
A Omitted Proofs

A.1 Closest Fair Ranking: Kendall tau

For weak fairness. We start with describing the pseudocode of our algorithm.

Algorithm 1: Algorithm to compute closest weak fair ranking under Kendall tau
Input: Input ranking π ∈ Sd, g groups G1, . . . , Gg , ᾱ = (α1, . . . , αg) ∈ [0, 1]g ,

β̄ = (β1, . . . , βg) ∈ [0, 1]g , k ∈ [d].
Output: An (ᾱ, β̄)-weak k-fair ranking.

1 Initialize a set P ← ∅.
2 Initialize a ranking σ ← ∅.
3 From each group i ∈ [g], pick the top ⌊αik⌋ elements of Gi according to the ranking π and add

them to P .
4 if |P | > k then
5 return No fair ranking exists.

6 else
7 Iterate over the remaining elements (in increasing order of rank by π) and add them in P as

long as |P | ≤ k and for each i ∈ [g], |P ∩Gi| ≤ ⌈βik⌉.
8 σ ← Construct a new ranking by first placing the elements of P in the top k positions (i,e., in

the k-length prefix) while preserving the relative ordering among themselves according to π,
and then placing the remaining elements ([d] \ P) in the rest (the last d− k positions) while
preserving the relative ordering among themselves according to π.

9 Iterate over ranking σ, and count the fraction of elements in the top-k from each group.
10 if σ is (ᾱ, β̄)-weak k-fair then
11 return σ.

12 else
13 return No fair ranking exists.

In the algorithm description above, for a subset P ⊆ [d], we say that an ordering σ of the elements of
P preserves relative orderings according to π, when for any two elements a ̸= b ∈ P , a <σ b if and
only if a <π b.

We now show that under Kendall tau, there exists an optimal (ᾱ, β̄) - k-fair ranking that preserves all
intra-group orderings from the input permutation.

Claim 3.3. Under the Kendall tau distance, there always exists a closest (ᾱ, β̄)- k-fair ranking π∗

such that, for each group Gi (i ∈ [g]), for any two elements a ̸= b ∈ Gi, a <π∗ b if and only if
a <π b.

Proof. Let π be the input ranking, and π′ be some closest (ᾱ, β̄)-k-fair ranking. If there exists
x, y ∈ G for some group G, such that x <π y but x >π′ y, then we claim that the permutation π′′

obtained by swapping x and y, is fair, and satisfies K(π, π′′) ≤ K(π, π′). Hence, by a series of such
swap operations, any (ᾱ, β̄)-k-fair ranking π′, can be transformed into one that satisfies the property
that, a ̸= b ∈ Gi, a <π′ b if and only if a <π b.

We partition the set [d] \ {x, y} into three sets, L = {z : z <π′′ x}, B = {z : x <π′′ z <π′′ y}, U =
{z : y <π′′ z}. Now, consider the sets Kπ′ = {(i, j) ∈ [d] × [d] | (i <π j) ∧ (i >π′ j)},Kπ′′ =
{(i, j) ∈ [d]× [d] | (i <π j) ∧ (i >π′′ j)}.
Consider any element (a, b) ∈ Kπ′′ , such that a, b belong to the same group.

• If a, b ̸∈ {x, y}: then clearly the pair of elements is in the same positions in π′ also, and
hence (a, b) ∈ Kπ′ .

• If y ∈ {a, b}: let a′ ∈ {a, b} \ {y}.

15

– a′ ∈ U : This means that x <π′′ y <π′′ a′, so with swapped x and y, we will have
that y <π′ x <π′ a′. The relative position of y and a′ remains the same and hence
(a′, y) ∈ Kπ′ .

– a′ ∈ B: This means that x <π′′ a′ <π′′ y, so with swapped x and y, we will have that
y <π′ a′ <π′ x. But we know that (y, a′) ∈ Kπ′′ , which means that x <π y <π a′.
So we have that x <π a′ ∧ a′ <π′ x, which gives us that (x, a′) ∈ Kπ′ .

– a′ ∈ L: This means that a′ <π′′ x <π′′ y, so with swapped x and y, we will have
that a′ <π′ y <π′ x. The relative position of y and a′ remains the same and hence
(y, a′) ∈ Kπ′ .

• If x ∈ {a, b}: This case can also be analyzed similarly to the case above.

Now, note that (x, y) is not in Kπ′′ , so we get that |Kπ′′ | ≤ |Kπ′ |. Also, since this swap operation
does not change the number (or fraction) of elements from any group in the top-k ranks, π′′ is still
fair. This completes our proof.

Theorem 3.2. There exists a linear time algorithm that, given a ranking π ∈ Sd, a partition of [d] into
g groups G1, . . . , Gg for some g ∈ N, and ᾱ = (α1, . . . , αg) ∈ [0, 1]g, β̄ = (β1, . . . , βg) ∈ [0, 1]g,
k ∈ [d], outputs a closest (ᾱ, β̄)-weak k-fair ranking under the Kendall tau distance.

Proof. Let π be the given input ranking, πOPT be a closest ranking that also preserves intra-group
orderings (the existence of which is guaranteed by Claim 3.3), and πGRD be the ranking returned
by Algorithm 1. First, observe, by the construction of πGRD (in Algorithm 1), πGRD also preserves
intra-group orderings, and moreover, the relative ordering among the set of symbols in πGRD[k] (and
in [d] \ πGRD[k]) is the same as that in π. It is also easy to see that the relative ordering among the set
of symbols in πOPT[k] (and in [d] \ πOPT[k]) is the same as that in π; otherwise, by only changing the
relative ordering of the set of symbols in πOPT[k] (and in [d] \ πOPT[k]) to that in π, we get another fair
ranking π′ such that K(π′, π) < K(πOPT, π), which leads to a contradiction.

Now, assume towards contradiction that the rankings πOPT and πGRD are not the same, which implies
(from the discussion in the last paragraph) that there is a symbol a ∈ πGRD[k] \ πOPT[k] and b ∈
πOPT[k] \ πGRD[k]. Since both πOPT and πGRD preserve intra-group orderings, a and b cannot belong
to the same group, i.e., a ∈ Gi and b ∈ Gj such that i ̸= j. Then since πOPT is a fair ranking that
preserves intra-group orderings,

1. element a is not among the top ⌊αik⌋ elements of Gi according to π; and

2. element b is among the top ⌈βjk⌉ elements of Gj according to π.

