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Abstract

We study the K-armed dueling bandit problem, a variation of the traditional multi-
armed bandit problem in which feedback is obtained in the form of pairwise
comparisons. Previous learning algorithms have focused on the fully adaptive set-
ting, where the algorithm can make updates after every comparison. The “batched”
dueling bandit problem is motivated by large-scale applications like web search
ranking and recommendation systems, where performing sequential updates may
be infeasible. In this work, we ask: is there a solution using only a few adaptive

rounds that matches the asymptotic regret bounds of the best sequential algorithms

for K-armed dueling bandits? We answer this in the affirmative under the Con-

dorcet condition, a standard setting of the K-armed dueling bandit problem. We
obtain asymptotic regret of O(K2 log2(K)) +O(K log(T )) in O(log(T )) rounds,
where T is the time horizon. Our regret bounds nearly match the best regret bounds
known in the fully sequential setting under the Condorcet condition. Finally, in
computational experiments over a variety of real-world datasets, we observe that
our algorithm using O(log(T )) rounds achieves almost the same performance as
fully sequential algorithms (that use T rounds).

1 Introduction
The K-armed dueling bandit problem is a variation of the traditional multi-armed bandit problem
in which feedback is obtained in the form of pairwise preferences. This problem has applications
in a wide-variety of domains like search ranking, recommendation systems and sports ranking
where eliciting qualitative feedback is easy while real-valued feedback is not easily interpretable;
thus, it has been a popular topic of research in the machine learning community (see, for example,
[51, 49, 47, 5, 54, 52, 53, 21, 32, 35, 36, 42, 18]).

Previous learning algorithms have focused on a fully adaptive setting; that is, the learning algorithm
can make updates in a sequential fashion. Such updates might be impractical in large systems;
for example, consider web-search ranking where the goal is to provide a list (usually ranked) of
candidate documents to the user of the system in response to a query [41, 33, 50, 31]. Modern day
search engines use hundred of parameters to compute a ranked list in response to a query, and online
learning frameworks (based on user feedback) have been invaluable in automatically tuning these
parameters [38]. However, given the scale of the system, it may be infeasible to adapt after each
interaction: users may make multiple queries in a short time or multiple users may simultaneously
query the system. Hence, we prefer solutions with limited rounds of adaptivity. Concretely, we ask:
is there a solution using only a few adaptive rounds that matches the asymptotic regret bounds of the

best sequential algorithms for K-armed dueling bandits?

This “batched” dueling bandit problem was introduced recently in [2]. Here, the learning algorithm’s
actions are partitioned into a limited number of rounds. In each round/batch, the algorithm commits
to a fixed set of pairwise comparisons, and the feedback for all these comparisons is received
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simultaneously. Then, the algorithm uses the feedback from the current batch of comparisons to
choose comparisons for the next batch. [2] studied this problem under two different conditions:
(i) the strong stochastic transitivity and stochastic triangle inequality (SST+STI) condition, which
enforces a certain linear ordering over the arms; (ii) the Condorcet condition, which requires one
arm to be superior to all others. Under SST+STI, their work provided almost tight upper and lower
bounds on the trade-off between number of rounds and regret; in particular, they showed that one can
achieve worst-case regret of O(K log2 T ) using ⇥(log T ) rounds (T is the time-horizon).1 Under
the Condorcet condition, which is more general than SST+STI, they achieved a regret upper bound of
O(K2 log T ) in O(log T ) rounds. Previous work [54, 35] on fully sequential algorithms has shown
that it is possible to achieve an asymptotic upper bound of O(K2 +K log T ) under the Condorcet
condition. Very recently, [43] improved the sequential regret bound even further by obtaining regret
O(K log T ), which is the best possible even in the special case of SST+STI [49]. In the batched
setting, the upper bound of [2] does not achieve this asymptotic optimality, irrespective of the number
of batches, due to the presence of a K

2
multiplicative factor in the regret bound. Their work left

open the possibility of obtaining a batched algorithm achieving asymptotic optimality under the
Condorcet condition. In this paper, we nearly resolve this question, by providing an algorithm with
O(K2 log2 K +K log T ) regret in ⇥(log T ) rounds, under the Condorcet condition.

