In the course of our analysis, we additionally generalise the OvA loss to reliably account for general
deferral costs ((10), Lemma 1), and to reliably estimate label probabilities in practical settings (12).

2 Background and Notation

Our interest is in learning settings where a classifier is equipped with the option of deferring to an
expert model. For concreteness, we shall focus our exposition on the learning to defer paradigm.

2.1 Multi-class Classification

Fix an instance space X and label space Y = [L]
.
= {1, 2, . . . , L}, and let P be a distribution over

X ⇥ Y. Given a training sample S = {(xn, yn)}n2[N ] drawn from P, multi-class classification
seeks a classifier h : X ! Y with low misclassification error R(h) = P(y 6= h(x)). We may
parameterise h as h(x) = argmaxy02Yfy0(x) for a scorer f : X ! RL. Such a scorer may be learned
by minimising the empirical surrogate risk R̂(f) = 1

N

P
n2[N ] `(xn, yn, f(xn)) for some loss

` : X⇥Y⇥RL ! R+, such as the softmax cross-entropy `(x, y, f(x)) = log
hP

y02Y efy0 (x)
i
�fy(x).

For binary classification problems with L = 2, it is common to enforce f2(x) = �f1(x) and set
`(x, y, f(x)) = �(fy(x)) for some margin loss � : R ! R+, such as �(z) = log(1 + e�z).
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2.2 Learning to Defer (L2D) Problem

In the learning to defer (L2D) problem [18], one seeks a classifier that can either make a standard
prediction in Y via some base model, or defer its prediction to an expert model hexp : X ! Y, at
the expense of incurring a sample-dependent cost cexp(x, y) > 0. Typically, cexp takes into account
both the fixed cost of deferring to the expert, which we will assume to be a constant c0 2 [0, 1] (e.g.,
normalised monetary cost), and an estimate of the probability that the expert makes a mistake on the
example. Canonical examples include c(1)exp(x, y) = c0 and c(2)exp(x, y) = c0 + 1 (y 6= hexp(x)). The
choice c(1)exp(x, y) corresponds to learning with a reject option or abstention [8, 2, 9, 6].
Given a suitable cexp(x, y), the learning problem may be formalised as follows. Consider a classifier
h̄ : X ! Y [ {?} equipped with a “defer” option ?. Our goal is to minimise

Rdef(h̄) = E
⇥
1(y 6= h̄(x)) · 1(h̄(x) 6=?) + cexp(x, y) · 1(h̄(x) =?)

⇤
. (1)

Intuitively, when h̄ chooses not to defer, we incur the usual misclassification error; otherwise, we incur
the cost cexp(x, y) of invoking the expert hexp. One can cast (1) as an instantiation of cost-sensitive

learning [11]; see Appendix B. We remark that Okati et al. [22] considered a slightly di�erent setting,
wherein one enforces a hard constraint on the expert cost cexp(x, y). We focus on a soft additive
penalty in (1), but we may handle hard constraints via standard Lagrangian theory; see Appendix G.
In practice, it is useful to parameterise h̄ in terms of a scorer f̄ : X ! RL+1 with label logits
{f̄1(x), . . . , f̄L(x)}, and “defer” logit f̄?(x). We then predict via

h̄(x) = argmaxy2Y f̄y(x) if maxy2Y f̄y(x) > f̄?(x); h̄(x) =? otherwise. (2)

In practice, we may parameterise f̄ via neural network logits: for any y0 2 Y[{?}, f̄y0(x) = w>
y0�(x)

for weights wy0 and embedding �. This parameterisation induces implicit sharing amongst all logits.

One conceptually useful quantity is the Bayes-optimal h̄⇤ = argminh̄ : X!Y[{?}Rdef(h̄), which is

h̄⇤(x) =

(
argmax

y2Y
P(y | x) if 1�max

y2Y
P(y | x) < E

y|x
[cexp(x, y)]

? else.
(3)

Intuitively, we defer i� the expected cost of querying the expert is smaller than the expected error of
the base model. For the constant cost function c(1)exp(x, y), this is known as Chow’s rule [8].

