
Figure 2: Left: Performance with increasing M , Right: Performance with increasing exploration episodes

Appendix A Experiments

In this section, we demonstrate our maximum likelihood estimation (8) on synthetic examples. We
generate random LMAB instances with Bernoulli rewards, where the mean-reward vectors {µm}Mm=1

lie in a subspace of dimension roughly 4, i.e., rank
(∑M

m=1 wmµmµ⊤
m

)
≈ 4. We compare our MLE

with experimental design method (8) (ED+MLE) to three benchmarks:

1. Naive UCB [4] without considering contexts (thus a returned policy is stationary).
2. Tensor-decomposition methods [1, 41].
3. L-UCRL with spectral initialization [24].

Even when the theoretical conditions required for the success of tensor-decomposition or spectral
methods do not, in practice, standard tensor-decomposition technique by [1] serves as good initializa-
tion for the EM or L-UCRL algorithms. After estimating the LMAB B̂, we compute a heuristic policy
using Q-MDP [28] for B̂. We refer to the computed policy by Q-MDP [28] using the true LMAB
model B as the genie policy.
In the first experiment, we compare the performance of the aforementioned four alternatives. We
draw a random LMAB instance with M = 4, A = 20 using N = 5 · 104 sampled episodes, and
M = 7, A = 50 using N = 100000 episodes (Figure 1). We compare the averaged per time-step
rewards obtained with each policy with increasing length of episodes H .
When M = 4, all methods (except naive UCB) exhibit the same pattern of improved performance as
the algorithms access more data. As we generated instances to satisfy the full-rank condition, i.e.,
rank

(∑M
m=1 wmµmµ⊤

m

)
≈ 4, even pure tensor-decomposition method works well in practice in this

setting. However, when M = 7, pure tensor-decomposition method significantly under-performs
L-UCRL or ED+MLE. This demonstrates that for LMAB instances with rank degeneracy, additional
iteration steps with EM are necessary to get a good solution. Furthermore, the performance of
ED+MLE and of L-UCRL does not significantly drop in M = 7. This demonstrated that practically
it works much better than what can be guaranteed in theory in the worst case. We conjecture that this
is because the EM iteration converges to the MLE (even when converging to local optimums), and
MLE solutions in general show much better performance under some mild conditions. (e.g., with
Assumption E.1, or if random perturbations are applied to the underlying LMAB model [8]).
In our second experiment, we test the performance of the different methods while scanning different
control parameters. We first fix A = 50, H = 7, and change the number of contexts (left of Figure 2).
Since we keep generating instances satisfying rank

(∑M
m=1 wmµmµ⊤

m

)
≈ 4, tensor-based method

performs significantly worse as M increases. We then fix M = 5 and observe the performance gain by
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Figure 3: Nature of the problem depends on the length of episodes (H) and number of different contexts (M )

increasing the sample episodes (right of Figure 2). We see that the performance of both L-UCRL+EM
and our method (ED+MLE) approaches to that of genie as we increase N .
From both experiments, we conclude that, in practice, MLE based methods perform much better than
the worst case guarantee shown via method of moments. We believe it will be an interesting future
direction whether we can derive much better guarantees for MLE based solutions.

Appendix B Additional Preliminaries

B.1 Additional Related Work

Comparison of Regimes Nature of learning a near-optimal policy in LMABs might change de-
pending on the length of episodes H and the number of contexts M (recall Figure 3). For instance,
when H = 1 or M = 1, the problem of learning in LMAB is essentially equivalent to the classical
Multi-Armed Bandits problem that has been extensively studied in literature (e.g., see [26] and refer-
ences therein). In another well-studied literature of Bayesian learning, each episode is assumed to
have a structured prior over contexts (M → ∞, e.g., all expected rewards of arms are independently
sampled from beta conjugate priors). Depending on the length of time-horizon H , the problem can be
solved with Thompson Sampling (TS) [38] H → ∞, or the problem is reduced to learning the prior
[21]. When the time-horizon is sufficiently long but finite e.g., if H = Ω(A/γ2) for some separation
parameters between a finite number of contexts M < ∞, then it is possible cluster observations from
every episode. This setting has been studied in the literature of multitask RL which we describe
below.
In this work, we are particularly focused on the setting with a few contexts and relatively short episodes
(in comparison to A), i.e., M = O(1) and H = O(1), where the most natural objective is to learn a
near-optimal history-dependent policy.

Reward-Mixing MDPs Another closely related work is to learn an LMDP (MDP extension of
LMAB) with common state transition probabilities, and thus only the reward function changes
depending on latent contexts [23]. The authors in [23] have developed an efficient moment-matching
based algorithm to learn a near-optimal policy without any assumptions on separations or system
dynamics. However, it can only handle theM = 2 case with balanced mixing weightsw1 = w2 = 1/2.
It is currently not obvious how to extend their result to M ≥ 3 cases without incurring O(AM ) sample
complexity in LMABs.

Regime switching bandits LMAB may be also seen as a special type of adversarial or non-stationary
bandits (e.g., [5, 3, 13, 36]) with time steps being specified for when the underlying reward distributions
(i.e., latent contexts) may change. The standard objective in non-stationary bandits is to find the
best stationary policy in hindsight with unlimited possible contexts. Recently, [41] considered a
non-stationary bandit with a finite number of contexts M = O(1) and the objective of finding the
optimal history-dependent policy. Their setting and goal subsume our goal of learning the optimal
policy in LMABs; however, results in [41] require linear independence between reward probability
vectors, and thus their setting essentially falls into the category of tractable POMDPs with full-rank
observations.
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Multitask RL with explicit clustering We can cluster observations from each episode if we are given
sufficiently long time horizons H = Ω̃(A/γ2) in each episode [9, 14, 16]. Here, γ > 0 is the amount
of ‘separation’ between contexts such that for all m ̸= m′, maxa∈A ∥µm(a, ·) − µm′(a, ·)∥2 ≥ γ
where µm is a mean-reward vector of actions in the mth context. We focus on significantly more
general cases where there is no obvious way of clustering observations, e.g., when H ≪ A or µm

can be arbitrarily close to some other µm′ for m ̸= m′. If we are given a similar separation condition,
we also show that a polynomial sample complexity is achievable as long as H = Õ(M2/γ2) (see
also section E.2). Note that this could still be in H ≪ A regime with large number of actions A.

Miscellaneous There are other modeling approaches where multiple episodes proceed in parallel
without limits on the time-horizon [31, 14, 10, 17, 25]. In such problems, the goal is to quickly adapt
policies for individual episodes assuming certain similarities between tasks. In contrast, in episodic
LMAB settings, we assume that every episode starts in a sequential order, and our goal is to learn an
optimal history-dependent policy that can maximize rewards for a single episode with limited time
horizon.

B.2 Experimental Design

We now give a high-level overview on experimental design techniques used in this work. Suppose
we are given a matrix Φ ∈ Rd×k where d ≫ k. Define a distribution over the rows of Φ, ρ ∈ ∆d an
element in the d-dimensional simplex. We want to select a small subset of rows of Φ which minimizes
g(ρ) defined below:

G(ρ) =
∑
i∈[d]

ρ(i)Φi,:Φ
⊤
i,:, g(ρ) = max

i∈[d]
∥Φi,:∥2G(ρ)−1 , (10)

where Φi,: ∈ Rk be the ith row of Φ and G(ρ) ∈ Rk×k. To achieve this task we use results from the
experimental design literature. The following theorem shows the existence of ρ that minimizes g(ρ)
with a small support over the row indices of Φ:

Theorem B.1 (Theorem 4.4 in [27]) There exists a probability distribution ρ such that g(ρ) ≤ 2k

and |supp(ρ)| ≤ 4k log log k + 16. Furthermore, we can compute such ρ in time Õ(dk2).

As noted in [27], Theorem B.1 can be obtained from results of Chapter 3 in [39]. Using this funda-
mental theorem, [27] showed the following proposition:

Proposition B.2 (Proposition 4.5 in [27]) Let ρ be a distribution over the rows of Φ that satisfies
the condition of Theorem B.1. Suppose a vector µ ∈ Rd can be represented as a sum µ = v + ∆

where v ∈ V , ∥∆∥∞ ≤ ϵ0. Let η be any small noise with η ∈ [−ϵ1, ϵ1]
d. Then ∥Φθ̂ − µ∥∞ ≤

ϵ0 + (ϵ0 + ϵ1)
√
2k where

θ̂ = G(ρ)−1
∑
i∈[d]

ρ(i)(µ(i) + η(i))Φi,:. (11)

Crucially, we use Proposition B.2 to reduce the sample complexity in A.

B.3 Wasserstein Distance

We now give a brief overview on the Wasserstein distance and its applications in latent mixture models.
Wasserstein distance is a convenient error metric to measure the parameter distance between two
latent models {(wm, νm)}Mm=1 and {(ŵm, ν̂m)}Mm=1, where wm, ŵm are mixing probabilities and
νm, ν̂m are some parameters for individual contexts.
Wasserstein distance is defined as follows. Let ν be a finite-support distribution over {νm}Mm=1

with probabilities {wm}Mm=1, i.e., ν =
∑M

m=1 wmδνm
where δv is a Direc-delta distribution with a

single mass on v ∈ Rn. Similarly with parameters {(ŵm, ν̂m)}Mm=1, define an atomic distribution
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ν̂ =
∑

m ŵmδν̂m . We define a Wasserstein distance between ν and ν̂ with respect to l∞ norm as the
following:

W (ν, ν̂) := inf
Γ

E(m,m′)∼Γ [∥νm − ν̂m′∥∞] = inf
Γ

∑
(m,m′)∈[M ]2

Γ(m,m′) · ∥νm − ν̂m′∥∞,

where the infimum is taken over all couplings over joint distributions ν and ν̂ which are marginally
distributed as ν and ν̂ respectively (identical to (3)), i.e.,

Γ(m,m′) ∈ RM×M
+ :

M∑
m′=1

Γ(m,m′) = wm,

M∑
m=1

Γ(m,m′) = ŵm.