1.1 Contributions
• We design an algorithm, denoted C2B, for the batched dueling bandit problem, and analyze

its regret under the Condorcet condition. This algorithm achieves a smooth trade-off between
the expected regret and the number of batches, B.

• Crucially, when B = log(T ), our regret bounds nearly match the best regret bounds [35, 54]
known in the fully sequential setting. Hence, our results show that O(log T ) rounds are
sufficient to achieve asymptotically optimal regret as a function of T .

• Our results rely on new ideas for showing that the Condorcet winner arm can be ‘trapped’
using few adaptive rounds with high (constant) probability while incurring a reasonable
amount of regret. We can then integrate over this space of probabilities to obtain a bound on
the expected regret (in the same vein as [54]). Once the Condorcet arm is ‘trapped’, we can
quickly eliminate all other ‘sub-optimal’ arms and minimize regret in the process.

• Finally, we run computational experiments to validate our theoretical results. We show that
C2B, using O(log T ) batches, achieves almost the same performance as fully sequential
algorithms (which effectively use T batches) over a variety of real datasets.

1.2 Preliminaries
The K-armed dueling bandit problem [49] is an online optimization problem, where the goal is to
find the best among K bandits B = {1, . . . ,K} using noisy pairwise comparisons with low regret.
In each time-step, a noisy comparison between two arms (possibly the same), say (i, j), is performed.
The outcome of the comparison is an independent random variable, and the probability of picking i

over j is denoted pi,j =
1
2 +�i,j where �i,j 2 (� 1

2 ,
1
2 ). Here, �i,j can be thought of as a measure

of distinguishability between the two arms, and we use i � j when �i,j > 0. We also refer to �i,j

as the gap between i and j.

This problem has been studied under various conditions on the pairwise probabilities pi,j’s. One such
condition is the strong stochastic transitivity and stochastic triangle inequality (SST+STI) condition
where there exists an ordering over arms, denoted by ⌫, such that for every triple i ⌫ j ⌫ k, we
have �i,k � max{�i,j ,�j,k}, and �i,k  �i,j +�j,k [49, 51]. In this paper, we work under the
well-studied Condorcet winner condition, which is much more general than the SST+STI condition
[47, 54, 35]. We say that arm i is a Condorcet winner if, and only if, pi,j >

1
2 for all j 2 B \ {i}.

The Condorcet condition means that there exists a Condorcet winner.

Throughout the paper, we let a⇤ refer to the Condorcet arm. To further simplify notation, we define
�j = �a⇤,j ; that is, the gap between a

⇤ and j. We define the regret per time-step as follows: suppose
arms it and jt are chosen in time-step t, then the regret r(t) = �it+�jt

2 . The cumulative regret up
to time T is R(T ) =

P
T

t=1 r(t), where T is the time horizon, and it’s assumed that K  T . The
1They also gave a more complicated algorithm with regret O(K log2 K log T ) in O(log T +

logK log logK) rounds, under the SST+STI condition.
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Table 1: An overview of our results. Note that eO hides polylog(K) factors.

Setting Regret

Fully Adaptive O

⇣
K

2

�2
min

⌘
+
P

j:�j>0 O

⇣
log T

�j

⌘
[54, 35]

T rounds
P

j:�j>0 O

⇣
log(T )
�j

⌘
[43]

Batched P
j:�j>0 O

⇣
KT

1/B · log(T )
�j

⌘
[2]

B rounds

Our Algorithm

B rounds eO
⇣
T

1
B · K

2

�2
min

⌘
+O

⇣
T

2
B ·K2

⌘
+
P

j
O

⇣
T

1
B · log(T )

�j

⌘

log(T ) rounds eO
⇣

K
2

�2
min

⌘
+
P

j
O

⇣
log(T )
�j

⌘

cumulative regret can be equivalently stated as R(T ) = 1
2

P
K

j=1 Tj�j , where Tj denotes the number
comparisons involving arm j. The goal of an algorithm is to minimize the cumulative R(T ). We
define �min = minj:�j>0 �j to be the smallest non-zero gap of any arm with a

⇤.