2.3 Losses for Learning to Defer

We review some popular recent strategies to learn f̄ (and thus h̄) below.
Confidence thresholding. For cexp(x, y) = c0, one strategy is to learn f̄1, . . . , f̄L by minimising the
softmax cross-entropy, and fix f̄?(x) = 1� c0. This confidence thresholding approach [21] mimics
the Bayes-optimal classifier (3). A related series of approaches [27, 38, 1] make deferral decisions by
comparing the base model confidence with the confidence in the expert being correct. When the base
model has low-capacity, such approaches may be sub-optimal as the base model may sub-optimally
allocate its finite capacity by classifying examples that the expert can easily predict.
Cost-sensitive softmax cross-entropy (CSS). To overcome the limitations of confidence thresholding,
it is desirable to explicitly learn f̄? as well. To this end, Mozannar and Sontag [19] proposed a cost-

sensitive softmax cross-entropy (CSS) loss: for a constant upper bound cmax � 1 on the classification
costs, this can be written as:

`CSS(x, y, f̄(x)) = �
X

y02Y

(cmax�1(y 6= y0))·log (p̄y0(x)) � (cmax�cexp(x, y))·log (p̄?(x)) , (4)

where p̄y(x) = exp(f̄y(x))/
P

y02Y[{?} exp(f̄y0(x)) is the softmax distribution over the standard
and the defer label. For cexp(x, y) = c0 + 1 (y 6= hexp(x)), we have cmax = 1 + c0. The loss `CSS is
Fisher-consistent [19, Proposition 1], with Bayes-optimal prediction

(8y0 2 Y) p̄⇤y0(x) / cmax � (1� P(y0 | x)) p̄⇤?(x) / cmax � Ey|x[cexp(x, y)]. (5)
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The original loss of Mozannar and Sontag [19] uses a slightly tighter formulation, with an upper bound
cmax(x, y) � 1 that is sample-dependent. Consequently, we can set cmax(x, y) = max{1, cexp(x, y)}.
For simplicity, we use a constant upper bound for all the losses in this paper.
One-versus-all (OvA). Despite the Fisher consistency of `CSS, Verma and Nalisnick [34] observed that
empirically, the loss may not produce calibrated estimates of the expert’s error probability. Verma and
Nalisnick thus proposed a one-versus-all (OvA) loss for the cost function cexp(x, y) = 1(y 6= hexp(x)):

`OVA(x, y, f̄(x)) =�(f̄y(x)) +
X

y02Y�{y}

�(�f̄y0(x))+

(1� cexp(x, y)) · �(f̄?(x)) + cexp(x, y) · �(�f̄?(x)).

(6)

Here, � : R ! R+ is a binary proper composite loss [28], e.g., �(z) = log(1 + e�z). Such losses
have an associated inverse link function  : R ! [0, 1], and produce Bayes-optimal scorer

(8y0 2 Y) (f̄⇤
y0(x)) = P(y0 | x)  (f̄⇤

?(x)) = 1� Ey|x [cexp(x, y)]. (7)

Intuitively, both (4) and (6) seek to have the first L logits {f̄1(x), . . . , f̄L(x)} estimate P(y | x), and
the reject logit f̄?(x) model the cost of querying the expert. With this, the highest scoring logit
provides us with an estimate of the Bayes-optimal deferral decision (3).

3 Limitations of Existing Learning to Defer Losses

We now study existing losses for learning to defer more carefully, and show that they may underfit in
an important practical setting. Specifically, recall that a canonical choice of deferral cost function
in (1) is cexp(x, y) = 1 (y 6= hexp(x)) + c0, for constant c0 � 0. Here, c0 represents a fixed cost of
querying the expert, which is independent of whether the expert misclassifies the sample.
The setting of non-zero fixed cost c0 > 0 is of practical interest; e.g., this is intrinsic to adaptive inference
settings, wherein querying the expert model fundamentally involves increasing a computational
overhead (see §4.3 for more discussion). Thus, an ideal surrogate loss for (1) should be performant
for c0 > 0. Unfortunately, we now show that this does not hold for the CSS and OvA losses.