One nice property of Wasserstein metric is that the distance measure is invariant to permutation of
individual components, and flexible with arbitrarily small mixing probabilities or close parameters
for different contexts [40, 12].

Appendix C Proofs for Section 3

C.1 Proof of Lemma 3.1

Let {βj}kj=1 ⊆ Rd be orthonormal basis of a k-dimensional subspace U. Let Φ ∈ Rd×k be a matrix
of form [β1 β2 ... βk], i.e., the jth column of Φ is βj . We need to show the existence of a small
set of core coordinates, from which we can reconstruct µ ∈ U.
Proposition B.2 implies that we can find a set of coordinates {ij}nj=1 with cardinality at most n =
4d log log d+ 16, such that if µ ∈ U and we can access the vector [µ(i1), . . . , µ(in)] up to accuracy
ϵ1, then we can reconstruct µ up to ϵ1

√
2k error. We can also infer that for any µ ∈ U, we have

Φθ = µ where θ is given by G(ρ)−1
∑

i∈[d] ρ(i)µ(i)ai.

To conclude Lemma 3.1, suppose we find µ̂ ∈ U such that |µ(ij)− µ̂(ij)| ≤ ϵ0 for all j ∈ [n]. Let η
be such that η(i) = µ(i)− µ̂(i) if i ∈ {ij}nj=1, and η(i) = 0 otherwise. Applying Proposition B.2
with ∆ = 0 and η be as defined above, with µ̂ = Φθ̂, we have ∥µ̂− µ∥∞ ≤ ϵ0

√
2k.

C.2 Proof of Corollary 3.2

Let {βm}Mm=1 ⊆ RAZ be orthonormal basis of a M -dimensional subspace that includes U =
span({µm}Mm=1). Then by Lemma 3.1, we have

max
a∈A

∥µm(a, ·)− µ̂m(a, ·)∥1 = max
a∈A

∑
z∈Z

|µm(a, z)− µ̂m(a, z)|

≤ 2Z
√
2M max

j∈[n]
|µm(aj , zj)− µ̂m(aj , zj)|,

with a set of core action-value pairs {(aj , zj)}nj=1. Plugging vm(j) = µm(aj , zj) and ν̂m(j) =
µ̂m(aj , zj) gives Corollary 3.2.

Remark C.1 (Eliminating factor Z for H ≥ M ) Instead of core action-value pairs, we can also
define core action-event pairs to save a factor of Z. For instance, define a basis {β̃m}Mm=1 in a lifted
space RA×2Z defined as the following:

β̃m(a, S) :=
∑
z∈S

βm(a, z), ∀a ∈ A, S ⊆ Z.

For each µm, define ϕm:

ϕm(a, S) :=
∑
z∈S

µm(a, z), ∀a ∈ A, S ⊆ Z. (12)
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By definition, span({ϕm}Mm=1) ⊆ span({β̃m}Mm=1). Since 1
2∥µm(a, ·) − µ̂m(a, ·)∥1 =

maxS⊆Z |ϕm(a, S)−ϕ̂m(a, S)|, it follows from Lemma 3.1 that we can find a set of core action-events
{(aj ,Zj)}nj=1 of size at most n = 4M log logM + 16 such that for any ϕm, ϕ̂m ∈ V , we have

∥ϕm − ϕ̂m∥∞ ≤
√
2M ·max

j∈[n]
|ϕm(aj ,Zj)− ϕ̂m(aj ,Zj)|.

This approach enables to approximate reward distributions in l1 statistical distance, and thus we can
save a factor of Z in subsequent analysis. However, it comes with exponentially more expensive (in
Z) computations for finding the core set.

C.3 Proof of Lemma 3.3

To prove this result, we use the recent results on converting closeness in higher-order moments to
closeness in Wasserstein distances for atomic distributions [40, 12]. A key result in [40] states a
connection between moments and Wasserstein distance in one-dimensional case:

Theorem C.2 (Proposition 1 in [40]) If n = 1 and
∣∣∣∑M

m=1 wmνdm −
∑M

m=1 ŵmν̂dm

∣∣∣ < δ for all
d = 1, 2, ..., 2M − 1, then

W (γ, γ̂) ≤ O
(
Mδ1/(2M−1)

)
.

Theorem C.2, which holds for 1-dimensional mixtures–can be generalized to the high-dimensional
case, as the following theorem shows.

Theorem C.3 For n ≥ 2, if
∥∥∥∑M

m=1 wmνdm −
∑M

m=1 ŵmν̂dm

∥∥∥
∞

< δ for all d = 1, 2, ..., 2M − 1,
then

W (γ, γ̂) ≤ O
(
M3n · δ1/(2M−1)

)
.

Proof. The idea follows the proof of Lemma 3.1 in [12]. Suppose a standard Gaussian random
variable θ ∼ N (0, I) in Rn. For any x ∈ Rn, anti-concentration of Normal distribution says

P(|θ⊤x| ≤ τ∥x∥2) ≤ τ,

for any τ > 0. By union bound and the fact that ∥x∥2 ≥ ∥x∥∞, if we define X = {v − v̂|v ∈
{νm}Mm=1, v̂ ∈ {ν̂m}Mm=1}, then we have

P(|θ⊤x| ≤ τ∥x∥∞) ≤ M2τ, ∀x ∈ X .

Also with high probability, we have P(∥θ∥1 ≥ 2n) ≤ nEt∼N(0,1)[|t|]
2n < 1/2 by Markov inequality.

Thus,

P

(
θ⊤x

∥θ∥1
>

τ

2n
∥x∥∞

)
> 1/2−M2τ.

By setting τ = M2/2, this probabilistic argument implies that there exists θ ∈ Rn with a unit L1

norm, ∥θ∥1 = 1, such that for all x ∈ X , we have ∥x∥∞ ≤ 4M2n|θ⊤x|. Using this θ, we have
W (γ, γ̂) = inf

Γ
{E(m,m′)∼Γ [∥νm − ν̂m′∥∞]} ≤ 4M2n · inf

Γ
{E(m,m′)∼Γ[|θ⊤(νm − ν̂m′)|]}. (13)

On the other hand, consider 1-dimensional M -atomic distributions γθ :=
∑M

m=1 wmδθ⊤νm
and

γ̂θ :=
∑M

m=1 ŵmδθ⊤ν̂m
. Then by Cauchy-Schwartz inequality∣∣∣∣∣

M∑
m=1

wm(θ⊤νm)d −
M∑

m=1

ŵm(θ⊤ν̂m)d

∣∣∣∣∣ ≤ ∥θ∥d1

∥∥∥∥∥
M∑

m=1

wmν
⊗

d
m −

M∑
m=1

ŵmν̂
⊗

d
m

∥∥∥∥∥
∞

≤ δ,

for all d = 1, 2, ..., 2M − 1. Since γθ, γ̂θ are 1-dimensional atomic distributions, by Theorem C.2,

W (γθ, γ̂θ) := inf
Γ
{E(m,m′)∼Γ[|(θ⊤νm)− (θ⊤ν̂m′)|]} ≤ O

(
Mδ1/(2M−1)

)
.

Note that any coupling over νθ, ν̂θ can be converted to a coupling over ν, ν̂ and vice versa. Plugging
the above result into (13), we have the theorem. □

With the above theorems, if we set δ < (ϵ/(M3n))2M−1, we have W (γ, γ̂) ≤ O(ϵ).
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C.4 Proof of Proposition 3.4

First note that the difference in expected values of a policy is bounded by total variation distance
between trajectory distribution:
|V (π)− V̂ (π)|

≤ H ·
∑

r1:H∈RH ,

a1:H∈AH

|Pπ(r1:H , a1:H)− P̂π(r1:H , a1:H)|

≤ H
∑

r1:H ,a1:H

∣∣∣∣∣
M∑

m=1

wmΠH
t=1µm(at, rt)−

M∑
m=1

ŵmΠH
t=1µ̂m(at, rt)

∣∣∣∣∣ ·ΠH
t=1π(at|a1:t−1, r1:t−1).