1.3 Batch Policies
In traditional bandit settings, actions are performed sequentially, utilizing the results of all prior

actions in determining the next action. In the batched setting, the algorithm must commit to a round
(or batch) of actions to be performed in parallel, and can only observe the results after all actions
in the batch have been performed. More formally, given a number B of batches, the algorithm
proceeds as follows. In each batch r = 1, 2, . . . B, the algorithm first decides on the comparisons
to be performed; then, all outcomes of the batch-r comparisons are received simultaneously. The
algorithm can then, adaptively, select the next batch of comparisons. Note that even the size of the
next batch can be adaptively decided based on the observations in previous batches. Finally, the total
number of comparisons (across all batches) must sum to T . We assume that the values of T and B

are known. Observe that when T = B, we recover the fully sequential setting.

1.4 Results and Techniques
We provide a overview of our results and prior results in Table 1. Given any integer B � 1, we obtain
a B-round algorithm for the dueling bandit problem. We provide both high-probability and expected
regret bounds, stated in the following theorems.
Theorem 1.1. For any integer B � 1, there is an algorithm for the K-armed dueling bandit problem

that uses at most B rounds with the following guarantee. For any � > 0, with probability at least

1� � � 1
T

, its regret under the Condorcet condition is at most

R(T )  O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+ O

 
T

2/B ·K2 ·
r

1

�

!

+
X

j 6=a⇤

O

✓
T

1/B · log(KT )

�j

◆
.

Theorem 1.2. For any integer B � 1, there is an algorithm for the K-armed dueling bandit problem

that uses at most B rounds, with expected regret under the Condorcet condition at most

E[R(T )] = O

✓
T

1/B · K
2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+ O

⇣
T

2/B ·K2
⌘

+
X

j 6=a⇤

O

✓
T

1/B · log(KT )

�j

◆
.
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When the number of rounds B = log(T ), we obtain a batched algorithm that achieves the asymptotic
optimality (in terms of T ), even for sequential algorithms. We formalize this observation in the
following corollary.

Corollary 1.3. There is an algorithm for the K-armed dueling bandit problem that uses at most

log(T ) rounds, with expected regret under the Condorcet condition at most

E[R(T )] = O

✓
K

2 log(K)

�2
min

· log
✓
logK

�min

◆◆
+
X

j 6=a⇤

O

✓
log(KT )

�j

◆
.

By a lower-bound result from [2], it follows that no algorithm can achieve O( K

�min
· poly(log T ))

regret using o( log T

log log T
) rounds, even under the SST+STI condition. So, the O(log T ) rounds required

to achieve asymptotic optimality in Corollary 1.3 is nearly the best possible.

Technical Challenges. The only prior approach for batched dueling bandits (under the Condorcet
condition) is the algorithm PCOMP from [2], which performs all-pairs comparisons among arms in an
active set. Such an approach cannot achieve regret better than O(K2 log T ) because the active set may
remain large throughout. In order to achieve better regret bounds, [2] focus on the stronger SST+STI
condition. In this setting, their main idea is to first sample a seed set, and use this seed set to eliminate
sub-optimal arms. Their algorithm proceeds by performing all pairwise comparisons between the
seed set and the set of active arms. However, the analysis of these ‘seeded comparison’ algorithms
crucially rely on the total-ordering imposed by the SST and STI assumptions. Unfortunately, there is
no such structure to exploit in the Condorcet setting: if the seed set does not contain the Condorcet
winner, we immediately incur high regret.

The existing fully sequential algorithms such as RUCB [54] and RMED [35] are highly adaptive in
nature. For instance, RUCB plays each candidate arm against an optimistic competitor arm using
upper confidence bounds (UCB) on pairwise probabilities. This allows RUCB to quickly filter out
candidates and uncover the Condorcet arm. Similarly, RMED plays each arm against a carefully
selected competitor arm that is likely to beat this arm. However, such competitors can change
frequently over trials in both RUCB and RMED. Since the batched setting requires comparisons to be
predetermined, we do not have the flexibility to adapt to such changes in competitors. Hence, these
existing fully sequential algorithms cannot be easily implemented in our setting.

Furthermore, we might also be tempted to consider an explore-then-exploit strategy where we first
explore to find the Condorcet arm and exploit by playing this arm for remaining trials. However, this
strategy is likely to fail because identifying the Condorcet arm with high probability might involve
performing many comparisons, directly leading to high (⌦(K2 log T )) regret; on the other hand, if
the Condorcet winner is not identified with high probability, the exploit phase becomes expensive.
This motivated us to consider algorithms that allow some form of recourse; that is, unless an arm
is found to be sub-optimal, it must be given the opportunity to participate in the comparisons (as it
could be the Condorcet winner).