3.1 Underfitting of Cost-Sensitive Softmax Cross-Entropy when c0 > 0

The cost-sensitive softmax cross-entropy (CSS) is in principle applicable for any deferral cost cexp(x, y),
and in particular cexp(x, y) = c0 + 1(y 6= hexp(x)) for any c0 � 0. However, the focus in Mozannar
and Sontag [19] was the case c0 = 0. In fact, we now show that when c0 > 0, the loss can underfit. To
see this, note that the tightest possible maximal cost is cmax = 1+ c0. With this choice, (4) becomes

`CSS(x, y, f̄(x)) = � log (p̄y(x)) + c0 ·
X

y0

� log(p̄y0(x)) � 1(y = hexp(x)) · log (p̄?(x)) , (8)

When c0 = 0, the second term vanishes, and we have a conic combination of the log-loss on the
true and deferral labels. When c0 > 0, the second term is active, and applies a form of label

smoothing [31]: we allow for all labels y0 2 Y� {y} to be potential “positives” for x, with a weight
of c0 2 [0, 1]. Put di�erently, we treat the ground-truth label distribution as a mixture of a one-hot
distribution on y, and a uniform distribution over all labels. As c0 ! 1�, we apply a large amount of
smoothing on labels other than y; this can be problematic. Concretely, consider an x where the expert
gives the wrong prediction, i.e., P(y = hexp(x)) = 0. Then, the Bayes-optimal solution (5) will be

(8y0 2 Y) p̄⇤y0(x) = (P(y0 | x) + c0)/(1 + L · c0) p̄⇤?(x) = 0. (9)

Observe that for c0 > 0, as L increases, the range of values in p̄⇤ shrinks: indeed, the gap between the
optimal probability for true label y and a competing label y0 will be O(1/L). This small probability

margin makes learning challenging: given a finite sample, it will be easy for the model to mistakenly
swap the true label y with some competing label y0. Thus, in settings where L is moderately large,
and where there is a non-zero fixed deferral cost c0 > 0, `CSS may underperform. Such issues have
also been observed [7] for a similar loss developed for label noise [25].
As an illustration, we consider in Figure 1 a learning to defer setting comprising a ResNet-8 base model
and a ResNet-32 “expert” on CIFAR-100. We assume a deferral cost cexp(x, y) = c0+1(y 6= hexp(x)),
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where c0 is varied in [0, 1]. For each c0, we train the base model using (4), and report the train and
test accuracy. As c0 increases, the base model shows significant training accuracy degradation, i.e., it
underfits. The high level of label smoothing plays a role: in the right panel, we see that the entropy of
the model’s predicted distribution over labels increases with c0. (The entropy is normalised by logL
to lie in [0, 1].) See Appendix I for additional plots, and Appendix I.3 for results when cexp(x, y) = c0.
It is worth pointing out that the original loss of Mozannar and Sontag [19], which uses a tighter
sample-dependent upper bound, will not have the label smoothing term on the samples that the expert
predicts correctly, but will still underfit on the samples that the expert is wrong on.

3.2 Underfitting of One-Versus-All Loss when c0 > 0

The one-versus-all (OvA) loss of Verma and Nalisnick [34] was presented for the specific case of
c0 = 0; as stated, the loss is not applicable when c0 > 0. We may however extend this loss to a
general cexp(x, y) with upper bound cmax � 1 (see Appendix D for a more general derivation):

`OVA(x, y, f̄(x)) = cmax · �(f̄y(x)) +
X

y0 6=y

⇣
(cmax � 1) · �(f̄y0(x)) + �(�f̄y0(x))

⌘

+ (cmax � cexp(x, y)) · �(f̄?(x)) + cexp(x, y) · �(�f̄?(x)). (10)

Compared to (6), we have an additional weighted sum over each �y0(x). As with OvA, this loss results
in a coherent Bayes-optimal solution when � is a strictly proper composite loss [5, 28]. Recall that
such losses are characterised by an inverse link function  : R ! [0, 1], such as the logistic loss
�(z) = log(1 + e�z) with sigmoid inverse link  (v) = (1 + exp(�v))�1.
Lemma 1. Suppose � is a strictly proper composite loss with inverse link function  . Then, the

one-versus-all loss in (10) is calibrated for the learning to defer risk (1), with Bayes-optimal scorer

(8y0 2 Y) (f̄⇤
y0(x)) =

cmax � (1� P(y0 | x))
cmax

 (f̄⇤
?(x)) =

cmax � Ey|x [cexp(x, y)]

cmax
.