Now we only need to focusing on total variation distance bound. Fron this point, when we sum over
sequences, we sum over all possible sequences if not specified. With a slight abuse in notation, we
use a compact notation for probability of action sequences:

π(a1:t|r1:t−1) := Πt
t′=1π(at′ |r1:t′−1, a1:t′−1). (14)

First, suppose any coupling Γ between contexts m and m′ in two systems, and we can write∑
r1:H ,a1:H

∣∣∣∣∣
M∑

m=1

wmΠH
t=1µm(at, rt)−

M∑
m=1

ŵmΠH
t=1µ̂m(at, rt)

∣∣∣∣∣ · π(a1:H |r1:H−1)

≤
∑

r1:H ,a1:H

π(a1:H |r1:H−1)
∑

(m,m′)

Γ(m,m′)
∣∣ΠH

t=1µm(at, rt)−ΠH
t=1µ̂m′(at, rt)

∣∣ ,
where the inequality holds by the triangle inequality. Now we can proceed as∑
(m,m′)

Γ(m,m′)
∑

r1:H ,a1:H

π(a1:H |r1:H−1)
∣∣ΠH

t=1µm(at, rt)−ΠH
t=1µ̂m′(at, rt)

∣∣
≤

∑
(m,m′)

Γ(m,m′) ·

( ∑
r1:H−1,a1:H

π(a1:H |r1:H−1) ·ΠH−1
t=1 µm(at, rt)

∑
rH

|µm(rH ; aH)− µ̂m′(aH , rH)|

+
∑

r1:H−1,a1:H

π(a1:H |r1:H−1) ·
∣∣ΠH−1

t=1 µm(at, rt)−ΠH−1
t=1 µ̂m′(at, rt)

∣∣ ·∑
rH

|µ̂m′(aH , rH)|

)
,

where we used triangle inequality at the t = H time step. Note that
∑

rH
|µm(aH , rH) −

µ̂m(aH , rH)| = ∥µ(aH , ·)− µ̂m(aH , ·)∥1. Thus, we can bound the first term by∑
r1:H−1,a1:H

π(a1:H |r1:H−1) ·ΠH−1
t=1 µm(at, rt)

∑
rH

|µm(aH , rH)− µ̂m′(aH , rH)|

≤ max
a∈A

∥µm(a, ·)− µ̂m′(a, ·)∥1.

where we summed over all probabilities over sequences where we used the fact that∑
r1:H−1,a1:H

π(a1:H |r1:H−1) ·ΠH−1
t=1 µm(at, rt) =

∑
r1:H−1,a1:H

Pπ
m(r1:H−1, a1:H) = 1.

For the second term, we observe that∑
r1:H−1,a1:H

π(a1:H |r1:H−1)
∣∣ΠH−1

t=1 µm(at, rt)−ΠH−1
t=1 µm′(at, rt)

∣∣∑
rH

|µ̂m′(aH , rH)|

=
∑

r1:H−1,a1:H−1

π(a1:H−1|r1:H−2)
∣∣ΠH−1

t=1 µm(at, rt)−ΠH−1
t=1 µ̂m′(at, rt)

∣∣ .
since

∑
rH

µ̂m′(a, rH) = 1 for any a. From here, we can apply the same decomposition which we
used at t = H level, and apply the same argument recursively until t = 1. That gives for any coupling
Γ, ∑

r1:H ,a1:H

∣∣∣∣∣
M∑

m=1

wmΠH
t=1µm(at, rt)−

M∑
m=1

ŵmΠH
t=1µ̂m(at, rt)

∣∣∣∣∣ · π(a1:H |r1:H−1)
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≤ H ·
∑

(m,m′)

Γ(m,m′)max
a∈A

∥µm(a, ·)− µ̂m′(a, ·)∥1.

Since the inequality holds for all valid couplings Γ(m,m′) such that∑
m

Γ(m,m′) = ŵm′ , and,
∑
m′

Γ(m,m′) = wm,

we can take the infimum over Γ, and conclude that

|V (π)− V̂ (π)| ≤ H2 · inf
Γ

∑
(m,m′)

Γ(m,m′)max
a∈A

∥µm(a, ·)− µ̂m′(a, ·)∥1.

C.5 Proof of Lemma 3.5

In order to bound difference between expected long-term rewards for a fixed history-dependent
policy π, it is sufficient to bound the difference in distributions of observations following π. We
first explicitly write down total variation distance between observations from {(wm, µm)}Mm=1 and
{(ŵm, µ̂m)}Mm=1:∑

r1:H ,a1:H

|Pπ(r1:H , a1:H)− P̂π(r1:H , a1:H)|

=
∑

r1:H ,a1:H

∣∣∣∣∣
M∑

m=1

wmΠH
t=1µm(at, rt)−

M∑
m=1

ŵmΠH
t=1µ̂m(at, rt)

∣∣∣∣∣π(a1:H |r1:H−1)

≤ δ
∑

r1:H ,a1:H

ΠH
t=1π(at|a1:t−1, r1:t−1) = ZH · δ,

where π(a1:H |r1:H−1) is as defined in (14), in the first inequality we used the condition
∥
∑M

m=1 wmµ
⊗

H
m −

∑M
m=1 ŵmµ̂

⊗
H

m ∥∞ ≤ δ, and the last inequality follows from that:∑
r1:H ,a1:H

π(a1:H |r1:H−1) =
∑
r1:H

∑
a1:H

ΠH
t=1π(at|a1:t−1, r1:t−1)

=
∑

r1:H∈RH

∑
a1:H−1∈AH−1

ΠH−1
t=1 π(at|a1:t−1, r1:t−1)

∑
aH∈A

π(aH |a1:H−1, r1:H−1)

=
∑

r1:H∈RH

∑
a1:H−1∈AH−1

ΠH−1
t=1 π(at|a1:t−1, r1:t−1) = ... =

∑
r1:H∈RH

1 = ZH .

Now the difference in expected rewards follows as

|f(π)− f̂(π)| ≤ H ·
∑

r1:H ,a1:H

|Pπ(r1:H , a1:H)− P̂π(r1:H , a1:H)| ≤ HZH · δ.

C.6 Proof of Proposition 3.6

To show this result, we first express each coordinate of µm in terms of νm. That is, for all (a, z) ∈
A× Z , using Proposition B.2, by setting η = 0 we can express µm as

µm = Tνm,

for some linear mapping T ∈ RAZ×n (see Section C.8.1 for details on T ). Furthermore, from the
conclusion of Proposition B.2 which implies the robustness of µm against the perturbation of νm in
l∞ norm, we can infer that every row of T has l1 norm bounded by

√
2M , i.e., ∥T(a,z),:∥1 ≤

√
2M

for all (a, z) ∈ A× Z .

To bound ∥
∑M

m=1 wmµ
⊗

l
m −

∑M
m=1 ŵmµ̂

⊗
l

m ∥∞, we only need to check one entry of tensors at any
position ((a1, z1), ..., (al, zl)) and all other entries are bounded in a similar fashion. We first check
that

M∑
m=1

wm ·Πl
i=1µm(ai, zi)−

M∑
m=1

ŵm ·Πl
i=1µ̂m(ai, zi)
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=

M∑
m=1

wm ·Πl
i=1

 n∑
j=1

νm(j)T(ai,zi),j

−
M∑

m=1

ŵm ·Πl
i=1

 n∑
j=1

ν̂m(j)T(ai,zi),j

 ,

Unfolding the product expression over i for the original parameter part ν,
M∑

m=1

wm ·Πl
i=1

 n∑
j=1

νm(j)T(ai,zi),j

 =

M∑
m=1

wm

∑
(j1,j2,...,jl)∈[n]l

Πl
k=1νm(jk) ·Πl

k=1T(ak,zk),jk

=
∑

(j1,j2,...,jl)∈[n]l

Πl
k=1T(ak,zk),jk ·

M∑
m=1

wmΠl
k=1νm(jk).

Plugging this expression, we conclude the proof:∣∣∣∣∣
M∑

m=1

wm ·Πl
i=1µm(ai, zi)−

M∑
m=1

ŵm ·Πl
i=1µ̂m(ai, zi)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
(j1,j2,...,jl)∈[n]l

Πl
k=1T(ak,zk),jk ·

(
M∑

m=1

wmΠl
k=1νm(jk)−

M∑
m=1

ŵmΠl
k=1ν̂m(jk)

)∣∣∣∣∣
≤ δ ·

∑
(j1,j2,...,jl)∈[n]l

∣∣∣∣∣Πl
k=1T(ak,zk),jk

∣∣∣∣∣ = δ ·Πl
k=1

 n∑
j=1

|T(ak,zk),j |

 ≤ δ(2M)l/2,

which is what we needed to show.

C.7 Proof of Lemma 3.7

For each episode k where k ∈ [N0], let the first and second actions be ak1 , a
k
2 ∼ Unif(A), and let

rk1 , r
k
2 be the corresponding reward feedback. We construct an empirical second-order moments M̂2

such that M̂2(i, j) is the mean of r1 · r2 when ak1 = ai, a
k
2 = aj . Specifically, we construct M̂2 as

the following:

M̂2 =
1

2N0

N0∑
k=1

e(ak
1 ,r

k
1 )

· e⊤(ak
2 ,r

k
2 )

+ e(ak
2 ,r

k
2 )

· e⊤(ak
1 ,r

k
1 )
, (15)

where e(ak
t ,r

k
t )

is a standard basis vector in RAZ with 1 at position (akt , r
k
t ). The argument follows

from a rather standard concentration argument for dimensionality reduction (e.g., Lemma 3.5 in
[12]). Let δ = ∥M2 − M̂2∥2. With standard measure of concentration arguments, we can show that
∥M2 − M̂2∥∞ < C ·

√
A2 log(AZ/η)/N0 with probability at least 1 − η, which is translated to

δ ≤ C ·
√

A4Z2 log(AZ/η)
N0

for some universal constant C > 0.