Next, we argue that a <π b. If not, since a <πGRD b, it follows from the construction of πGRD (in
Algorithm 1), either a is among the top ⌊αik⌋ elements of Gi according to π contradicting Item 1,
or b is not among the top ⌈βjk⌉ elements of Gj according to π contradicting Item 2. Hence, we
conclude that a <π b.

We now claim that by swapping a and b in πOPT, we get a ranking π′ that is fair and also reduces the
Kendall tau distance from π, giving us a contradiction. Let us start by arguing that π′ is fair. Note,
π′[k] = (πOPT[k] \ {b}) ∪ {a}. Next, observe, since πGRD is a fair ranking that preserves intra-group
orderings,

• element b is not among the top ⌊αjk⌋ elements of Gj according to π; and

• element a is among the top ⌈βik⌉ elements of Gi according to π.

As a consequence, swapping a and b in πOPT to get π′ does not violate any of the fairness constraints
for the groups Gi and Gj (and, of course, none of the other groups). Hence, π′ is also a fair ranking.
So it remains to argue that K(π′, π) < K(πOPT, π) to derive the contradiction.

Observe that the set of pair of symbols for which the relative ordering changes in π′ as compared to
πOPT is the following:

{(b, c), (c, a) | b <πOPT c <πOPT a}.

Consider any element c such that b <πOPT c <πOPT a. Note, a <π′ c <π′ b.

16

• If the pair (c, a) creates an inversion (with respect to π) in π′, but not in πOPT, then c <π a.
Now, since a <π b, we have c <π b. Thus the pair (b, c) creates an inversion (with respect
to π) in πOPT, but not in π′.

• If the pair (b, c) creates an inversion (with respect to π) in π′, but not in πOPT, then b <π c.
Now, since a <π b, we have a <π c. Thus the pair (c, a) creates an inversion (with respect
to π) in πOPT, but not in π′.

Hence, we see that π′ has at least one lesser inverted pair (being a and b) than πOPT. In other words,
K(π′, π) < K(πOPT, π), leading to a contradiction, which completes the proof.

For general fairness notion. We first provide the pseudocode of our algorithm.

Algorithm 2: Algorithm to compute closest fair ranking under Kendall tau
Input: Input ranking π ∈ Sd, g groups G1, . . . , Gg , ᾱ = (α1, . . . , αg) ∈ [0, 1]g ,

β̄ = (β1, . . . , βg) ∈ [0, 1]g , k ∈ [d].
Output: An (ᾱ, β̄)-k-fair ranking.

1 Start with the largest prefix (i.e., the whole d-length prefix) P of π, and check whether for each
Gi, ⌊αi|P |⌋ ≤ |P ∩Gi| ≤ ⌈βi|P |⌉. If not, return "No fair ranking exists"; else continue.

2 for p = d− 1 to p = k − 1 do
3 Let P = π([p+ 1]) be the p+ 1-length prefix of π.
4 π ← Algorithm 1 (π, (G1, . . . , Gg), ᾱ, β̄, p).
5 return The resulting ranking stored in variable π.

Claim 3.5. If there is a ranking π′ such that its k1-length prefix P1 and k2-length prefix P2 satisfies
that for each group Gi (i ∈ [g]), ⌊αik1⌋ ≤ |P1 ∩Gi| ≤ ⌈βik1⌉ and ⌊αik2⌋ ≤ |P2 ∩Gi| ≤ ⌈βik2⌉,
then π2 exists.

Proof. Our proof is constructive. Since π′ exists, π1 also exists (follows from the correctness of
Algorithm 1). Since for any group Gi, |π1([k1])∩Gi| ≥ ⌊αik1⌋ ≥ ⌊αik2⌋, the elements in the prefix
π1([k1]) are sufficient to satisfy the lower bound fairness constraints for the k2-length prefix.

For a group i ∈ [g], let ℓi be the number of items of group Gi in the prefix π1([k1]). Next, we argue
that assuming the existence of π′ (as in the claim statement), it is always possible to construct a π2 for
which the upper bound fairness constraints are satisfied for the k2-length prefix. Note,

∑
i∈[g] ℓi = k1

and for each i ∈ [g], ℓi ≤ ⌈βik1⌉.

Consider L′
i to be the set of top

⌈
ℓi × k2

k1

⌉
elements from π1([k1]) ∩Gi. Let |L′

i| = ℓ′i. Then,

∑
i∈[g]

ℓ′i =
∑
i∈[g]

⌈
ℓi ×

k2
k1

⌉
≥

k2k1 ×
∑
i∈[g]

ℓi

 ≥ k2.

Also note that for each i ∈ [g],

ℓ′i =

⌈
ℓi ×

k2
k1

⌉
≤
⌈
βik1 ×

k2
k1

⌉
≤ ⌈βik2⌉

So, by ranking the above set L′
i of chosen elements, we can ensure that we can satisfy both the

upper and lower bound fairness constraints for the k2-prefix. Thus we get an (ᾱ, β̄)-weak k2-fair
ranking whose elements in the k2-prefix are from the set π1([k1]). Since one such valid solution
exists, Algorithm 1 can find an appropriate valid solution π2.

Claim 3.6. The set of elements in π2([k1]) is the same as that in π1([k1]).

Proof. We only call the Algorithm 1 subroutine on the k1-length prefix of π1 to construct π2. So by
construction, we have that for the k1-length prefix, the set of elements in both the permutations are
the same.

17

Claim 3.7. The set of elements in π2([k2]) is the same as that in π′
2([k2]).

Proof. Consider an element a ∈ π′
2([k2]) ∩ Gi for some i ∈ [g]. If a is among the top ⌊αik2⌋

elements (according to π) inside the group Gi, then by Algorithm 1, it would also be selected in
π1([k1]) (since k1 ≥ k2) and also in π2([k2]).

Now consider the case where a is among the top ⌈βik2⌉ elements of Gi, but not among the top
⌊αik2⌋ elements. This means that a is also among the top ⌈βik1⌉(≥ ⌈βik2⌉) elements of its group Gi.
This means that if it is encountered during the execution of Algorithm 1 on π to get an (ᾱ, β̄)-weak
k1-fair ranking, then it will be selected in π1([k1]). However, we also know that it is selected in
π′
2([k2]) which is a shorter prefix. Since the upper bound constraints were not violated for Gi during

the selection of the elements in π′
2([k2]), the upper bound constraints cannot be violated during the

selection of the elements of π1([k1]) as well. Hence, a will be selected in π1([k1]).