The idea behind our algorithm is to identify the Condorcet winner a⇤ in a small expected number of
rounds, after which it uses this arm as an “anchor” to eliminate sub-optimal arms while incurring low
regret. To identify the best arm, in each round we define a candidate arm and compare it against arms
that it “defeats”. Arms that are not defeated by the candidate arm are compared to all active arms:
this step ensures that the Condorcet winner is eventually discovered. We show that a⇤ becomes the
candidate, and defeats all other arms within a small number of rounds (though the algorithm may not
know if this has occurred). Additionally, once this condition is established, it remains invariant in
future rounds. This allows us to eliminate sub-optimal arms and achieve low regret.

Comparison to RUCB. Initially, RUCB puts all arms in a pool of potential champions, and “optimisti-
cally” (using a upper confidence bound) performs all pairwise comparisons. Using these, it constructs
a set of candidates C. If |C|= 1, then that arm is the hypothesised Condorcet winner and placed in
a set B. Then, a randomized strategy is employed to choose a champion arm ac (from sets C and
B) which is compared to arm ad which is most likely to beat it. The pair (ac, ad) is compared, the
probabilities are updated and the algorithm continues. Although our algorithm also seeks to identify
the best arm, we do not employ the UCB approach nor do we use any randomness. In their analysis,
[54] show that the best arm eventually enters the set B, and remains in B: we also show a similar
property for our algorithm in the analysis. Finally, similar to the analysis of [54], we first give a
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high-probability regret bound for our algorithm which we then convert to a bound on the expected
regret.

2 Related Work
The K-armed dueling bandit problem has been widely studied in recent years (we refer the reader
to [46] for a comprehensive survey). Here, we survey the works that are most closely related to
our setting. This problem was first studied in [49] under the SST and STI setting. The authors
obtained a worst-case regret upper bound of eO(K log T/�min) and provided a matching lower
bound. [51] considered a slightly more general version of the SST and STI setting and achieved an
instance-wise optimal regret upper bound of

P
j:�j>0 O (log(T )/�j). Since, the SST+STI condition

imposes a total order over the arms and might not hold for real-world datasets, [47] initiated the
study of dueling bandits under the Condorcet winner condition. [47] proved a O(K2 log T/�min)
regret upper bound under the Condorcet condition, which was improved by [54] to O(K2

/�2
min) +P

j:�j>0 O(log T/�2
j
). [35] achieved a similar but tighter KL divergence-based bound, which is

shown to be asymptotically instance-wise optimal (even in terms constant factors). There are also
other works that improve the dependence on K in the upper bound, but suffer a worse dependence
on �j’s [53]. This problem has also been studied under other noise models such as utility based
models [5] and other notions of regret [18]. Alternate notions of winners such as Borda winner [32],
Copeland winner [52, 36, 48], and von Neumann winner [21] have also been considered. There are
also several works on extensions of dueling bandits that allow multiple arms to be compared at once
[45, 3, 44].

All of the aforementioned works on the dueling bandits problem are limited to the sequential setting.
Recently, [2] initiated the study of the batched version of the K-armed dueling bandits. Their main
results are under the SST and STI setting. They give two algorithms, called SCOMP and SCOMP2,
for the batched K-armed dueling bandit problem. For any integer B, SCOMP uses at most B + 1
batches and has expected regret bounded by

P
j:�j>0 O(

p
KT

1/B log(T )/�j). When B = log(T ),
this nearly matches (up to a factor of

p
K) the best known instance-dependent regret bound ofP

j:�j>0 O(log(T )/�j) obtained by [49]. SCOMP2 aims to achieve better worst-case regret: it
uses at most 2B + 1 batches, and has regret O

�
KBT

1/B log(T )/�min

�
. Thus, when B = log(T ),

the expected worst-case regret is O
�
K log2(T )/�min

�
, matching the best known result in the

sequential setting up to an additional logarithmic factor. Under the Condorcet condition, [2] give a
straightforward pairwise comparison algorithm (PCOMP), that achieves expected regret bounded
by O(K2 log(T )/�min) in log(T ) batches. They also provide a nearly matching lower bound of
⌦( KT

1/B

B2�min
) for any B-batched algorithm. This implies that our bound (for B-round algorithms) in

Theorem 1.2 cannot be significantly improved.