Let PU be the orthogonal projector onto the top-M eigenspace of M2 and P⊥
U = I − PU. We can

also define similar quantities from the empirical estimate M̂2. Let PÛ similarly be the orthogonal
projector onto the top-M eigenspace of M̂2, and let PÛ⊥ = I − PÛ. By Weyl’s theorem, we have
λM+1(M̂2) ≤ δ since rank(M2) is M . Our goal is to bound

∥µm − PÛµm∥22 = ∥PÛ⊥µm∥22 = max
y∈Range(Û⊥)∩SAZ−1

(y⊤µm)2.

for any m ∈ [M ]. Let y be the vector maximizing the above. Since wmµmµ⊤
m ⪯ M2 and since y

belongs to the eigenspace of ranks lower than M ,

wmy⊤µmµ⊤
my ≤ y⊤M2y = y⊤(M2 − M̂2)y + y⊤M̂2y ≤ ∥M2 − M̂2∥2 + δ ≤ 2δ.

We have shown that ∥µm − Ûµm∥2 ≤
√
2δ/wm. Thus we need δ := O(δ2sub) to bound the l2 error

by δsub/w
1/2
m . Thus N0 = O

(
Z2A4 log(AZ/η)/δ4sub

)
samples are sufficient for the estimation of

the subspace U. Note that we have not optimized for the polynomial factors which can be improved
by more tightly bounding δ = ∥M2 − M̂2∥2 from N0 samples.
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C.8 Deferred Details of Theorem 3.8

The proof of Theorem 3.8 follows by collecting the results from the preceding lemmas for subspace
estimation (Lemma 3.7) and results from Section 3.2 and 3.3. Before we get into the proof, let us
describe some details about finding a set of core action-value pairs, and how to recover the original
model parameters {µm}Mm=1 from {νm}Mm=1.

C.8.1 Detailed Procedures for Experimental Design

Step 1. Subspace estimation We first find the set of core action-value pairs {(aj , zj)}nj=1 following
the same procedure in Corollary 3.2. By Lemma 3.7, for every µm, we have

µm +∆m ∈ Û,

where ∥∆m∥∞ ≤ δsub/w
1/2
m .

Step 2. Pick core action-event pairs Let {β̂j}Mj=1 be the orthonormal basis of Û. We can use this
basis as input to Corollary 3.2 to get a set of (approximate) core action-event pairs. Specifically, let
Φ̂ ∈ RAZ×M be a feature matrix where each jth column Φ̂:,j is given as:

Φ̂:,j(a, z) := β̂j(a, z), ∀a ∈ A, z ∈ Z. (16)

After invoking Theorem B.1 with supplying Φ̂ as input, we use the support of ρ as the set of core
action-value pairs {(aj , zj)}nj=1. Let Ĝ(ρ) be defined as in equation (10). Note that with too small
mixing weights wm, we can instead use ∆m = −µm with ∥∆m∥∞ ≤ 1.

Step 3. Search constraints for moment-matching After finding a core action-event pairs
{(aj , zj)}nj=1 as in Corollary 3.2, we estimate νm from higher-order tensors {T̂l}min(H,2M−1)

l=1 . When
searching parameters for {(ŵm, ν̂m)}Mm=1, we can put constraints to ensure that ŵm and ν̂m belong
to a set of valid parameters for all m ∈ [M ]:

M∑
m=1

ŵm = 1, wmin ≤ ŵm, 0 ⪯ ν̂m ⪯ 1,∣∣∣∣∣∑
z∈Z

(T̂ ν̂m)(a, z)− 1

∣∣∣∣∣ ≤ −2Z
√
Mδsub/ŵ

1/2
m ,

−2
√
Mδsub/ŵ

1/2
m ⪯ T̂ ν̂m ⪯ 1 + 2

√
Mδsub/ŵ

1/2
m , ∀m ∈ [M ], a ∈ A, (17)

where ⪯ is an element-wise inequality. That is, we want that v̂m = T̂ ν̂m is not too far from µ̂m after
clipping and normalization. Without loss of generality, we assume that a rough estimate of wmin

is known in advance (otherwise, we can repeat the same procedure with geometrically decreasing
estimates of wmin, e.g., 1/M, 1/2M, 1/4M, ..., 1/MO(min(M,H)), and pick the best returned policy).
A solution satisfying all constraints is guaranteed to exist since the true model {(wm, νm)}Mm=1 also
satisfies constraints.

Step 4. Recovery of parameters Let µ̂m be computed by (11) using ν̂m and Φ̂, i.e., let T̂ ∈ RAZ×n

be defined as
T̂:,j := ρ(aj , zj)Φ̂Ĝ(ρ)−1Φ̂(aj ,zj),: ∀j ∈ [n]. (18)

We let vm = T̂ νm, v̂m = T̂ ν̂m. We recover µ̂m from v̂m = T̂ ν̂m as
µ̃m := clip(v̂m, 0, 1),

µ̂m(a, z) :=
µ̃m(a, z)∑

z′∈Z µ̃m(a, z′)
, ∀a ∈ A, z ∈ Z. (19)

A simple algebra can show that the normalized estimates of µ̂m are close to µm. Specifically, we
show the following with Proposition B.2:

∥µm − v̂m∥∞ ≤ ∥∆m∥∞ + (∥∆m∥∞ +max
j∈[n]

|µm(aj , zj)− µ̂m(aj , zj)|) ·
√
2M

≤ ∥∆m∥∞ + (∥∆m∥∞ + ∥νm − ν̂m∥∞) ·
√
2M.
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C.8.2 Proof of Theorem 3.8, Case I: H ≥ 2M − 1

We search the empirical parameters {(ŵm, ν̂m)}Mm=1) over the set (17). After finding ŵm, ν̂m that
satisfy the moment matching condition (7), we recover µ̂m from v̂m = T̂ ν̂m after clipping and
normalization (19). Then we first observe that for any a ∈ A,

∥µm(a, ·)− µ̃m(a, ·)∥1 ≤
∑
z∈Z

|µm(a, z)− v̂m(a, z)| ≤ Zmax
z∈Z

|µm(a, z)− v̂m(a, z)|,

where in the first inequality, we used the fact that clipping can only improve the l1 error. Then, errors
from the normalization can be bounded as

∥µm(a, ·)− µ̂m(a, ·)∥1 ≤ ∥µm(a, ·)− µ̃m(a, ·)∥1 + ∥µ̃m(a, ·)− µ̂m(a, ·)∥1
= ∥µm(a, ·)− µ̃m(a, ·)∥1 + |∥µ̃m(a, ·)∥1 − 1|
≤ 2∥µm(a, ·)− µ̃m(a, ·)∥1
≤ 2Zmax

z∈Z
|µm(a, z)− v̂m(a, z)|

≤ 2Z
(
∥∆m∥∞ + (∥∆m∥∞ + ∥νm − ν̂m∥∞)

√
2M
)
.

The second line holds since

∥µ̃m(a, ·)− µ̂m(a, ·)∥1 =
∑
z∈Z

∣∣∣∣µ̃m(a, z)− µ̃m(a, z)∑
z∈Z µ̃m(a, z)

∣∣∣∣
=

∣∣∣∣1− 1∑
z∈Z µ̃m(a, z)

∣∣∣∣ ·∑
z∈Z

|µ̃m(a, z)|

=

∣∣∣∣∣∑
z∈Z

µ̃m(a, z)−
∑

z∈Z µ̃m(a, z)∑
z∈Z µ̃m(a, z)

∣∣∣∣∣ = |∥µ̃m(a, z)∥1 − 1|.

where the third relation holds since
∑

z∈Z |µ̃m(a, z)| /
∣∣∑

z∈Z µ̃m(a, z)
∣∣ = 1 since µ̃m(a, z) ≥ 0.

By the choice of δsub, we have ∥∆m∥∞ ≤ δsub/w
1/2
m ≤ ϵ/(2ZMH2w

1/2
m ). Now we can call

Proposition 3.4, and proceed as

|V (π)− V̂ (π)| ≤ H2 · inf
Γ

∑
(m,m′)∈[M ]2

(
Γ(m,m′) ·max

a∈A
∥µm(a, ·)− µ̂m′(a, ·)∥1

)
≤ 2ZH2 · inf

Γ

∑
(m,m′)∈[M ]2

Γ(m,m′) ·
(√

M/wm · ϵ/(2ZMH2) +
√
2M · ∥νm − ν̂m′∥∞

)

≤ 2ZH2 ·

 ∑
m∈[M ]

wm ·
√
M/wm · ϵ/(2ZMH2) +

√
2M ·W (γ, γ̂)


≤ 2ZH2 ·

(
ϵ/(2H2) + 2

√
2M ·W (γ, γ̂)

)
,

where in the last inequality, we used Cauchy-Schwartz inequality
∑M

m=1

√
wm ≤

√
M . Hence if

we have 2ZH2
√
2MW (γ, γ̂) ≤ ϵ, which is given by the choice of δsub and Lemma 3.3, we have

|V (π)− V̂ (π)| ≤ O(ϵ).

C.8.3 Proof of Theorem 3.8, Case II: H < 2M − 1

If H < 2M − 1, we start by observing that for any 0 ⪯ ν̂m ⪯ 1, using Proposition B.2 and setting
µ = 0, ϵ0 = 0, η = νm and ϵ1 = 1, we have −

√
2M ⪯ T̂ ν̂m ⪯

√
2M .