By a similar argument, when executing Algorithm 1 on π1 (in the later iteration) to output an (ᾱ, β̄)-
weak k2-fair ranking, a will again be encountered and be selected in π2([k2]). Therefore, every
element in π′

2([k2]) is also in π2([k2]). Since the sizes of both the sets are equal, the two sets are in
fact the same, and so are the rankings (by Algorithm 1).

Claim 3.8. The set of elements in π∗([k1]) is the same as that in π2([k1]).

Proof. Assume towards contradiction that there exists a ∈ π2([k1]) \ π∗([k1]) and b ∈ π∗([k1]) \
π2([k1]). If a, b were in the same group, then by Algorithm 1, we know that a <π b, and hence by
swapping the elements in π∗, the distance from π can only be reduced (as shown in latter part of proof
of Theorem 3.2). Hence we can obtain a different solution π̄ in which a ∈ π̄([k1]) and b ̸∈ π̄([k1]),
and this is also fair. This contradicts that π∗ is a closest fair ranking to π that preserves intra-group
orderings.

In the other case, a and b are not in the same group, i.e., a ∈ Gi and b ∈ Gj for some i ̸= j. Now
we note that a cannot be among the top ⌊αik1⌋ elements, but is in the top ⌈βik1⌉ elements in Gi.
Similarly, b cannot be among the top ⌊αjk1⌋ elements, but is in the top ⌈βjk1⌉ elements in Gj . Again,
it follows from Theorem 3.2, a <π b, and that by swapping these two elements in π∗ we can only
reduce the distance from π, while obtaining another fair ranking. This again contradicts that π∗ is a
closest fair ranking to π that preserves intra-group orderings. The claim now follows.

Claim 3.9. The set of elements in π∗([k2]) is the same as that in π2([k2]).

Proof. From Claim 3.7 we know that π2([k2]) = π′
2([k2]). So, it suffices to prove that the sets

π∗([k2]) and π′
2([k2]) are equal. Note that this amounts to showing that for some prefix, the output of

Algorithm 1 and the optimal solution have the same set of elements. The proof is hence very similar
to that of Claim 3.8.

Theorem 3.4. There exists an O(d2) time algorithm that, given a ranking π ∈ Sd, a partition of
[d] into g groups G1, . . . , Gg for some g ∈ N, and ᾱ = (α1, . . . , αg) ∈ [0, 1]g, β̄ = (β1, . . . , βg) ∈
[0, 1]g , k ∈ [d], outputs a closest (ᾱ, β̄)-k-fair ranking under the Kendall tau distance.

Proof. We show by induction that Algorithm 2 in fact outputs the same ranking (referred to as
the greedy solution) as the optimal fair ranking π∗, which preserves intra-group orderings. In the
induction we consider a prefix, at the step at which subroutine Algorithm 1 was executed on it.

Hypothesis: After Algorithm 2 calls the subroutine on a prefix of length n− i, for some i < n− k,
the result is the optimal (ᾱ, β̄)- (n− i)-fair ranking, which preserves intra-group orderings.

Base Case: For i = 0, the prefix of length n − i = n is the entire array. This is already fair (we
assume that a solution to the problem exists, which means that the input set of elements must
satisfy fairness criteria), and also preserves intra-group relative orderings (by construction
from subroutine Algorithm 1).

Induction Step: Let P2 be the prefix of length n − (i + 1) at which the subroutine Algorithm 1
was just executed. So the subroutine was executed on on a prefix P1 of length n− i in the
previous step, and hence it is already fair (by induction hypothesis).

18

From Claim 3.9 and Claim 3.8 we have that both the greedy (Algorithm 2’s output) and
the optimal solution have the same set of elements in both the top P1 and P2 prefixes. And
we know that the optimal solution (by definition) and the greedy solution (by construction)
preserve relative orderings w.r.t. π. This implies that the greedy solution π2 is in fact the
same as the optimal solution π∗.

A.2 Closest Fair Ranking: Ulam

Algorithm 3: DP algorithm for (ᾱ, β̄)-k-fair ranking under Ulam
Input: Input ranking π, g groups G1, . . . , Gg , vectors

ᾱ = (α1, . . . , αg) ∈ [0, 1]g, β̄ = (β1, . . . , βg) ∈ [0, 1]g , k ∈ [d].
Output: An (ᾱ, β̄)-k-fair ranking.

1 DP[d][|G1|] . . . [|Gg|] := 0⃗.
2 σ[d][|G1|] . . . [|Gg|] := ∅.
3 for j ∈ [d] do /* Base cases */
4 for i ∈ [g] do
5 DP[j][0] . . . [ai = 1] . . . [0] = 1 if there is an element of Gi in π[1 . . . j].
6 σ[j][0] . . . [ai = 1] . . . [0] = first element of group Gi.

7 Function FnDP([x][y1] . . . [yg]):
8 if DP[x][y1 . . . [yg] ̸= 0 then
9 return DP[x][y1] . . . [yg].

10 ℓ :=
∑

z∈[g] yz .
11 for z ∈ [g] do /* DP recurrence loop */
12 if (ℓ ≥ k) AND

(
⌊αzℓ⌋ > yz OR yz > ⌈βzℓ⌉ OR yz > |Gz|

)
then

13 return −∞. /* Fairness constraints */
14 if π[x] is in Gz then
15 if DP[x− 1][y1] . . . [yz − 1] . . . [yg] + 1 >DP[x][y1] . . . [yg] then
16 DP[x][y1] . . . [yg] = DP[x− 1][y1] . . . [yz − 1] . . . [yg] + 1.
17 To obtain σ[x][y1] . . . [yg], append π[x] to σ[x− 1][y1] . . . [yz − 1].

18 else
19 if DP[x− 1][y1] . . . [yz − 1] . . . [yg] >DP[x][y1] . . . [yg] then
20 DP[x][y1] . . . [yg] = DP[x− 1][y1] . . . [yz − 1] . . . [yg].
21 To obtain σ[x][y1] . . . [yg], append an arbitrary element of Gz to

σ[x− 1][y1] . . . [yz − 1].