Recently, [43] designed a fully adaptive algorithm achieving an optimal regret of
P

j:�j>0
O(log T )

�j

for dueling bandits under the Condorcet setting. This algorithm is based on the idea of dueling two
classical bandit (MAB) algorithms against each other in a repeated zero-sum game with carefully
designed rewards. The reward for one algorithm depends on the actions of the other; hence, these
algorithms need to achieve best-of-both-worlds guarantee for both stochastic and adversarial settings.
However, the approach of [43] is not directly applicable to the batched setting that we consider. This
is because, as shown by [23], any B-round algorithm for batched MAB in the adversarial setting has
regret ⌦(T/B).

There has also been substantial work on best-arm or top-k identification using pairwise comparisons
with limited adaptivity. [15, 14, 19] considered this problem under the noisy pairwise comparison
setting, which is a special case of SST+STI. They showed that constant number of rounds of adaptivity
are sufficient to solve these problem with the optimal sample complexity. [4] showed that one can
also solve this problem under SST in constant number of rounds with the optimal sample complexity.
However, these existing results focus on the SST setting, whereas we focus on the more general
Condorcet winner setting. Moreover, these existing works focus on sample complexity for best-arm
identification whereas our goal is regret minimization.

3 The Batched Algorithm
In this section, we describe a B-round algorithm for the K-armed dueling bandit problem under
the Condorcet condition. Recall that given a set of K arms, B = {1, . . . ,K}, and a positive integer
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B  log(T ), we wish to find a sequence of B batches of noisy comparisons with low regret.
Given arms i and j, recall that pi,j = 1

2 +�i,j denotes the probability of i winning over j where
�i,j 2 (�1/2, 1/2). We use a⇤ to denote the Condorcet winner; recall that a⇤ is a Condorcet winner
if pa⇤,j � 1/2 for all j 2 B. To simplify notation, we use �j = �a⇤,j . Before describing our
algorithm, we first define some notation. We use A to denote the current set of active arms; i.e.,
the arms that have not been eliminated. We will use index r for rounds or batches. If pair (i, j) is
compared in round r, it is compared qr = bqrc times where q = T

1/B . We define the following
quantities at the end of each round r:

• Ni,j(r) is the total number of times the pair (i, j) has been compared.
• bpi,j(r) is the frequentist estimate of pi,j , i.e.,

bpi,j(r) =
# i wins against j until end of round r

Ni,j(r)
. (1)

• Two confidence-interval radii for each (i, j) pair:

ci,j(r) =

s
2 log(2K2qr)

Ni,j(r)
and �i,j(r) =

s
log(K2BT )

2Ni,j(r)
(2)

We now describe our B-round algorithm, called CATCHING THE CONDORCET WINNER IN BATCHES
(or, C2B). At a high-level, the algorithm identifies the best arm a

⇤ in a small expected number of
rounds, after which it uses this arm as an “anchor” to eliminate sub-optimal arms while incurring low
regret. In every round r, we do the following:

1. We define a defeated set Dr(i) for every active arm i; this set comprises arms that are
defeated with confidence by i. Specifically, j 2 Dr(i) if bpi,j(r � 1) > 1/2 + ci,j(r � 1).

2. Then, we define a candidate ir as the arm that defeats the most number of arms; that is,
ir = argmaxi2A|Dr(i)|.

3. For every arm i 6= ir:
• If i 2 Dr(ir), then we compare i to ir for qr times. The idea here is to use ir as an

anchor against i. We will show that a⇤ becomes the candidate ir in a small number
of rounds. Then, this step ensures that we eliminate arms efficiently using a

⇤ as an
anchor.

• If i /2 Dr(ir), then i is compared to all arms in A for qr times. This step crucially
protects the algorithm against cases where a sub-optimal arm becomes the candidate
(and continues to become the candidate). For example, suppose K = [5] and the arms
are linearly ordered as 1 � 2 � · · · � 5. Furthermore suppose that in some round r,
we have that (a) 2 defeats 3, 4, 5 and (b) 1 (best arm) defeats 2 but not the others. So, 2
is the candidate in round r; if 1 is not compared to 3, 4, 5, then 2 would continue to be
the candidate (leading to high regret).