To exploit the moment-closeness property, we define an auxiliary model {(wm, vm)}Mm=1 where
vm := T̂ νm. Similarly to H ≥ 2M − 1 case, for any a ∈ A, we have that

∥vm(a, ·)− µm(a, ·)∥1 ≤ 2Z∥∆m∥∞(1 +
√
2M) ≤ Z

√
2Mδsub/w

1/2
m . (20)
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We also have that

∥vm(a, ·)∥1 ≤ min
(
Z
√
2Mδsub/w

1/2
m , Z

√
2M
)
. (21)

Let v̂m = T̂ ν̂m and µ̂m be defined as in (19). Recall our goal to bound

V (π)− V̂ (π) =
∑

a1:H ,r1:H

(
H∑
t=1

rt

)(
M∑

m=1

wmΠH
t=1µm(at, rt)−

M∑
m=1

ŵmΠH
t=1µ̂m(at, rt)

)
π(a1:H |r1:H−1).

Define auxiliary value functions Vaux(π) and V̂aux(π) as

Vaux(π) :=
∑

a1:H ,r1:H

(
H∑
t=1

rt

)
M∑

m=1

wmΠH
t=1vm(at, rt)π(a1:H |r1:H−1),

V̂aux(π) :=
∑

a1:H ,r1:H

(
H∑
t=1

rt

)
M∑

m=1

ŵmΠH
t=1v̂m(at, rt)π(a1:H |r1:H−1),

Then |V (π)− V̂ (π)| ≤ |V (π)− Vaux(π)|+ |Vaux(π)− V̂aux(π)|+ |V̂aux(π)− V̂ (π)|. We bound
each term separately.

Term I. |V (π)− Vaux(π)| : This is less than

|V (π)− Vaux(π)| =

∣∣∣∣∣ ∑
a1:H ,r1:H

(
H∑
t=1

rt

)
M∑

m=1

wm

(
ΠH

t=1µm(at, rt)−ΠH
t=1vm(at, rt)

)
π(a1:H |r1:H−1)

∣∣∣∣∣
≤ H ·

∑
a1:H ,r1:H

∣∣∣∣∣
M∑

m=1

wm

(
ΠH

t=1µm(at, rt)−ΠH
t=1vm(at, rt)

)
π(a1:H |r1:H−1)

∣∣∣∣∣
≤ H ·

∑
a1:H−1,r1:H−1

M∑
m=1

wm

∣∣ΠH−1
t=1 µm(at, rt)−ΠH−1

t=1 vm(at, rt)
∣∣ ∑
aH ,rH

|vm(aH , rH)|π(a1:H |r1:H−1)

+H ·
∑

a1:H−1,r1:H−1

M∑
m=1

wmΠH−1
t=1 µm(at, rt)

∑
aH ,rH

|µm(aH , rH)− vm(aH , rH)|π(a1:H |r1:H−1)

≤ H

M∑
m=1

wm max
a∈A

∥vm(a, ·)∥1 ·
∑

a1:H−1,r1:H−1

∣∣ΠH−1
t=1 µm(at, rt)−ΠH−1

t=1 vm(at, rt)
∣∣π(a1:H−1|r1:H−2)

+H
M∑

m=1

wm max
a∈A

∥µm(a, ·)− vm(a, ·)∥1 ·
∑

a1:H−1,r1:H−1

ΠH−1
t=1 µm(at, rt)π(a1:H |r1:H−1).

For the second term, we have∣∣∣∣∣∣
∑

a1:H−1,r1:H−1

ΠH−1
t=1 µm(at, rt)π(a1:H |r1:H−1)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
a1:H−1,r1:H−1

Pm(a1:H−1, r1:H−1)

∣∣∣∣∣∣ = 1

for all m ∈ [M ]. For the first term, we can recursively apply the same inequality until the time step
reaches to t = 1. Applying this recursively,

|V (π)− Vaux(π)| ≤ H2 ·
M∑

m=1

wm

(
max
a∈A

∥vm(a, ·)∥1
)H−1

·max
a∈A

∥µm(a, ·)− vm(a, ·)∥1.

To bound the above, we first consider the case when wm ≥ ϵ
H2M(Z

√
2M)H

. Note that if wmin ≥
ϵ

H2M(Z
√
2M)H

, then this is always the case. In this case, for every a ∈ A, we have (recall (20))

max
a∈A

∥µm(a, ·)− vm(a, ·)∥1 ≤ 2
√
MZδsub/w

1/2
m ≤ ϵ

H2
√
Mwm

,
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max
a∈A

∥vm(a, ·)∥1 ≤ 1 + max
a∈A

∥vm(a, ·)− µm(a, ·)∥1

≤ 1 + 2
√
MZδsub/w

1/2
m ≤ 1 + 1/H,

where we use our choice of δsub in (5). By the second condition,

(max
a∈A

∥vm(a, ·)∥1)H−1 ≤ (1 + 1/H)H−1 ≤ e.

The first condition can be combined with Proposition B.2 similarly to the H ≥ 2M − 1 case to get

H2
∑

m:wm≥ ϵ

H2M(Z
√

2M)H

wm

(
max
a∈A

∥vm(a, ·)∥1
)H−1

max
a∈A

∥µm(a, ·)− vm(a, ·)∥1

≤ e

M∑
m=1

√
wm/Mϵ ≤ O(ϵ).

On the other hand, if wm < ϵ
H2M(Z

√
2M)H

, then we can directly bound as

H2
∑

m:wm< ϵ

H2M(Z
√

2M)H

wm

(
max
a∈A

∥vm(a, ·)∥1
)H−1

max
a∈A

∥µm(a, ·)− vm(a, ·)∥1

≤ ϵ

M

M∑
m=1

1

(Z
√
2M)H

(Z
√
2M)H ≤ O(ϵ).

Thus, we have |V (π)− Vaux(π)| ≤ O(ϵ).

Term II. |Vaux(π)− V̂aux(π)| : We use the moment-closeness properties between vm and v̂m given
similarly to Lemma 3.6.

Lemma C.4 For any given degree l ≥ 1, if ∥
∑M

m=1 wmν
⊗

l
m −

∑M
m=1 ŵmν̂

⊗
l

m ∥∞ ≤ δ, then vm
and v̂m satisfy ∥∥∥∥∥

M∑
m=1

wmv
⊗

l
m −

M∑
m=1

ŵmv̂
⊗

l
m

∥∥∥∥∥
∞

≤ (2M)l/2 · δ.

Proof. Note that ∥
∑M

m=1 wm(T̂ νm)
⊗

l −
∑M

m=1 ŵm(T̂ ν̂m)
⊗

l∥∞ ≤ (2M)l/2δ, following the
same argument in Appendix C.6: the conclusion of Proposition B.2 also implies that the l1 norm of
every row in T̂ is less than

√
2M , i.e.,

∥T̂(a,z),:∥1 ≤
√
2M, ∀(a, z) ∈ A× Z, (22)

Lemma follows since vm is a vector consisting of partial coordinates of T̂ νm. □

Now we proceed as

|Vaux(π)− V̂aux(π)| =

∣∣∣∣∣ ∑
a1:H ,r1:H

(
H∑
t=1

rt

)(
M∑

m=1

wmΠH
t=1vm(at, rt)−

M∑
m=1

ŵmΠH
t=1v̂m(at, rt)

)
π(a1:H |r1:H−1)

∣∣∣∣∣
≤ H ·

∑
a1:H ,r1:H

∣∣∣∣∣
M∑

m=1

wmΠH
t=1vm(at, rt)−

M∑
m=1

ŵmΠH
t=1v̂m(at, rt)

∣∣∣∣∣π(a1:H |r1:H−1)

≤ HZH(2M)H/2δtsr.

Choice of δtsr = (ϵ/H)/(
√
2MZ)H for H < 2M − 1 gives |Vaux(π)− V̂aux(π)| = O(ϵ).
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Term III. |V̂aux(π)− V̂ (π)| : This case is almost similar to the case |V (π)− Vaux(π)|.

|V̂ (π)− V̂aux(π)| =

∣∣∣∣∣ ∑
a1:H ,r1:H

(
H∑
t=1

rt

)
M∑

m=1

v̂m
(
ΠH

t=1µ̂m(at, rt)−ΠH
t=1µ̂m(at, rt)

)
π(a1:H |r1:H−1)

∣∣∣∣∣
≤ H ·

∑
a1:H ,r1:H

∣∣∣∣∣
M∑

m=1

ŵm

(
ΠH

t=1v̂m(at, rt)−ΠH
t=1µ̂m(at, rt)

)
π(a1:H |r1:H−1)

∣∣∣∣∣
≤ H ·

∑
a1:H−1,r1:H−1

M∑
m=1

ŵm

∣∣ΠH−1
t=1 v̂m(at, rt)−ΠH−1

t=1 µ̂m(at, rt)
∣∣ ∑
aH ,rH

|v̂m(aH , rH)|π(a1:H |r1:H−1)

+H ·
∑

a1:H−1,r1:H−1

M∑
m=1

ŵmΠH−1
t=1 µ̂m(at, rt)

∑
aH ,rH

|µ̂m(aH , rH)− v̂m(aH , rH)|π(a1:H |r1:H−1)

≤ H ·
∑

a1:H−1,r1:H−1

M∑
m=1

ŵm max
a∈A

∥v̂m(a, ·)∥1
∣∣ΠH−1

t=1 µ̂m(at, rt)−ΠH−1
t=1 v̂m(at, rt)

∣∣π(a1:H−1|r1:H−2)

+H
M∑

m=1

ŵm max
a∈A

∥µ̂m(a, ·)− v̂m(a, ·)∥1
∑

a1:H−1,r1:H−1

ΠH−1
t=1 µ̂m(at, rt)π(a1:H |r1:H−1)

≤ H2 ·

(
M∑

m=1

ŵm

(
max
a∈A

∥v̂m(a, ·)∥1
)H−1

·max
a∈A

∥µ̂m(a, ·)− v̂m(a, ·)∥1

)
.