22 if there are more than yz − 1 elements of Gz in π[1 . . . j] then
23 if DP[x][y1] . . . [yz − 1] . . . [yg] + 1 >DP[x][y1] . . . [yg] then
24 DP[x][y1] . . . [yg] = DP[x][y1] . . . [yz − 1] . . . [yg] + 1.
25 Choose an element g ∈ {π[0 . . . x]} \ {σ[x][y1] . . . [yz − 1] . . . [yg]}.
26 Identify the first element a (in increasing order of π) in the LCS, satisfying

g <π a (note that a could be null, representing the last position in the LCS).
27 To obtain σ[x][y1] . . . [yg]: insert g preceding a in σ[x][y1] . . . [yz − 1] . . . [yg] (if

a is null, append g to σ[x][y1] . . . [yz − 1] . . . [yg]).

28 else
29 if DP[x][y1] . . . [yz − 1] . . . [yg] >DP[x][y1] . . . [yg] then
30 DP[x][y1] . . . [yg] = DP[x][y1] . . . [yz − 1] . . . [yg].
31 To obtain σ[x][y1] . . . [yg] we append an arbitrary element of Gz to

σ[x][y1] . . . [yz − 1].

32 DP[d][|G1|] . . . [|Gg|] = FnDP[d][|G1|] . . . [|Gg|].
33 Find the DP cell DP[d][i1] . . . [ig] that has the maximum value of LCS.
34 return σ[d][i1] . . . [ig].

19

Theorem 3.10. There exists a polynomial time dynamic programming based algorithm that finds a
(ᾱ, β̄)-k-fair ranking under Ulam metric when there are constant number of groups.

Proof. Let π be the given input string and g be the number of groups. Let ai ∈ N, for all i ∈ [g], and
γ :=

∑
i∈[g] ai. Let P(a1, . . . , ag) be the family of strings of length γ that have exactly ai elements

from group Gi for all i ∈ [g]. Let σj(a1, . . . , ag) be the string in this family that has the longest
common subsequence (LCS) with π[1 . . . j]. So the string σd(|G1|, . . . , |Gg|) is the string of length
d, that has maximum LCS with π, and from the alternate definition of the Ulam metric, the smallest
Ulam distance from π. So, intuitively, we define a dynamic program to compute the LCS, and build
up the strings σj(a1, . . . , ag). The DP subproblem is defined as follows: DP[j][a1] . . . [ag] will store
the length of the longest common subsequence between π[1 . . . j] and σj(a1, . . . , ag). W.l.o.g., we
also assume that it stores the string σj(a1, . . . , ag) as well.

With this definition, we construct a solution for the subproblem DP[j][a1] . . . [ag] from ‘smaller’
subproblems as follows:

Case 1: From subproblems corresponding to smaller values of γ.
Case 1A. Subproblems due to π[1 . . . j]: If for i ∈ [g], the number of elements from Gi in π[1 . . . j]
is greater than ai − 1 then we know that π[1 . . . j] has an LCS of length DP[j][a1] . . . [ai − 1] . . . [ag]
with σj(a1, . . . , ai − 1, . . . , ag), which does not contain all of its elements from Gi. So if we pick
one such element p ∈ Gi, we can identify its position w.r.t. elements of the LCS in π. Let us say
we identify the first element q in the LCS that follows p (i.e., first element in order of π satisfying
p <π a). Then if we place p right before q in σj(a1, . . . , ai − 1, . . . , ag) then the LCS can now also
include p, and hence be longer by one element.

Otherwise, if for h ∈ [g], π[1 . . . j] has at most ah − 1 elements from Gh, then
DP[j][a1] . . . [ah] . . . [ag] already utilizes all the elements of Gh it can, and adding a new ele-
ment of the group cannot extend the LCS anymore. Hence, the candidate solution’s LCS size
is DP[j][a1] . . . [ai − 1] . . . [ag], and we can obtain this by adding an arbitrary element of Gh to
σj(a1, . . . , ai − 1, . . . , ag).

Case 1B. Subproblems due to π[1 . . . j − 1]: For some i ∈ [g] let π[j] ∈ Gi. Then one candidate
solution’s LCS size is DP[j−1][a1] . . . [ai−1] . . . [ag]+1, where we take the string σj−1(a1, . . . , ai−
1, . . . , ag) and append π[j] at the end of it. This increases the LCS value by 1 to give a solution of
size DP[j − 1][a1] . . . [ai − 1] . . . [ag] + 1.

Otherwise, if for some h ∈ [g], π[j] ̸∈ Gh, then by adding any element from Gh, we can never have
it being the same as π[j], and hence cannot extend the LCS any further. Hence, we can add any
arbitrary element of the group to σj−1(a1, . . . , ah − 1, . . . , ag), to get a valid solution with LCS size
DP[j − 1][a1] . . . [ah − 1] . . . [ag].

Case 2: From subproblems corresponding to smaller values of j. Here we try to build a solution
to DP[j][a1] . . . [ai] . . . [ag] by using the solution of DP[j − 1][a1] . . . [ai] . . . [ag]. In this case if the
length of the LCS were to increase, then we note that the last element of the new LCS has to be π[j]
(otherwise, the longer LCS we find would also have been valid for DP[j − 1][a1] . . . [ai] . . . [ag]).
So the solution to this problem can be obtained by appending σj−1(a1, . . . , ai − 1 . . . ag) (for the
appropriate group i ∈ [g]) with π[j] to get a LCS of length 1 + DP[j − 1][a1] . . . [ai − 1] . . . [ag].
Hence we note that this case essentially reduces to case 1B (note that this case hence does not feature
in the recurrence, and is just mentioned for completeness).

Therefore, by iterating over all groups to consider all possible candidates, we get the recurrence,

DP[j][a1] . . . [ag] = max
i∈[g]


DP[j][a1] . . . [ai − 1] . . . [ag] + 1, if π[1 . . . j] has ≥ ai elements of Gi;
DP[j][a1] . . . [ai − 1] . . . [ag], if π[1 . . . j] has ≤ ai − 1 elements of Gi.
DP[j − 1][a1] . . . [ai − 1] . . . [ag] + 1, if π[j] is in Gi;
DP[j − 1][a1] . . . [ai − 1] . . . [ag], if π[j] is not in Gi;

Also note that here we use the fact that the length of the LCS can only increase by one in any
of the above cases. If the LCS increased by more than one, we can ignore one of the characters
(being an arbitrary character, or the newly considered character from the prefix, corresponding to
the appropriate case) of the newly obtained LCS, from its corresponding solution string σ, thereby

20

obtaining a solution with a larger LCS for a previously solved subproblem. This would hence give us
a contradiction.