Unlike the optimal scorer for the CSS loss, here
P

y02[L]  (f̄
⇤
y0(x)) 6=1. Nonetheless, the highest

scoring logit agrees with the Bayes-optimal classifier (3) for learning to defer.
Reviewing (10), we see that when cmax > 1, we apply a form of label smoothing by additional terms
of the form

P
y0 6=y �(f̄y0(x)), i.e., we e�ectively treat all y0 6= y as potential positives. As with the

cost-sensitive softmax entropy, this can result in underfitting; recall that with cexp(x, y) = c0 + 1(y 6=
hexp(x)), we have an upper bound cmax = 1 + c0 > 1. We empirically confirm in Appendix I.2 that
we indeed observe analogous underfitting behaviour as per the CSS loss in Figure 1.
The above shows that the CSS and OvA losses have a subtle limitation when c0 > 0. This is not in
conflict with the Fisher-consistency of these losses: the latter establishes that the asymptotic minimiser
of these losses agrees with the Bayes-optimal classifier (3). Our analysis explicates that the precise
form of these Bayes-optimal solutions may not be amenable to learning from a finite sample.
Since both losses seamlessly handle c0 = 0, a natural question is whether one can leverage this
solution to help guide the one for c0 > 0. We now present post-approaches that do precisely this.

4 Post-hoc Approaches to Learning to Defer

We now present two simple post-hoc strategies for learning to defer, which build on the CSS and OvA
solutions for c0 = 0 via threshold correction and re-training the deferral function.

4.1 Post-hoc Threshold Correction

Our first post-hoc strategy (Figure 2) exploits the form of the Bayes-optimal classifier in (3): to mimic
this classifier for the cost function cexp(x, y) = 1(y 6= hexp(x)) + c0, it su�ces to obtain estimates
of P(y | x) and the expected deferral cost E[cexp(x, y)] = P(y 6= hexp(x)) + c0. Consequently,
suppose we learn models ⇡ : X ! [0, 1]L and ✏ : X ! [0, 1] estimating P(y | x) and P(y 6= hexp(x))
respectively. Then, for any c0 � 0, we can approximate (3) via the classifier

h̄(x) = argmaxy2Y ⇡y(x) if 1�maxy2Y ⇡y(x) < ✏(x) + c0; h̄(x) =? else. (11)
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Training
sample

Minimise
SOvA loss (12)
with c0 = 0

Base model training

⇡y(x) =
exp(f̄y(x))P

y02Y exp(f̄y0(x))

✏(x) =  (f̄?(x))

Compute statistics

Classify via
(11) for any c0

Final classifier

{(xn, yn)}Nn=1

Logits
f̄1, . . . , f̄L

Defer
logit f̄?

⇡(x), ✏(x)

Figure 2: Summary of post-hoc threshold correction procedure (§4.1).

Intuitively, this procedure ought to perform well when ⇡(x) is close to ⌘(x) .
= [P(y | x)]y2Y, and

✏(x) is close to P(y 6= hexp(x)). The following excess risk bound for h̄ formalises this intuition.
Theorem 2. Pick any ⇡ : X ! [0, 1]L and ✏ : X ! [0, 1]. Let h̄ be the corresponding classifier

in (11). Then, the excess risk of h̄ compared to the Bayes-optimal classifier h̄⇤ (3) is:

Rdef(h̄)�Rdef(h̄
⇤)  cmax · E

x
[k⌘(x)� ⇡(x)k1] + 2 · E

x
[|P(y 6= hexp(x))� ✏(x)|] .

Crucially, observe that we can learn ⇡ and ✏ once, and then sweep across di�erent c0 values in (11).
Thus, we can attempt to leverage the solutions for either the CSS or OvA losses with c0 = 0 — recalling
that these do not exhibit underfitting, unlike when c0 > 0 — and then simply vary c0 post-hoc. Indeed,
both losses’ Bayes-optimal solutions (5), (7) for c0 = 0 suggest that a transform of f̄1, . . . , f̄L provide
estimates of P(y | x), while a transform of f̄? provides an estimate of P(y 6= hexp(x)).
Unfortunately, in practice, both losses are potentially suboptimal to learn ⇡, ✏. For the CSS loss, Verma
and Nalisnick [34] showed it does not provide calibrated estimates of P(y 6= hexp(x)). On the other
hand, while the OvA loss provides calibrated estimates of P(y 6= hexp(x)), its probability estimates
of P(y | x) may underperform when L is large (see Appendix J). We overcome this with a simple
solution: we estimate ⇡ via the softmax cross-entropy, and ✏ via the OvA loss. This is achieved via a
hybrid softmax cross-entropy plus OvA loss (SOvA):
`SOVA(x, y, f̄(x)) = � log py(x) + (cmax � cexp(x, y)) · �(f̄?(x)) + cexp(x, y) · �(�f̄?(x)), (12)