For each m ∈ [M ], if ŵm ≥ ϵ
H2M(Z

√
2M)H

, then

∥v̂m(a, ·)∥1 ≤

∣∣∣∣∣∣
∑

z:v̂m(a,z)<0

v̂m(a, z)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
z:v̂m(a,z)>0

v̂m(a, z)

∣∣∣∣∣∣
≤ 1 + 2Z

√
Mδsub/ŵ

1/2
m ≤ 1 + 1/H,

where we used the choice of δsub in (5). We also need to show that ∥v̂m(a, ·)− µ̂m(a, ·)∥1 is bounded.
Let µ̃m be the intermediate step after clipping v̂m before normalization as in 19. Due to the third
condition of (17), clipped amount can be at most

∥v̂m(a, ·)− µ̃m(a, ·)∥1 ≤ 2Z
√
Mδsub/ŵ

1/2
m .

With the second condition of (17), we have

∥µ̃m(a, ·)∥1 =
∑
z∈Z

µ̃m(a, z) ≤

∣∣∣∣∣∑
z∈Z

µ̃m(a, z)− µ̂m(a, z)

∣∣∣∣∣+
∣∣∣∣∣∑
z∈Z

µ̂m(a, z)

∣∣∣∣∣
≤ ∥v̂m(a, ·)− µ̃m(a, ·)∥1 + ∥µ̂m(a, ·)∥1 ≤ 1 + 3Z

√
Mδsub/ŵ

1/2
m .

Similarly,

∥ṽm(a, ·)∥1 =
∑
z∈R

ṽm(a, z) ≥

∣∣∣∣∣∑
z∈R

vm(a, z)

∣∣∣∣∣−
∣∣∣∣∣∑
z∈R

ṽm(a, z)− vm(a, z)

∣∣∣∣∣
≥ |ϕ̂m(a,R)| − ∥v̂m(a, ·)− ṽm(a, ·)∥1 ≥ 1− 3Z

√
Mδsub/ŵ

1/2
m .

Therefore, we can show that

∥µ̂m(a, ·)− v̂m(a, ·)∥1 ≤ ∥µ̂m(a, ·)− ṽm(a, ·)∥1 + ∥ṽm(a, ·)− v̂m(a, ·)∥1

≤ |∥ṽm(a, ·)∥1 − 1|
∥ṽm(a, ·)∥1

+ 2Z
√
Mδa/ŵ

1/2
m

≤ 8Z
√
Mδsub/ŵ

1/2
m ,

where we used 1− 3Zδsub/ŵ
1/2
m ≥ 1/2 due to the first constraint and the choice of δsub.
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If ŵm < ϵ
H2M(Z

√
2M)H

, then we can use the fact that all l1-norm of rows of T̂ are less than
√
2M

(equation (22)), and thus ∥v̂m(a, ·)∥1 ≤
√
2M for all a ∈ A. We also have that ∥µ̂m(a, ·) −

v̂m(a, ·)∥1 ≤ 1 +
√
2M . Now we plug all things together, and proceed as

|V̂ (π)− V̂aux(π)| ≤ H2 ·

(
M∑

m=1

ŵm

(
max
a∈A

∥v̂m(a, ·)∥1
)H−1

·max
a∈A

∥µ̂m(a, ·)− v̂m(a, ·)∥1

)

≤ eH2 ·

 ∑
m:ŵm≥ ϵ

H2M(Z
√

2M)H

ŵm ·max
a∈A

∥µ̂m(a, ·)− v̂m(a, ·)∥1


+H2 ·

 ∑
m:ŵm< ϵ

H2M(Z
√

2M)H

ŵm · (Z
√
2M)H


≤ 4eH2

M∑
m=1

ϵ
√
ŵm/M/H2 + ϵ ≤ O(ϵ).

Collecting all three terms, we have |V (π)− V̂ (π)| ≤ O(ϵ). This concludes the proof of Theorem 3.8.

Appendix D LMAB with Gaussian Rewards

So far we have focused on rewards with finite support Z = O(1). In this section we consider and
LMAB setting with Gaussian rewards and generalize Algorithm 1. Indeed, some steps in the algorithm
cannot be straightforwardly extended if Z = ∞. In this subsection, we consider a standard Gaussian
reward distribution–a special case of continuous rewards–and generalize Algorithm 1 to this setting.
We make the following assumption.

Assumption D.1 (Gaussian Rewards) The reward distribution conditioning on an action a ∈ A in
a context m ∈ [M ] is N (µm(a), 1) for some |µm(a)| ≤ 1.

Even though the rewards have infinite support, we show that the same conclusion holds as in
finite-support case, i.e., the sample-complexity is upper bounded by O((MH/ϵ)O(min(H,M)) +
poly(A,H,M)). Algorithms for the Gaussian case differ significantly in identifiable H ≥ 2M − 1
and unidentifiable regimes H < 2M − 1. When H ≥ 2M − 1, there are only minor changes in
the algorithm design for defining core actions and how tensors are constructed. We handle this case
in Appendix D.1. A more interesting case is the parameter unidentifiable regime, where we follow
an alternative approach and discretize the support of rewards by O(ϵ/H2)-level. This approach is
described in Appendix D.2.
We can reach similar conclusions for the Gaussian rewards:

Theorem D.2 Consider any LMAB with M contexts under Gaussian reward Assumption D.1. There
exists an algorithm such that with probability at least 1− η, it returns an ϵ-optimal policy using a
number of episodes at most

poly(H,M,A, 1/ϵ, log(A/η)) + poly(log(M/η), H,M)2M−1 · ϵ−(4M−2), if H ≥ 2M − 1,

poly(H,w−1
min, A, 1/ϵ, log(A/η)) + poly(log(MH/(ηϵ)), H,M)H · ϵ−(2H+2), otherwise.

Note that the dependency on ϵ is at most ϵ−(4M−2) and smaller when H < 2M − 2. In the parameter
identifiable regime, similarly to discrete reward cases, near-optimality of returned policy comes from
the closeness of latent model parameters in the Wasserstein metric. In the parameter unidentifiable
regime, we first discretize the support of rewards inO(ϵ) level. Then we can apply the same procedures
for handling discrete rewards as in Section 3.3. We provide the full details in Appendix D.
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D.1 Algorithm for Identifiable Regime H ≥ 2M − 1

Let M̂2 ∈ RA×A be the empirical second-order moments as

M̂2 =
1

2N0

N0∑
k=1

rk1r
k
2 · eak

1
e⊤ak

2
.

Then let Û be the subspace spanned by top-M eigenvectors of M̂2. A similar conclusion to Lemma
3.7 holds:

Lemma D.3 Let Û be a subspace spanned by top-M eigenvectors of M̂2. After we estimate M̂2

using N0 = O(A4 log(A/η)/δ4sub) episodes, with probability at least 1− η, for all m ∈ [M ], there
exists ∆m : ∥∆m∥∞ ≤ δsub/w

1/2
m such that µm +∆m ∈ Û.

Proof of Lemma D.3 is identical to the proof of Lemma 3.7. Let δsub = ϵ/(2MH2).

Similarly to finite-support reward distributions, let {β̂j}Mj=1 be the orthonormal basis of Û and
construct Φ̂ ∈ RA×M such that the jth column of Φ̂ is β̂j , i.e., Φ̂:,j = β̂j . We invoke Theorem B.1 to
get a set of core actions {aj}nj=1. The main difference to the finite-support case is that we do not need
to specify a corresponding event of rewards. Instead, we measure the correlation in terms of actual
reward values. Specifically, for every multi-index (i1, i2, ..., il) ∈ [n]l, using N1 episodes where

N1 = O
(
log(lnl/η)

)l
/δ2tsr.

We play akt = ait for t = 1, ..., l and k ∈ [Nb], and estimate higher-order moments:

T̂l(i1, ..., il) =
1

N1

N1∑
k=1

Πd
t=1r

k
t .

We can easily verify that

Tl = E[T̂l] =

M∑
m=1

wmν
⊗

l
m .

We can apply the concentration of higher-order polynomials of sub-Gaussian random variables
element-wise, given from the following lemma on hypercontractivity inequality:

Lemma D.4 (Hypercontractivity Inequality (Theorem 1.9 in [34])) Consider a degree-l polyno-
mial f defined over a set of N independent samples of zero-mean unit-variance Gaussians, such that
f(X1:N ) := f(X1, ..., XN ). Then,

P (|f(X1:N )− E[f(X1:N )]| ≥ λ) ≤ e2 exp

(
−
(

λ2

C · var(f(X1:N ))

)1/l
)
,

for some absolute constant C > 0.