To ensure that only subproblems where the top-ℓ ranks satisfy the fairness constraints (∀i ∈
[g], ⌊αiℓ⌋ ≤ ai ≤ ⌈βiℓ⌉ and ∀i ∈ [g], ai ≤ |Gi|) are used for construction, we set all ‘invalid’
subproblems, to have a value of −∞ (we do this only for prefixes of size larger than k).

For the base case, we have that for any j ∈ [d] and all groups i ∈ [g],DP[j][0] . . . [ai = 1] . . . [0] =1,
if there is a element of Gi in π[1 . . . j]; and 0 otherwise. Note that the above recurrence can be solved
in a top-down approach. For a formal description of the pseudocode of the algorithm, see Algorithm
3.

There are O(dg+1) DP subproblems, evaluating each of which takes O(d) time. Then, we iterate
over all the possible valid fair strings σ(a1, . . . , ag) (there are at most O(dg) such strings) to find
the one with the longest possible common subsequence. This gives us an overall running time of
O(dg+2).

A.3 Fair Rank Aggregation: First Meta Algorithm

Algorithm 4: Meta-algorithm 1 for the q-mean fair rank aggregation.
Input: A set S ⊆ Sd of n rankings.
Output: A (c+ 2)-approximate fair aggregate rank of S.

1 Initialize S′ ← ∅
2 for each point π in S do
3 Find a c-approximate closest fair ranking σ to π using the algorithm A
4 S′ ← S′ ∪ {σ}
5 Initialize σ̄ ← ∅
6 Initialize Objq(S, σ)←∞
7 for each point σ in S′ do
8 if Objq(S, σ) < Objq(S, σ̄) then
9 σ̄ ← σ

10 return σ̄

Lemma 4.4. Given a set S ⊆ Sd of n rankings, let σ∗ be an optimal q-mean fair aggregated rank of S
under a distance function ρ. Further, let π̄ be a nearest neighbor (closest ranking) of σ∗ in S, and σ̄ be
a c-approximate closest fair ranking to π̄, for some c ≥ 1. Then ∀π ∈ S, ρ(π, σ̄) ≤ (c+2) ·ρ(π, σ∗).

Proof. Since σ∗ is a fair ranking and σ̄ is a c-approximate closest fair ranking to π̄

ρ(π̄, σ̄) ≤ c · ρ(π̄, σ∗). (1)

Since π̄ ∈ S is a closest ranking to σ∗ in the set S,

∀π ∈ S, ρ(π̄, σ∗) ≤ ρ(π, σ∗). (2)

Then it follows from Equation 1,

∀π ∈ S, ρ(π̄, σ̄) ≤ c · ρ(π, σ∗) (3)

Now, for any π ∈ S, we get,

ρ(π, σ̄) ≤ ρ(π, σ∗) + ρ(σ∗, σ̄) (By the triangle inequality)
≤ ρ(π, σ∗) + ρ(σ∗, π̄) + ρ(π̄, σ̄) (By the triangle inequality)
≤ ρ(π, σ∗) + ρ(π, σ∗) + c · ρ(π, σ∗) (By Equation 2 and Equation 3)
≤ (c+ 2) · ρ(π, σ∗).

21

Algorithm 5: Alternate Meta-algorithm for finding fair-aggregate rank.
Input: A set S ⊆ Sd of n rankings.
Output: A (c1c2 + c1 + c2)-approximate fair aggregate rank of S.

1 Call A1(S) to find the c1-approximate aggregate rank π∗ of the input set S.
2 Call A2(π

∗) to find the c2-approximate closest fair ranking σ̄, to π∗.
3 return σ̄.

A.4 Fair Rank Aggregation: Second Meta Algorithm

Lemma 4.9. Given a set S ⊆ Sd of n rankings, let σ∗ be an optimal q-mean fair aggregated rank of
S under a distance function ρ. Further, let π∗ be the c1-approximate aggregate rank of S and σ̄ be a
c2-approximate closest fair ranking to π∗, for some c1, c1 ≥ 1. Then

∀π ∈ S, ρ(π, σ̄) ≤ (c1c1 + c1 + c2) · ρ(π, σ∗).

Proof. Since π∗ is a c1-approximate rank aggregation of the input, we have that,

ρ(π, π∗) ≤ c1 · ρ(π, σ∗). (4)

Since σ̄ is the c2-approximate closest fair rank to π∗, we have,

ρ(π∗, σ̄) ≤ c2 · ρ(π∗, σ∗) (5)

So, for any π ∈ S we get,

ρ(π, σ̄) ≤ ρ(π, π∗) + ρ(π∗, σ̄) (By the triangle inequality)
≤ ρ(π, π∗) + c2 · ρ(π∗, σ∗) (By Equation 5)
≤ ρ(π, π∗) + c2 · (ρ(π∗, π) + ρ(π, σ∗)) (By the triangle inequality)
≤ (1 + c2) · ρ(π, π∗) + c2 · ρ(π, σ∗)

≤ (1 + c2) · c1 · ρ(π, σ∗) + c2 · ρ(π, σ∗) (By Equation 4)
≤ (c1c2 + c1 + c2) · ρ(π, σ∗).

Corollary 4.10. For q = 1, there exists an O(d3 log d+ n2d+ nd2) time meta-algorithm, that finds
a 3-approximate solution to the q-mean fair rank aggregation problem (i.e., the fair median problem)
under Spearman footrule metric.

Proof. In [DKNS01] it is shown that optimal rank aggregation under Spearman footrule can be
reduced in polynomial time to the minimum cost perfect matching in a bipartite graph. The reduction
takes O(nd2) time, which is needed to compute the edge weights for the constructed bipartite
graph. Further, [vdBLN+20] gives a randomized Õ(m+ n1.5) time algorithm for the minimum cost
perfect bipartite matching problem for bipartite graphs with n nodes and m edges. The reduction
in [DKNS01] creates an instance of the minimum cost perfect bipartite matching problem with O(d)

nodes and O(d2) edges. Hence, the result of [vdBLN+20] gives us an exact Õ(nd2) time rank
aggregation algorithm for Spearman footrule, i.e., c1 = 1 and t1 = Õ(n2 + d).