where py(x) = exp(f̄y(x))/
P

y02Y exp(f̄y0(x)). Following the Bayes-optimal solution, we set
⇡(x) = (p1(x), . . . , pL(x)) and ✏(x) =  (f̄?(x)). As with the CSS and OvA losses, we may
parameterise f̄y0(x) = w>

y0�(x) for shared �, and thus induce information sharing amongst all logits.
The above post-hoc approach crucially relies on estimating the expert’s error rate. A potentially
simpler task is learning to predict whether it is beneficial to invoke the expert, i.e., whether the expert’s
error is lower than that of the base model. We now consider an alternate strategy that implements this.

4.2 Post-hoc Rejector Training

Our second post-hoc strategy revisits the fundamental risk (1) underpinning the learning to defer
problem. While defined in terms of a classifier h̄ : X ! Y [ {?}, we may rewrite this in terms of a
base classifier h : X ! Y and rejector r : X ! R, with the latter denoting the confidence in deferring:

Rdef(h, r) = E(x,y)[1(r(x) < 0) · cmod(x, y) + 1(r(x) > 0) · cexp(x, y)], (13)

where cmod(x, y) = 1(y 6= h(x)). Given a scorer f̄ : X ! RL+1, we may set h(x) =
argmaxy02Yf̄y0(x) and r(x) = f̄?(x) � maxy02Y f̄y0(x). Both CSS and OvA construct surro-
gate losses that are applied jointly over all logits f̄1, . . . , f̄L, f̄?; equally, they construct a joint
surrogate loss for both the base classifier h and rejector r. As established earlier, the solution obtained
from these losses is reasonable under fixed deferral cost c0 = 0, but tends to su�er when c0 > 0.
We may resolve this issue via a two-step procedure (see Figure 3): in the first step, we obtain standard
logits f̄1(x), . . . , f̄L(x) by minimising either the CSS or OvA loss with c0 = 0. In the second step,
we train only the deferral logit, by constructing a partial surrogate for only the rejector r(x) in (13).
Concretely, for a binary surrogate loss � : R ! R+, we may define the following surrogate for r:

`rej(x, y, r(x);h) = cmod(x, y) · �(r(x)) + cexp(x, y) · �(�r(x)), (14)
and minimize the resulting partial surrogate risk over r:

R�
def(h, r) = E [`rej(x, y, r(x);h)] . (15)

With this loss, c0 only plays a role in the cexp(x, y) weighting term, and thus only influences the
deferral decision; it does not induce any underfitting of the standard logits f̄1, . . . , f̄L. Observe also
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Training
sample

Minimise CSS loss
(8) with c0 = 0

Base model training

Minimise rejector
loss (14) for any c0

Post-hoc training

Classify via (2)

Final classifier

{(xn, yn)}Nn=1

Logits
f̄1, . . . , f̄L

(Frozen)

Defer
logit f̄?

Figure 3: Summary of post-hoc training procedure (§4.2).

that cmod(x, y) will involve the frozen logits f̄1, . . . , f̄L obtained from the first stage. We may further
leverage these logits by parameterising r(x) = f̄?(x) �maxy02Y f̄y0(x), and optimising only the
f̄?(x) term. In practice, exploiting the probabilities from the first stage model can o�er a closer
approximation to the Bayes-optimal classifier; see Appendix F for more discussion.
Theoretically, the surrogate loss in (14) provides a calibrated deferral rule for any base classifier h.
For strictly proper composite � with inverse link  : R ! [0, 1], the optimal rejector is as follows.

Lemma 3. The Bayes-optimal rejector for the loss (14) is  (r⇤(x)) =
E

y|x
[cmod(x,y)]

E
y|x

[cmod(x,y)]+ E
y|x

[cexp(x,y)]
.