To show the concentration of T̂l(i1, ..., il) around Tl(i1, ..., il), we can apply Lemma D.4 with plugging
λ = O(δtsr) and var(f) ≤ 2l · var(X l)/N1, where X ∼ N (0, 1). Here, f can be viewed as a
degree-l polynomial of Xk

t := rkt −µmk(akt ) for t = 1, . . . , l and k = 1, ..., N1, where mk is a latent
context for the episode k.

Since var(X l) ≤ O(ll), we need N1 = O(ll logl
(
lnl/η

)
/δ2sub) to make the exponent less than

η/(lnl). Take union bound over all elements in T̂l ensures that ∥Tl − T̂l∥∞ ≤ δtsr with probability at
least 1− η.
Now we find a set of parameters {(ŵm, ν̂m)}Mm=1 with the only constraint:

ŵm ∈ R+,

M∑
m=1

ŵm = 1.
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We aim to find ∥∥∥∥∥
M∑

m=1

ŵmν̂
⊗

l
m − T̂l

∥∥∥∥∥
∞

≤ δtsr, ∀l ∈ [2M − 1].

Now we can construct an empirical model by recovering µ̂m = T̂ ν̂m where T̂ ∈ RA×M is defined
similarly to (18) as

T̂:,j := ρ(aj)Φ̂Ĝ(ρ)−1Φ̂aj ,:, ∀j ∈ [n],

where ρ is a distribution over rows of Φ̂ found by Theorem B.1 and Ĝ(ρ) is defined as in (10). We do
not need extra clipping and normalization steps here since any µ̂m is a valid model parameter. Now
with {(ŵm, µ̂m)}, we call the planning oracle 2.3 and obtain an ϵ-optimal policy.

D.2 Algorithm with Short Time-Horizon H < 2M − 1

We first discretize possible reward values: let Z = {z1, z2, ..., zZ} where zi = −4
√

log(H/ϵ) +

(i− 1) · ϵ/H2 and Z = ⌊8H2
√
log(H/ϵ)/ϵ⌋. We define an auxiliary reward (pseudo) p.d.f pm(a, ·)

for each a and m as the following: for all s ∈ [Z − 1],

pm(a, r) =
H2

ϵ

∫ zs+1

zs

1√
2π

exp

(
− (x− µm(a))2

2

)
dx, ∀r ∈ [zs, zs+1), (23)

and pm(a, r) = 0 for all r ∈ (−∞, z1) ∪ [zZ ,∞). Define Ṽ (·) be the policy evaluation function in a
(pseudo) LMAB model B̃ = (A, {wm}Mm=1, {pm}Mm=1):

Ṽ (π) :=

M∑
m=1

wm ·
∑
a1:H

∫
r1:H

(
H∑
t=1

rt

)
ΠH

t=1pm(at, rt)π(a1:H |r1:H−1)d(r1:H).

We first show that pm(a, ·) is good approximation of true reward distributions:

Lemma D.5 LetB and B̃ defined as above. Then for any history-dependent policyπ, |V (π)−Ṽ (π)| ≤
10ϵ.

Given Lemma D.5, we will discretize reward values are so that we can leverage the result of Section
3.3 for short time-horizon. Specifically, let B be a model {(wm, qm)}Mm=1 with discrete reward
distributions taking values in Z ∪ {0}, and let qm(a, z) = ϵ

H2 · pm(a, z) for z ∈ Z and qm(a, 0) =

Pm(r /∈ [z1, zZ)|a). As if the underlying model is B, we run Algorithm 1 with manually modifying
the observed rewards rt → rt:

rt = 0, if rt < z1 or rt ≥ zZ ,

rt = zs, for some s ∈ [Z − 1], s.t. rt ∈ [zs, zs+1).

From actions (a1, ..., aH) and reward observations (r1, ..., rH), we can now apply Algorithm 1 for
the parameter unidentifiable case H < 2M − 1.

D.3 Proof of Theorem D.2

Now we are ready to prove the Theorem D.2 for Gaussian rewards.

D.3.1 Identifiable Regime H ≥ 2M − 1:

By Lemma 3.3, we know that W (γ, γ̂) ≤ O
(
M3nδ

−1/(2M−1)
tsr

)
where ν =

∑M
m=1 wmδνm and

ν̂ =
∑M

m=1 ŵmδν̂m
. With experimental design, by Corollary 3.2, we can ensure that

max
a∈A

|µm(a)− µ̂m′(a)| ≤
√
2M∥νm − ν̂m′∥∞.
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Observe that for any a ∈ A, total variation distance between standard Gaussians is bounded by the
distance between centers of Gaussians, i.e., dTV (N (µm(a), 1),N (µ̂m′(a), 1)) ≤ |µm(a)− µ̂m′(a)|.
Using Proposition 3.4, we can show that

|V (π)− V̂ (π)| ≤ 2H2 · inf
Γ

∑
(m,m′)

Γ(m,m′)max
a∈A

dTV (N (µm(a), 1),N (µ̂m′(a), 1))

≤ 2H2 · inf
Γ

∑
(m,m′)

Γ(m,m′)max
a∈A

|µm(a)− µ̂m′(a)|

≤ 2
√
2MH2 · inf

Γ

∑
(m,m′)

Γ(m,m′)∥νm − ν̂m′∥∞

≤ 2
√
2MH2W (γ, γ̂).

Plugging the choice of δtsr = O(ϵ/(H2M3.5n))2M−1, this is less than ϵ.

D.3.2 Unidentifiable Regime H < 2M − 1:

Let us first compare the expected rewards from B̃ and B with any fixed policy π.

Ṽ (π) =

M∑
m=1

wm ·
∑
a1:H

∫
r1:H

(
H∑
t=1

rt

)
ΠH

t=1pm(at, rt)π(a1:H |r1:H−1)d(r1:H),

V (π) =

M∑
m=1

wm ·
∑
a1:H

∑
r1:H

(
H∑
t=1

rt

)
ΠH

t=1qm(at, rt)π(a1:H |r1:H−1).

With slight abuse in notation, let rt be a quantized value of rt. Then we can show that∣∣∣Ṽ (π)− V (π)
∣∣∣ ≤ H∑

t=1

∫
r1:H :rt∈[z1,zZ),∀t∈[H]

∣∣∣∣∣
M∑

m=1

wm

∑
a1:H

(rt − rt)Π
H
t=1pm(at, rt)π(a1:H |r1:H−1)d(r1:H)

∣∣∣∣∣
+

H∑
t=1

∫
r1:H :rt /∈[z1,zZ),∃t∈[H]

∣∣∣∣∣
M∑

m=1

wm

∑
a1:H

rtΠ
H
t=1qm(at, rt)π(a1:H |r1:H−1)d(r1:H)

∣∣∣∣∣
≤

H∑
t=1

∫
r1:H :rt∈[z1,zZ),∀t∈[H]

M∑
m=1

wm

∑
a1:H

(ϵ/H2)ΠH
t=1pm(at, rt)π(a1:H |r1:H−1)d(r1:H)

+ |HzZ | · P(∃t ∈ [H], s.t. rt /∈ [z1, zZ))

≤ ϵ/H + |H2zZ | · PX∼N (0,1)(X ≥ zZ − 1),

where in the first inequality, we used pm(a, r) = 0 for r /∈ [z1, zZ). Note that PX∼N (0,1)(|X| ≥
zZ − 1) ≤ (H/ϵ)4 with zZ = 4

√
log(H/ϵ).

Note that a system with manually discretized rewards can be described by the model B. Assuming
the returned policy π̂ from Algorithm 1 is O(ϵ)-optimal for B, by triangle inequality for the policy
evaluation for any policy π,

|V (π)− V (π)| ≤ |V (π)− Ṽ (π)|+ |Ṽ (π)− V (π)|,

we conclude that π̂ is O(ϵ)-optimal for B with Gaussian rewards.

D.4 Proof of Lemma D.5

We start by unfolding the expression for policy value differences.

|f(π)− f̃(π)| ≤
M∑

m=1

wm ·
∑
a1:H

∫
r1:H

(
H∑
t=1

|rt|

)∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H),
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where gm(at, rt) :=
1√
2π

exp
(
−(rt − µm(at))

2/2
)
. We first rule out reward values greater than

zZ = 4
√
log(H/ϵ). Define a set of bad reward sequences Eb = {r1:H |∃t ∈ [H], s.t., |rt| > zZ}.