4. If, for any arm j, there is arm i such that bpi,j(r) > 1
2 + �i,j(r), then j is eliminated from A.

This continues until T total comparisons are performed. See Algorithm 1 for a formal description.
The main result of this section is to show that C2B achieves the guarantees stated in Theorems 1.1
and 1.2.

Overview of the Analysis. We provide a brief outline of the proofs of our main results. Towards
proving Theorem 1.1, we first define two events:

• The first event, denoted G, ensures that a⇤ is not eliminated during the execution of C2B.
We show that P(G) � 1� 1/T .

• The second event, denoted E(�), says that there exists a round C(�) (defined later) such
that for all r > C(�), the estimate bpi,j(r� 1) satisfies the confidence interval of ci,j(r� 1).
Moreover, P(E(�)) � 1� �.

By union bound, P(G \ E(�)) � 1� � � 1/T . Together, we use G and E(�) to argue that:
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Algorithm 1 C2B (CATCHING THE CONDORCET WINNER IN BATCHES)
1: Input: Arms B, time-horizon T , integer B � 1
2: active arms A B, r  1, emprical probabilities bpi,j(0) = 1

2 for all i, j 2 B2

3: while number of comparisons  T do
4: if A = {i} for some i then play (i, i) for remaining trials
5: Dr(i) {j 2 A : bpi,j(r � 1) > 1

2 + ci,j(r � 1)}
6: ir  argmaxi2A|Dr(i)|
7: for i 2 A \ {ir} do
8: if i 2 Dr(ir) then
9: compare (ir, i) for qr times

10: else
11: for each j 2 A, compare (i, j) for qr times
12: compute bpi,j(r) values
13: if 9i, j : bpi,j(r) > 1

2 + �i,j(r) then
14: A A \ {j}
15: r  r + 1

• the best arm, a⇤, is not defeated by any arm i in any round r > C(�) (formalized in
Lemma 3.5),

• and that there exists a round r(�) � C(�) such that for every round after r(�), arm a
⇤

defeats every other arm (formalized in Lemma 3.7).

Intuitively, these observations imply that our algorithm identifies the best arm after r(�) rounds. Thus,
beyond round r(�), we only perform pairwise comparisons of the form (a⇤, i) for i 6= a

⇤: thus, a⇤ is
used as an anchor to eliminate sub-optimal arms. We then analyze the regret in two parts: (i) regret
incurred up to round r(�), which is upper bounded by K

2
P

rr(�) q
r and (ii) regret after r(�), which

is the regret incurred in eliminating sub-optimal arms using a
⇤ as an anchor. Finally, we can use

the high-probability bound to also obtain a bound on the expected regret, proving Theorem 1.2. We
provide some details of the proof of Theorem 1.1. We defer the proof of Theorem 1.2 to Appendix D.

3.1 The Analysis
In this section, we give high-probability and expected regret bounds for C2B. Recall that q = T

1/B ,
and that q � 2. The following lemma is used to prove that a⇤ is never eliminated. We defer the
proofs of the Lemmas 3.1, 3.2 to Appendix B.

Lemma 3.1. For any batch r 2 [B], and for any pair (i, j), we have

P (|bpi,j(r)� pi,j |> �i,j(r))  2⌘,

where ⌘ = 1/K2
BT .

We first define the good event G as follows.

Definition 3.1 (Event G). An estimate bpi,j(r) at the end of batch r is strongly-correct if |bpi,j(r)�
pi,j | �i,j(r). We say that event G occurs if every estimate in every batch r 2 [B] is strongly-correct.

The following two lemmas show that G occurs with high probability and that a⇤ is not eliminated
under G.

Lemma 3.2. The probability that every estimate in every batch of C2B is strongly-correct is at least

1� 1/T .

Lemma 3.3. Conditioned on G, a
⇤

is never eliminated from A in the elimination step of C2B.