Note that when the first stage logits agree with the Bayes-optimal solution, Ey|x[cmod(x, y)] =
1�maxy2Y P(y | x), and so deferring when  (r⇤(x)) > 0.5 produces the optimal decision.
We next provide a bound an excess risk bound for a classifier learned using the post-hoc training
procedure, under the assumption that the surrogate loss � used is classification calibrated [3].
Theorem 4. Suppose � is classification calibrated and cexp(x, y) 2 [cmin, cmax] for some cmin > 0.
Denote the misclassification risk for classifier h by Rerr(h) = E [1(y 6= h(x))]. Let r̂ be the rejector

obtained by minimizing the partial surrogate risk in (15) for base classifier ĥ. Then the excess L2D
risk for the resulting classifier (ĥ, r̂) is bounded in terms of the excess surrogate risk for the rejector r̂
and the excess misclassification risk for the base classifier ĥ:

Rdef(ĥ, r̂)� min
h̄:X![L][{?}

Rdef(h̄)

  
✓
R�

def(ĥ, r̂)� min
r:X!R

R�
def(ĥ, r)

◆
+ Rerr(ĥ)� min

h:X![L]
Rerr(h),

for some increasing function  : R+ ! R+ with  (0) = 0.

4.3 Discussion and Extensions

Relation to existing work. Post-hoc threshold correction generalises Chow’s rule [8] for learning to
reject, wherein cexp(x, y) = c0. It also generalises the approaches of Raghu et al. [27], Wilder et al.
[37], Bansal et al. [1] for learning to defer: these assume c0 = 0, and use separate models to estimate
⇡(x) and ✏(x). By contrast, we estimate these quantities with a single neural model, by minimising
the SOvA loss in (12) with f̄y0(x) = w>

y0�(x) for y0 2 Y [ {?}. As with the standard OvA loss, this
induces implicit information sharing between the defer logit f̄? and the standard logits f̄1, . . . , f̄L;
thus, the estimates of the expert error probability will be influenced by the base model. Note that the
confidence approach of Raghu et al. [27] was shown to be outperformed by the CSS and OvA losses
in Mozannar and Sontag [19], Verma and Nalisnick [34]; our proposed threshold correction further
achieves competitive or superior performance to these losses (§5).
Verma and Nalisnick [34, Appendix E] considered a post-hoc scheme for the setting where there
is a hard constraint on the expert cost. Here, one trains a probabilistic model p̄ using the OvA loss,
and defers on the samples with the largest values of p̄?(x) �maxy02Y p̄y0(x). While derived for
a di�erent setting, this is similar to (11), as varying the cost c0 e�ectively changes the fraction of
samples that are deferred. Note however that we use the SOvA rather than OvA loss to obtain ⇡, ✏,
which can have a notable impact on performance when L is large (see Appendix J).
Cortes et al. [9] proposed a joint surrogate over r, f̄ for (13) in the special case of constant
cexp(x, y) = c0, and a scalar scorer f̄ : X ! R for binary labels. By contrast, the surrogate loss (14)
handles multi-class f̄ , generic cost functions cexp, and provides a partial surrogate over only r.
Adaptive inference and multiple experts. Post-hoc training is naturally amenable to settings where
there are multiple experts. Concretely, suppose there are K experts with logits f̄ (1)(x), . . . , f̄ (K)(x),

7



Figure 4: Results on synthetic dataset (left panel) comprising two subgroups, each with positive (+) and negative
(⇥) samples. The subgroup of concentric circles corresponds to a latent variable a = 1, while the
subgroup of adjacent circles corresponds to a = 0. The base learner is a linear classifier on the raw
features x = (x1, x2), and can query an expert that trains a classifier on quadratic features. We train
classifiers using di�erent losses, for varying fixed deferral cost c0. Posthoc training is competitive or
superior to the cost-sensitive softmax (CSS) and one-versus-all loss (OvA) (right panel).

and our goal is to learn which expert to employ for a given sample. One may learn multiple deferral
functions f̄ (1)

? (x), . . . , f̄ (K)
? (x) in a post-hoc manner, and choose the smallest k with f̄ (k)