Since we can compute an exact closest fair ranking under Spearman footrule in O(d3 log d), we have
that c2 = 1, and t2 = O(d3 log d). Moreover, we can also compute the Spearman footrule distance
in f(d) = O(d) time. Now plugging in these values to Theorem 4.8, we get that we can find a 3-
approximate solution to the fair median problem under Spearman footrule inO(d3 log d+n2d+nd2)
time.

B Better approximation algorithm for Ulam fair median

In this section, we provide a polynomial time (3 − ε)-approximation algorithm for the fair me-
dian problem under the Ulam metric for constantly many groups (proving Theorem 4.11). More
specifically, we show the following theorem.

22

Theorem B.1. For q = 1, there exists a constant ε > 0 and an algorithm that, given a set S ⊆ Sd
of n rankings of d candidates where these candidates are partitioned into g ≥ 1 groups, finds a
(3 − ε)-approximate solution to the q-mean fair rank aggregation problem (i.e., the fair median
problem), under the Ulam metric in time O(ndg+2 + n2d log d).

In proving the above theorem, we first describe the algorithm, then provide the running time analysis,
and finally analyze the approximation factor.

Description of the algorithm. We run two procedures, each of which outputs a fair ranking
(candidate fair median), and then return the one (among these two candidates) with the smaller
objective value. The first procedure is the one used in Corollary 4.7. The second procedure is
based on the relative ordering of the candidates and is very similar to that used in [CDK21] with
the only difference being that now we want the output ranking to be fair (which was not required
in [CDK21]). Our second procedure Algorithm 6 is given a parameter α ∈ [0, 1/10]. It first creates
a directed graph H with the vertex set V (H) = [d] and the edge set E(H) = {(a, b) | a <π

b for at least (1 − 2α)n rankings π ∈ S}. If this graph H is acyclic, then we are done. Otherwise,
we make H acyclic as follows: Iterate over all the vertices v ∈ V (H), and in each iteration, find
a shortest cycle containing v, and then delete all the vertices (along with all the incident edges) in
that cycle. In the end, we will be left with an acyclic subgraph H̄ (of the initial graph H). Then,
we perform a topological sorting to find an ordering O of the vertex set V (H̄). Note, O need not
be a ranking of d candidates (since V (H̄) could be a strict subset of [d]). Let σ̄par be the sequence
denoting the ordering O. Then we find a fair ranking σ̄ that maximizes the length of an LCS with
σ̄par and output it.

Algorithm 6: Relative Order Algorithm
Input: A set S ⊆ Sd of n rankings, α ∈ [0, 1/10].
Output: A fair ranking from Sd.

1 H ← ([d], E) where E = {(a, b) | a <π b for at least (1− 2α)n rankings π ∈ S}
2 for each point v ∈ V (H) = [d] do
3 C ← A shortest cycle containing v
4 H = H − V (C)

5 H̄ ← H
6 σ̄par ← Sequence representing a topological ordering of V (H̄)
7 Find a fair ranking σ̄ ∈ Sd that maximizes the length of a LCS with σ̄par

8 return σ̄

Running time analysis. The first procedure that is used in Corollary 4.7 takesO(ndg+2+n2d log d)
time. It follows from [CDK21], Step 1-6 of the second procedure (Algorithm 6) takes time O(nd2 +
d3) = O(ndg+2) (since g ≥ 1). To perform Step 7 of Algorithm 6, we use the dynamic programming
described in Algorithm 3. So, this step takes O(dg+2) time. As finally, we output the fair ranking
produced by the two procedures that have a smaller objective value; the total running time is
O(ndg+2 + n2d log d).

Showing the approximation guarantee. Although the analysis proceeds in a way similar to that
in [CDK21], it differs significantly in many places since now the output of our algorithm must be a
fair ranking (not an arbitrary one). Let σ∗ be an (arbitrary) fair median (1-mean fair aggregated rank)
of S under the Ulam metric. Then OPT(S) =

∑
π∈S U(π, σ∗), which for brevity we denote by OPT.

For any S′ ⊆ S, let OPTS′ :=
∑

π∈S′ U(π, σ∗). Let us take parameters α, β, γ, ε, η, ν, the value of
which will be set later. Let us consider the following set of fair rankings

Sf := {σ ∈ Sd | σ is a fair ranking closest to π ∈ S}.

It is worth noting that our first procedure (the algorithm used in Corollary 4.7) essentially outputs a
fair ranking from the set Sf with the smallest objective value.

Assume that
∀σ∈Sf

, U(σ, σ∗) > (2− ε)OPT/n. (6)

23

Otherwise, let σ′ ∈ Sf does not satisfy the above assumption, i.e., U(σ′, σ∗) ≤ (2− ε)OPT/n. Then∑
π∈S

U(π, σ′) ≤
∑
π∈S

(U(π, σ∗) + U(σ∗, σ′)) (By the triangle inequality)

= OPT+ n · U(σ∗, σ′)

≤ (3− ε)OPT. (7)

So from now on, we assume 6. It then directly follows from the triangle inequality that

∀π∈S , U(π, σ∗) > (1− ε/2)OPT/n. (8)

For each π ∈ S ∪ Sf , consider an (arbitrary) LCS ℓπ between π and σ∗. Let Iπ denote the set of
symbols in [d] that are not included in ℓπ . Note, |Iπ| = d− |LCS(π, σ∗)| = U(π, σ∗).

For any π ∈ S ∪ Sf and D ⊆ [d], let Iπ(D) := Iπ ∩D. For any a ∈ [d] and S′ ⊆ S,

costS′(a) := |{π ∈ S′ | a is not included in ℓπ}|.
When S′ = S, for brevity, we drop the subscript S′. For any D ⊆ [d] and S′ ⊆ S, OPTS′(D) :=∑

a∈D costS′(a). When D = [d], for brevity, we only use OPTS′ . Note, OPT = OPTS .

We call a symbol a ∈ [d] lazy if cost(a) ≤ αn; otherwise active. Let L denote the set of all lazy
symbols, and A = [d] \ L (i.e., the set of all active symbols).

Case 1: |A| ≤ β · OPT/n
We use the following result from [CDK21].
Claim B.2 ([CDK21]). The set of symbols in L∩ V (H̄) forms a common subsequence between σ̄par

and σ∗. Furthermore, |L \ V (H̄)| ≤ 4α
1−4α |A|.