Proof. In C2B, an arm j is deleted in batch r iff there is an arm i 2 A with bpi,j(r) > 1
2+�i,j(r). If a⇤

is eliminated due to some arm j, then by definition of event G, we get pj,a⇤ � bpi,j(r)� �i,j(r) >
1
2 ,

a contradiction.
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3.1.1 High-probability Regret Bound

In this section, we give details required to prove Theorem 1.1. Fix any � > 0. We first define another
good event as follows.
Definition 3.2 (Event E(�)). An estimate bpi,j(r) in batch r is weakly-correct if |bpi,j(r) � pi,j |
ci,j(r). Let C(�) := d 12 logq(1/�)e. We say that event E(�) occurs if for each batch r � C(�), every

estimate is weakly-correct.

The next lemma shows that E(�) occurs with probability at least 1� �.
Lemma 3.4. For all � > 0, we have

P(¬E(�)) = P (9r � C(�), i, j : |bpi,j(r)� pi,j |> ci,j(r))  �.

We will analyze our algorithm under both events G and E(�). Note that event G is required to
ensure that a⇤ is not eliminated in rounds before C(�) (where the Lemma 3.4 does not apply).
Lemma 3.5. Conditioned on G and E(�), for any round r > C(�), arm a

⇤
is not defeated by any

other arm, i.e., a
⇤
/2 [i 6=a⇤Dr(i).

To proceed, we need the following definitions.
Definition 3.3. The candidate ir of round r is called the champion if |Dr(ir)|= |A|�1; that is, if ir

defeats every other active arm.

Definition 3.4. Let r(�) � C(�) + 1 be the smallest integer such that

q
r(�) � 2A logA, where A :=

32

�2
min

· log(2K2).

We use the following inequality based on this choice of r(�).
Lemma 3.6. The above choice of r(�) satisfies

q
r
>

8

�2
min

· log
�
2K2

qr

�
, 8r � r(�).

Proof of Lemma 3.6. Using the fact that qr  q
r, it suffices to show q

r � 8
�2

min
·
�
log(2K2) + log qr

�
.

Moreover,

log(2K2) + log qr 
�
1 + log(2K2)

�
· (1 + log qr)  4 · log(2K2) · log qr,

where the last inequality uses K � 2, r � r(�) � 1 and q � 2. So, it suffices to show:

q
r
> A · log(qr), 8r � r(�), where A =

32

�2
min

· log(2K2) (3)

Below, let x = q
r, R := 2A logA and function f(x) := x� A log x. We will show that f(x) > 0

for all x � R, which would imply (3) because q
r(�) � R. As R � A, and f is increasing for x � A,

it suffices to show that f(R) � 0. Indeed,

f(R)

A
= 2 logA� log(2A logA) = logA� log(2 logA) > 0,

where the inequality uses A � 8.

Then, we have the following.
Lemma 3.7. Conditioned on G and E(�), the best arm a

⇤
is the champion in every round r > r(�).

We now have all components required to prove Theorem 1.1; its proof, and the proofs of the
aforementioned lemmas can be found in Appendix C.
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(a) Six rankers
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(b) Sushi
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(c) Irish-Meath
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(d) Irish-Dublin
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(e) MSLR30
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(f) Yahoo30

Figure 1: Regret v/s t plots of algorithms when B = blog(T )c

4 Computational Results

In this section, we provide details of our computational experiments. The goal of our experiments
is to answer the following questions: (i) How does the regret of C2B using B = blog(T )c batches
compare to that of existing fully sequential as well as batched algorithms? and (ii) Can the regret
of C2B match the regret of the best known sequential algorithms; if yes, then how many rounds
suffice to achieve this? Towards answering (i), we compare C2B to a representative set of sequential
algorithms for dueling bandits using the library due to [35]. We compare C2B to the sequential
algorithms RUCB [54], RMED [35], and BEAT-THE-MEAN (BTM) [51]. We allow these algorithms
to work as prescribed; that is, they work in B = T batches. The reason that we chose these sequential
algorithms is that our batched algorithm (C2B) is based on a similar paradigm, and such a comparison
demonstrates the power of adaptivity in this context. We also compare C2B to the batched algorithm
SCOMP2 [2]. We plot the cumulative regret R(t) incurred by the algorithms against time t. We
set B = blog(T )c for C2B and SCOMP2 in this experiment. For (ii), we increased B by a small
amount; we found that the performance of C2B improves noticeably when given a constant number
of additional rounds (we use B = blog(T )c+ 6 in this experiment). We perform these experiments
using the following real-world datasets.