? (x) < 0.
This setting arises naturally in adaptive inference [13], where our goal is to reduce the inference cost

of a learning system by allowing for variable compute across samples: intuitively, we would like
to spend less computation on “easy” samples. To achieve this, one may construct several models
(“experts”) of increasing inference cost, and defer to a suitable expert. Such models include early-exit

classification heads at intermediate nodes of a network [24, 32, 36, 15, 29], or sequential cascades of
models of increasing complexity [4, 30, 35]. Conceptually, adaptive inference involves the same core
problem as learning to defer: at any given intermediate model, one has the option to defer prediction to
the next model, at the expense of increasing the overall computation cost. Interestingly, similar ideas
to post-hoc training have been explored in adaptive inference [33]. Compared to this work, we present
a unified view of the learning to defer and adaptive inference problems, demonstrate limitations of
existing losses for the former, and leverage generic logits f̄1, . . . , f̄L from any base classifier.

5 Experimental Results

We now present empirical results illustrating the e�cacy of both our proposed posthoc estimators.

5.1 Results on Synthetic Data

We begin with a synthetic problem where X ⇢ R2. We consider a distribution P(x, y) =P
a2{0,1} P(x, y, a), where a 2 {0, 1} denotes some latent subgroup. Figure 4 shows a sam-

ple draw from P(x, y): in a nutshell, P(x, y | a = 0) is a mixture of isotropic Gaussians, while
P(x, y | a = 1) comprises two concentric circles. See Appendix H.1 for a precise specification. We
consider learners that have access to a sample {(xn, yn)}Nn=1 from P(x, y), and to expert model predic-
tions {hexp(xn)}Nn=1. The expert is taken to be a linear classifier that is trained on only samples with
a = 1, using quadratic features: i.e., for x = (x1, x2), we construct �(x) = (x1, x2, x2

1, x
2
2, x1 · x2).

We set the expert deferral cost function to be cexp(x, y) = c0 + 1(y 6= hexp(x)).
We train linear classifiers using confidence thresholding based on a constant deferral cost c0 (Chow),
the CSS and OvA losses, and our proposed post-hoc approaches. For each learner, we vary the
fixed deferral cost c0 from {0.0, 0.05, 0.10, . . . , 0.50}. For each setting, we compute the fraction of
samples deferred to the expert, and the overall accuracy of the base model plus expert. We conduct
250 independent trials, each with a di�erent draw of the training sample and expert predictions.
We highlight a few trends from the results in Figure 4. First, Chow strongly underperforms post-hoc
thresholding when many samples are deferred. This is because the latter does not consider the expert’s
error (which is high on a = 1) when deferring. Second, post-hoc training is competitive or superior to
CSS and OvA at most operating points. Third, post-hoc thresholding underperforms post-hoc training.
This is by construction, as it is challenging to reliably estimate P(y | x) with a linear model. However,
we shall now see that on real-world benchmarks, thresholding is far more competitive.
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Figure 5: Results on CIFAR-10 (left), CIFAR-100 (middle), and ImageNet (right) in a learning to defer setting,
where a base model is allowed to defer to a “specialist” expert. The latter is trained on only samples
from the first 5 classes on CIFAR-10, the 50 classes from the first 10 “coarse labels” on CIFAR-100,
and only classes corresponding to the “dog” synset on ImageNet. Our posthoc schemes o�ers gains over
the existing cost-sensitive softmax (CSS) and one-versus-all (OvA) at most operating points, particularly
when only a few samples are deferred to the expert (corresponding to fixed deferral cost c0 � 0).