Using the above claim, we show the following lemma.
Lemma B.3. Consider an α ∈ [0, 1/10] and β ∈ (0, 1). Given an input set S ⊆ Sd of size n, let the
set of active symbols A be of size at most β · OPT/n. Then on input S, α, Algorithm 6 outputs a fair
ranking σ̄ that is an (1 + 3β(1 + 8α))-approximate fair median (1-mean fair aggregated rank) of S.

Proof. First note, by Claim B.2, the set of symbols in L ∩ V (H̄) forms a common subsequence
between σ̄par and σ∗. Now since σ∗ is a fair ranking, the length of an LCS between σ̄par and σ̄ must
be at least |L ∩ V (H̄)| − |V (H̄) \ L|. Moreover,

|LCS(σ̄, σ∗)| ≥ |L ∩ V (H̄)| − 2|V (H̄) \ L| ≥ |L ∩ V (H̄)| − 2|A|. (9)

(Note, since a fair ranking σ∗ exists, it is always possible to perform Step 7 of Algorithm 6 to output
a fair ranking σ̄.)

Obj(S, σ̄) =
∑
π∈S

U(π, σ̄)

≤
∑
π∈S

(U(π, σ∗) + U(σ∗, σ̄)) (By the triangle inequality)

= OPT+ n · (d− |LCS(σ∗, σ̄)|)
≤ OPT+ n · (d− |L ∩ V (H̄)|+ 2|A|) (By Equation 9)

= OPT+ n · (|A|+ |L| − |L ∩ V (H̄)|+ 2|A|)
= OPT+ n · (3|A|+ |L \ V (H̄)|)

≤ OPT+ n · 3

1− 4α
|A| (By Claim B.2)

≤ OPT+
3β

1− 4α
OPT (Since |A| ≤ β · OPT/n)

≤ (1 + 3β(1 + 8α))OPT (Since α ∈ [0, 1/10]).

24

Case 2: |A| > β · OPT/n
Recall, we consider parameters α, β, γ, ε, η, ν, the value of which will be set later. Let us partition S
into the following sets of near and far rankings: Let N := {π ∈ S | U(π, σ∗) < (1 + ε/α)OPT/n},
and F := S \N .

Claim B.4 ([CDK21]).

OPTN ≥ (1− α/2)(1− ε/2)OPT. (10)

OPTN (A) ≥ αn

2
|A| ≥ αβ

2
OPTN (11)

Let R := {π ∈ N | |Iπ(A)| ≥ (1− γ)α2 |A|}. Then

OPTN\R(A) ≤ (1− γ)
α

2
|A| · |N \R|

≤ (1− γ)OPTN (A) (By Equation 11). (12)

As a consequence, we get that
OPTR(A) ≥ γOPTN (A). (13)

Further partition R into R1, . . . , Rr for r = ⌈log1+ν(2/(α− αγ))⌉ as follows

Ri := {π ∈ R | (1 + ν)i−1(1− γ)
α

2
|A| < |Iπ(A)| ≤ (1 + ν)i(1− γ)

α

2
|A|}. (14)

By an averaging argument, there exists i∗ ∈ [r] such that for R∗ = Ri∗ ,

OPTR∗(A) ≥ OPTR(A)/r ≥ γ

r
OPTN (A) (15)

where the last inequality follows from Equation 13.

Let us consider η = 1
2

(
(1 + ν)i

∗−1(1− γ)α/2
)2

. For each π ∈ S, let σ(π) be the closest fair
ranking that is in the set Sf . Next, consider the following procedure to segregate R∗ into a set of
clusters with C denoting the set of cluster centers. (We emphasize that the following clustering step is
only for the sake of analysis.)

1. Initialize C ← ∅.
2. Iterate over all π ∈ R∗ (in the non-decreasing order of |Iπ(L)|)

(a) If for all π′ ∈ C, |Iσ(π′) ∩ Iπ(A)| < η|A|, then add π in C. Also, create a cluster
Cπ ← {π}.

(b) Else pick some π′ ∈ C (arbitrarily) such that |Iσ(π′) ∩ Iπ(A)| ≥ η|A| and add π in
Cπ′ .

Since we process all π ∈ R∗ in the non-decreasing order of |Iπ(L)|, it is straightforward to see

∀π′∈C , ∀π∈Cπ′ , |Iπ′(L)| ≤ |Iπ(L)|. (16)

Next, we use the following simple combinatorial lemma from [CDK21].

Lemma B.5 ([CDK21]). For any c, d ∈ N and η ∈ (0, 1
2c2], any family F of subsets of [d] where

• Every subset I ∈ F has size at least n/c, and

• For any two I ̸= J ∈ F , |I ∩ J | ≤ ηd,

has size at most 2c.

We use the above lemma to prove the following.

Claim B.6. For any α ∈ (0, 1) and γ ∈ (0, 0.5), |C| ≤ 8/α.

25

Proof. Recall, by definition, for any π′ ∈ C, σ(π′) ∈ Sf . By Assumption 6, for any σ ∈ Sf ,

|Iσ| > (2− ε)OPT/n ≥ (2− ε)α|A|
where the last inequality follows since by the definition of active symbols, OPT ≥ αn|A|. Also,
by Equation 14, for each π ∈ R∗, |Iπ(A)| ≥ (1 + ν)i

∗−1(1 − γ)α2 |A|. Then it directly follows

from Lemma B.5, |C| ≤ 2
⌈

1
(1+ν)i∗−1(1−γ)α

2

⌉
≤ 8/α (for γ < 0.5).

Since Cπ′ ’s create a partitioning of the set R∗, by averaging,

∃π′∈C , OPTCπ′ (A) ≥ OPTR∗(A)

|C|

≥ αγ

8r
OPTN (A) (By Equation 15 and Claim B.6). (17)

From now on, fix a π̃ ∈ C that satisfies the above. Then,

OPTCπ̃
≥ OPTCπ̃

(A) ≥ αγ

8r
OPTN (A) (By Equation 17)

≥ α2βγ

16r
OPTN (By Equation 11). (18)

Note, OPTCπ̃
(L) + OPTCπ̃

(A) = OPTCπ̃
≤ OPTN , and thus,

OPTCπ̃
(L) ≤

(
1− α2βγ

16r

)
OPTCπ̃

. (19)

Let σ̃ = σ(π̃). Observe, since U(π̃, σ̃) ≤ U(π̃, σ∗) (recall, σ∗ is a fair ranking and σ̃ is a closest fair
ranking to π̃), by the triangle inequality,

U(σ∗, σ̃) ≤ 2U(σ∗, π̃). (20)

Next, take any far ranking π ∈ F .