Six rankers. This dataset is based on the 6 retrieval functions used in the engine of ArXiv.org.

Sushi. The Sushi dataset is based on the Sushi preference dataset [34] that contains the preference
data regarding 100 types of Sushi. A preference dataset using the top-16 most popular types of sushi
is obtained.

Irish election data. The Irish election data for Dublin and Meath is available at preflib.org. It
contains partial preference orders over candidates. As in [3], these are transformed into preference
matrices by selecting a subset of candiates to ensure that a Condorcet winner exists. There are 12
candidates in the Irish-Meath dataset, and 8 in the Irish-Dublin dataset.

MSLR and Yahoo! data. We also run experiments on two web search ranking datasets: the Microsoft
Learning to Rank (MSLR) dataset [40] and the Yahoo! Learning to Rank Challenge Set 1 [16]. These
datasets have been used in prior work on online ranker evaluation [53, 37]. We use preference
matrices generated using the “navigational” configuration (see [37] for details). The MSLR dataset
has 136 rankers and the Yahoo! dataset has 700 rankers. We sample 30 rankers from each dataset
while ensuring the existence of a Condorcet winner. In this way, we obtain two datasets, denoted
MSLR30 and Yahoo30.
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(a) Six rankers
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(b) Sushi
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(c) Irish-Meath
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(d) Irish-Dublin
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(e) MSLR30
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(f) Yahoo30

Figure 2: Regret v/s t plots of algorithms when B = blog(T )c+ 6

Note that there exists a Condorcet winner in all datasets. We repeat each experiment 20 times and
report the average regret. In our algorithm, we use the KL-divergence based confidence bound due
to [35] for elimination as it performs much better empirically, and our theoretical bounds continue
to hold (see §E). This KL-divergence based elimination criterion eliminates an arm i in round
r if Ii(r) � I

⇤(r) > log(T ) + f(K) where Ii(r) =
P

j:bpi,j(r)< 1
2
Ni,j(r) · DKL(bpi,j(r), 1

2 ) and
I
⇤(r) = minj2[K] Ii(r).

Computational Results. As mentioned earlier, we compare our algorithms against a representative
set of sequential dueling bandits algorithms (RUCB, RMED, and BTM). We set ↵ = 0.51 for RUCB,
and f(K) = 0.3K1.01 for RMED and C2B, and � = 1.3 for BTM: these parameters are known to
perform well both theoretically and empirically [35]. We set T = 106 for MSLR30 and Yahoo30
datasets (as they have larger number of arms), and T = 105 for the remaining four. For the first set
of experiments, we set B = blog(T )c. We observe that C2B always outperforms BTM and beats
SCOMP2 on most of the datasets. We observe that even when SCOMP2 beats C2B it has a slightly
linear curve (implying that its regret would keep increasing as T increases) while the regret curve of
C2B is mostly flat. Furthermore, C2B performs comparably to RUCB in all datasets except Yahoo30.
We plot the results in Figure 1. In the second set of experiments, we set B = blog(T )c + 6. We
observe that C2B always outperforms RUCB and, in fact, performs comparably to RMED on all
datasets except Yahoo30. We plot the results in Figure 2. Finally, we note that SCOMP2 exhibits
varying performance across runs (even on the same dataset) and we think that this is due to the
randomness involved in selecting the “seed set”.

5 Conclusion

In this paper, we proposed a batched algorithm, named C2B, for the K-armed dueling bandit problem.
Assuming the existence of a Condorcet winner, we show both high-probability and expected regret
bounds for C2B that trade-off smoothly with the number of batches. Furthermore, we obtain asymp-
totic regret of O(K2 log2(K))+O(K log(T )) in O(log(T )) batches, nearly matching the best regret
bounds known in the fully sequential setting under the Condorcet condition. Our computational
results show that C2B, using O(log(T )) batches, achieves almost the same performance as fully
sequential algorithms over a variety of real-world datasets. A direction for future research is to design
batched algorithms for the K-armed dueling bandit problem when a Condorcet winner does not exist;
for example, designing an algorithm for a more general concept of winner, such as Copeland winner

[48] or von Neumann winner [22].
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