5.2 Results on Real-World Data

We now report results on the CIFAR-10, CIFAR-100 [16], and ImageNet [10] datasets.
Learning to defer. Inspired by Mozannar and Sontag [19, Section 6.2], we consider a setting where
there is a “specialist” expert: we train an expert model on only samples with label belonging to
some subset Ysub. Intuitively, this model “specialises” to only samples from Ysub. We then consider
a base model that is trained on all samples, but is allowed to defer to the “specialist” expert. On
CIFAR-10 and CIFAR-100, we use a ResNet-8 base model and ResNet-56 expert; on ImageNet, we
use a MobileNet-v2 base model and an E�cientNet-B0 expert. The label subset Ysub comprises the
first 5 labels on CIFAR-10, the 50 labels corresponding to the first 10 “coarse labels” on CIFAR-100,
and all labels corresponding to the “dog” synset on ImageNet.
We consider a cost cexp(x, y) = c0 + 1(y 6= hexp(x)) of deferring to the expert model. Per Figures 2
and 3, we apply posthoc threshold correction on top of the SOvA solution with c0 = 0, and posthoc
training on top of the CSS solution with c0 = 0. Figure 5 compares all approaches as we vary the
fixed cost c0, reporting the fraction of samples deferred to the expert, and the overall accuracy of
the base model plus expert. Our posthoc estimators o�er gains over the existing approaches at most
operating points. We particularly see gains in the regime where only a small fraction of samples are
deferred to the expert, which corresponds to larger values of c0. Between the two post-hoc methods,
we see that the threshold correction approach tends to have a (slight) edge. This suggests that on these
benchmarks, it is possible to obtain su�ciently reliable estimates of P(y | x) and P(y 6= hexp(x)).
We reiterate that when c0 is large, the existing CSS and OvA losses tend to degrade owing to
underfitting. Indeed, their performance in this regime is significantly lower than simply using the
student model trained with the softmax cross-entropy (corresponding to Chow with 0% of samples
deferred). Note also that in comparison to the synthetic dataset, here L is larger and thus further
exacerbates underfitting. Finally, as in the synthetic dataset, Chow strongly underperforms when a
large fraction of samples are deferred to the expert; this is because it does not take into account the
expert’s error rate, and thus potentially defers when the expert performs akin to random guessing.
Adaptive inference. We conclude with results on the related problem of adaptive inference. We
consider a setting where there is a cascade of two models of di�ering inference costs, as measured in
floating point operations (FLOPs), and we seek to learn a deferral function that intelligently forwards
a small subset of samples to the latter model. This allows for an inference scheme with a favourable
accuracy-compute tradeo�. Compared to the previous section, we now train the experts on all labels.
We report results on CIFAR-100 and ImageNet, with the former using ResNet-8 and ResNet-56
models, and the latter using a MobileNet-v2 and E�cientNet model. As before, we consider the
deferral cost function cexp(x, y) = c0 + 1(y 6= hexp(x)). Figure 6 compares the FLOPs versus the
overall accuracy of the base model plus expert. Here, the CSS and OvA methods again degrade
in the low FLOPs (high c0) regime. However, the Chow baseline is more competitive, since the
expert models tend to be highly accurate on all samples. Our posthoc estimators are seen to strongly
outperform CSS and OvA, while being competitive with or slightly superior to Chow.
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Figure 6: Results on CIFAR-100 (left), and ImageNet (right) in an adaptive inference setting, where a computa-
tionally cheap base model is allowed to defer to a more expensive expert. Our posthoc schemes o�ers
gains over the existing cost-sensitive softmax (CSS) and one-versus-all (OvA) at most operating points,
particularly in the low-FLOPs regime (corresponding to fixed deferral cost c0 � 0).

6 Discussion and Future Work

While post-hoc training resolves issues identified with previous joint surrogate losses, it is not without
limitation: it relies crucially on reliable base classifiers from the first phase. As formalised in
Theorem 2, any degradation in performance for the latter is also transferred to the final post-hoc
predictor. As this may be further compounded with estimation errors in the second phase, it is
natural to ask whether there may be other joint surrogates that do not exhibit underfitting. One
candidate is the cost-sensitive loss of Lee et al. [17], which is Fisher-consistent and is suitable
when c0 > 0. This loss imposes the constraint that

P
ŷ2Y[{?} f̄ŷ(x) = 0, and takes the form

`(x, y, f̄(x)) =
P

y02Y�{y}

h
1

L�1 + f̄y0(x)
i

+
+ cexp(x, y) ·

h
1

L�1 + f̄?(x)
i

+
. One may show that

under this loss, the gap between the Bayes-optial scores for the highest scoring label and any competing
label is O

�
1 + 1

L

�
, and thus is not adversely a�ected as L increases. As a qualifying comment,

the loss poses challenges due to being non-di�erentiable, and requiring constraints on the logits.
Nonetheless, further study of the viability of this loss would be worthwhile.

Acknowledgment. We thank Hussein Mozannar for pointing out that the original cost-sensitive
softmax cross-entropy loss of Mozannar and Sontag [19] uses a slightly tighter formulation than the
one we consider, and will not underfit on samples that the expert predicts correctly.
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