U(π, σ̃) ≤ U(π, σ∗) + U(σ∗, σ̃) (By the triangle inequality)
≤ U(π, σ∗) + 2U(σ∗, π̃) (By Equation 20)
≤ 3U(π, σ∗) (Since π ∈ F and π̃ ∈ N).

Hence, we get that
∀π∈F , U(π, σ̃) ≤ 3U(π, σ∗). (21)

Then consider any near ranking π ∈ N .

U(π, σ̃) ≤ U(π, σ∗) + U(σ∗, σ̃) (By the triangle inequality)
≤ U(π, σ∗) + 2U(σ∗, π̃) (By Equation 20)
≤ U(π, σ∗) + 2(1 + ε/α)OPT/n (Since π̃ ∈ N)

≤ U(π, σ∗) + 2
1 + ε/α

1− ε/2
U(π, σ∗) (By Assumption 8)

≤ 3 + (4/α− 1)ε/2

1− ε/2
U(π, σ∗).

Hence, we get that

∀π∈N , U(π, σ̃) ≤ 3 + (4/α− 1)ε/2

1− ε/2
U(π, σ∗). (22)

Lastly, consider any π ∈ Cπ̃ . Note,

U(π, σ̃) ≤ |Iπ|+ |Iσ̃| − |Iπ ∩ Iσ̃|
≤ |Iπ|+ |Iσ̃| − |Iπ(A) ∩ Iσ̃|
≤ |Iπ|+ |Iσ̃| − η|A| (By the construction).

26

Hence,∑
π∈Cπ̃

U(π, σ̃) ≤
∑
π∈Cπ̃

(|Iπ|+ |Iσ̃| − η|A|)

≤
∑
π∈Cπ̃

(|Iπ|+ 2|Iπ̃| − η|A|) (By Equation 20)

≤
∑
π∈Cπ̃

(|Iπ(L)|+ 2|Iπ̃(L)|) +
∑
π∈Cπ̃

(|Iπ(A)|+ 2|Iπ̃(A)| − η|A|)

≤ 3
∑
π∈Cπ̃

|Iπ(L)|+
∑
π∈Cπ̃

(|Iπ(A)|+ 2|Iπ̃(A)| − η|A|) (By Equation 16)

≤ 3
∑
π∈Cπ̃

|Iπ(L)|+
∑
π∈Cπ̃

(|Iπ(A)|+ 2(1 + ν)|Iπ(A)| − η|A|) (Since π, π̃ ∈ R∗)

≤ 3
∑
π∈Cπ̃

|Iπ| −
∑
π∈Cπ̃

(η|A| − 2ν|Iπ(A)|)

≤ 3
∑
π∈Cπ̃

|Iπ| −
(

2η

α(1 + ν)i∗(1− γ)
− 2ν

) ∑
π∈Cπ̃

|Iπ(A)| (Since π ∈ R∗)

= 3
∑
π∈Cπ̃

|Iπ| −
(
(1 + ν)i

∗−2(1− γ)α

4
− 2ν

) ∑
π∈Cπ̃

|Iπ(A)| (Recall, η =
((1 + ν)i

∗−1(1− γ)α/2)2

2
)

= 3
∑
π∈Cπ̃

|Iπ| − ρ
∑
π∈Cπ̃

|Iπ(A)| (Let ρ =
(1 + ν)i

∗−2(1− γ)α

4
− 2ν)

≤ (3− ρ)
∑
π∈Cπ̃

|Iπ|+ ρ
∑
π∈Cπ̃

|Iπ(G)|

= (3− ρ)OPTCπ̃ + ρOPTCπ̃ (G) (By the definition)

≤
(
3− ρα2βγ

16r

)
OPTCπ̃

(By Equation 19).

(23)

Finally, we deduce that∑
π∈S

U(π, σ̃) =
∑
π∈F

U(π, σ̃) +
∑

π∈N\Cπ̃

U(π, σ̃) +
∑
π∈Cπ̃

U(π, σ̃)

≤ 3OPTF +
3 + (4/α− 1)ε/2

1− ε/2
OPTN\Cπ̃

+

(
3− ρα2βγ

16r

)
OPTCπ̃ (By Equations 21, 22, 23)

≤ 3OPT+ (3 + 2/α+ (4/α− 1)ε/2)εOPTN\Cπ̃
− ρα2βγ

16r
OPTCπ̃ (Assuming ε < 0.5)

≤ 3OPT+ (3 + 2/α+ (4/α− 1)ε/2)εOPTN −
ρα2βγ

16r
OPTCπ̃

≤ 3OPT−
(
ρα4β2γ2

256r2
− (3 + 2/α+ (4/α− 1)ε/2)ε

)
OPTN (By Equation 18)

≤
(
3− (1− α/2)(1− ε/2)(

ρα4β2γ2

256r2
− (3 + 2/α+ (4/α− 1)ε/2)ε)

)
OPT (By Equation 10).

Consider an α ∈ (0, 1/10] and β ∈ (0, 1). Then set γ = 1/4, ν = (1− γ)α/32. Now, it is not hard
to verify that the constant (1− α/2)(1− ε/2)(ρα

4β2γ2

256r2 − (3 + 2/α + (4/α − 1)ε/2)ε) > 0 for a
proper choice of ε < 0.5 (which is a function of α, β). Hence, we conclude the following.

Lemma B.7. Consider an α ∈ (0, 1/10] and β ∈ (0, 1). There exists a constant δ > 0 such that
given an input set S ⊆ Sd of size n, for which the set of active symbols A is of size at least β · OPT/n,
there exists a fair ranking σ̃ ∈ Sf such that Obj1(S, σ̃) ≤ (3− δ)OPT.

27

Recall our first procedure (the algorithm used in Corollary 4.7) essentially outputs a fair ranking
from the set Sf with the smallest objective value. Let us set α = 1/10 and β = 1/6. Now, the
approximation guarantee of Theorem B.1 follows from Lemma B.3 and Lemma B.7.

28