Then for any t0 ∈ [H],∑
a1:H

∫
r1:H∈Eb

|rt0 |
∣∣ΠH

t=1pm(at, rt)−ΠH
t=1gm(at, rt)

∣∣π(a1:H |r1:H−1)d(r1:H)

=
∑
a1:H

∫
r1:H∈Eb

|rt0 | ·ΠH
t=1gm(at, rt)π(a1:H |r1:H−1)d(r1:H)

≤
∑
a1:H

∫
r1:H∈Eb∩{|rt0 |≤zZ}

|rt0 | ·ΠH
t=1gm(at, rt)π(a1:H |r1:H−1)d(r1:H)

+
∑
a1:H

∫
r1:H∈Eb∩{|rt0 |>zZ}

|rt0 | ·ΠH
t=1gm(at, rt)π(a1:H |r1:H−1)d(r1:H)

≤ zZ · Pm(Eb) +
∑
a1:t0

∫
r1:t0∈{|rt0 |>zZ}

|rt0 | ·Π
t0
t=1gm(at, rt)π(a1:t0 |r1:t0−1)d(r1:t0),

where the last inequality results from integrating over probabilities for time steps t0 + 1, ...,H . The
last summation term can be further bounded by integrating out tth0 time step since∫

{|rt0 |>zZ}
|rt0 |gm(at0 , rt0)d(rt0) =

∫
{|x|>4

√
log(H/ϵ)}

|x|√
2π

exp

(
− (x− µm(at))

2

2

)
dx

≤ 2EX∼N (0,1)

[
|X| · 1{|X| > 3

√
log(H/ϵ)}

]
≤ 2ϵ2/H2,

where in the first inequality we used |µm(at)| ≤ 1 ≤
√

log(H/ϵ). In last inequality we used
E[|X| · 1{|X| ≥ t}] ≤

√
P(|X| ≥ t) by Cauchy-Schwartz inequality, and then used the Gaussian

tail bound P(|X| ≥ t) ≤ exp(−t2/2) for t = 3
√
log(H/ϵ). Therefore, we now get∑

a1:H

∫
r1:H∈Eb

|rt0 |
∣∣ΠH

t=1pm(at, rt)−ΠH
t=1gm(at, rt)

∣∣π(a1:H |r1:H−1)d(r1:H)

≤ 4
√

log(H/ϵ) · ϵ4/H3 + 2ϵ2/H ≤ 4ϵ2/H,

where we used Pm(Eb) ≤ H ·P(|X| ≥ zZ − 1) ≤ ϵ4/H3 with sufficiently small ϵ > 0. This can be
similarly done for all t0, and thus

∑
a1:H

∫
r1:H∈Eb

(
H∑
t=1

|rt|

)∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H) ≤ 4ϵ2.

We remain to bound∑
a1:H

∫
r1:H∈Ec

b

(
H∑
t=1

|rt|

)∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H).

Note that |rt| < zZ for all t ∈ [H] when r1:H ∈ Ec
b . For each t ∈ [H], we aim to bound∑

a1:H

∫
r1:H∈Ec

b

|rt|
∣∣ΠH

t=1pm(at, rt)−ΠH
t=1gm(at, rt)

∣∣π(a1:H |r1:H−1)d(r1:H).

Next, for any rt ∈ [zs, zs+1] for s ∈ [L− 1], we observe that

|pm(at, rt)− gm(at, rt)| =
1

zs+1 − zs

∫ zs+1

zs

|gm(at, x)− gm(at, rt)| dx

≤ 1

zs+1 − zs

∫ zs+1

zs

|gm(at, x)|+
1

zs+1 − zs

∫ zs+1

zs

|gm(at, x)− gm(at, rt)| dx.
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Then we observe that

|gm(at, x)− gm(at, rt)| =
∣∣∣∣ ddxgm(at, x

′)(rt − x′)

∣∣∣∣
≤ 1√

2π
|x′ exp(−x′2/2)||zs+1 − zs|,

for some x′ ∈ [zs, zs+1] where we used the mean-value theorem. A simple algebra shows that for any
x, x′ ∈ [zs, zs+1],

|x′ exp(−x′2/2)− x exp(−x2/2)| ≤ |rt exp(−r2t /2)|+ 2|zs+1 − zs|,

where we used the second derivative of x exp(−x2/2), which is (x2 − 1) exp(−x2/2), is always less
than 1 in absolute value.
Plugging above relations into bounding the difference between pm and gm yields

|pm(at, x)− gm(at, rt)| ≤
1

zs+1 − zs

(
ϵ8

H8

∫ zs+1

zs

gm(at, x)dx+

∫ zs+1

zs

|gm(at, x)− gm(at, rt)|dx
)

≤ ϵ8

H8
+

1√
2π

∫ zs+1

zs

|rt exp(−r2t /2)|+ 2|zs+1 − zs|dx

≤ 3ϵ2

H4
+

2ϵ

H2
√
2π

|rt| · exp(−r2t /2).

Using this the above, we bound∑
a1:H

∫
r1:H∈Ec

b

|rt|
∣∣ΠH

t=1pm(at, rt)−ΠH
t=1gm(at, rt)

∣∣π(a1:H |r1:H−1)d(r1:H). (24)

If t = H , then

(24) ≤
∑
a1:H

∫
r1:H−1

ΠH−1
t=1 gm(at, rt)π(a1:H |r1:H−1)d(r1:H−1)

∫
rH∈Ec

b

|rH ||pm(aH , rH)− gm(aH , rH)| · d(rH)

+
∑
a1:H

∫
r1:H−1∈Ec

b

∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H−1)

∫
rH∈Ec

b

|rH |pm(aH , rH) · d(rH).

For the first term,∫
rH∈Ec

b

|rH ||pm(aH , rH)− gm(aH , rH)| · d(rH) ≤ zZ · (zZ − z1) ·
3ϵ2

H4
+

4ϵ

H2
≤ 8ϵ

H2
,

where we used
∫
rH

1√
2π

r2H exp(−r2H/2) ≤ 1 and 32(ϵ/H) · log(H/ϵ) < 1 for sufficiently small ϵ.
Note that we also have∑

a1:H

∫
r1:H−1

ΠH−1
t=1 gm(at, rt)π(a1:H |r1:H−1)d(r1:H−1) ≤ 1.

For the second term, we first have∫
rH∈Ec

b

|rH |pm(aH , rH) · d(rH) ≤ 1 + µm(aH) ≤ 2.

Furthermore, we can show that∑
a1:H

∫
r1:H−1∈Ec

b

∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H−1)

=
∑

a1:H−1

∫
r1:H−1∈Ec

b

∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H−1|r1:H−2)

∑
aH

π(aH |a1:H−1, r1:H−1)d(r1:H−1)

=
∑

a1:H−1

∫
r1:H−1∈Ec

b

∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H−1|r1:H−2)d(r1:H−1),
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from which we recursively apply similar arguments. Thus we can conclude that∑
a1:H

∫
r1:H∈Ec

b

|rH |
∣∣ΠH

t=1pm(at, rt)−ΠH
t=1gm(at, rt)

∣∣π(a1:H |r1:H−1)d(r1:H) ≤ O(ϵ/H).

|rt| with other time steps can also be similarly bounded. Thus, we can conclude that

∑
a1:H

∫
r1:H

(
H∑
t=1

|rt|

)∣∣ΠH
t=1pm(at, rt)−ΠH

t=1gm(at, rt)
∣∣π(a1:H |r1:H−1)d(r1:H) ≤ O(ϵ),

and therefore |V (π)− Ṽ (π)| ≤ O(ϵ) since
∑M

m=1 wm = 1.

Appendix E Deferred Details in Section 4

E.1 Additional Definitions

Let us define a few notation and interaction protocol. Suppose at the beginning of episode, a latent
context m0 ∈ [M ] is chosen, and and at each time step t ∈ [H], we play ait where it is sampled
from Unif([n]). Let i = (i1, i2, ..., iH) be the sequence of indices of played core actions, and
b = (b1, b2, ...bH) be the event-observation sequence in the episode, where bt := 1 {rt = Zit}. Let
the parameter space Θ be the set of valid parameters:

Θ = {θ = {(wm, νm)}Mm=1|∀j ∈ [n],m ∈ [M ] s.t. wm, νm(i) ∈ R+,

M∑
m=1

wm = 1, νm(j) ≤ 1}.

(25)

We use superscript k to denote quantities observed in the kth episode. The probability of a trajectory
under a model θ ∈ Θ in the kth episode is defined by

Pθ(b
k, ik) := (1/n)H ·

M∑
m=1

wmΠH
t=1(b

k
t νm(it) + (1− bkt )(1− νm(it))).

E.2 Polynomial Upper Bounds with Separation

In this subsection, we specify the details on separation conditions that make the polynomial sample
complexity possible with MLE solutions. Suppose that there exists a context revealing action for any
m ̸= m′ ∈ [M ], i.e., we are given the following assumption:

Assumption E.1 (Separated Bandit Instances) For any m ̸= m′ ∈ [M ], there exists some (un-
known) a ∈ A such that ∥µ∗

m(a, ·)− µ∗
m′(a, ·)∥1 ≥ γ for some known γ > 0.

Under Assumption E.1, if the time horizon H = Õ(Z2M2/γ2) is given enough to identify the context
within each episode, then we can significantly improve the sample complexity for learning LMAB,
from exponential to polynomial. Note that the time-horizon H can be still much smaller than A and
thus we cannot explore all actions within a single episode, which is in contrast to explicit clustering
based approaches studied in [9, 16].
Maximum likelihood estimator for LMABs with separation can guarantee the following:

Lemma E.2 Consider the maximum likelihood estimator θN = {(ŵm, ν̂m)}Mm=1 under Assump-
tion E.1 with time-horizon H ≥ C1 · nMZ2 log(1/(ϵwmin))/γ

2 for some universal constant C1 > 0.
If N = C2 · w−2

minn · log(N/η)/ϵ2 for some large constant C2 > 0, then with probability at least
1− η, we have (up to some permutations in θN )

|w∗
m − ŵm| ≤ ϵwmin, ∥ν∗m − ν̂m∥∞ ≤ 2ϵ, ∀m ∈ [M ].

To get the above result, we first observe a consequence due to experimental design: the converse of
Corollary 3.2 implies that if Assumption E.1 holds for all m ̸= m′, then we have ∥ν∗m − ν∗m′∥∞ ≥
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γ/(Z
√
2M). Thus, if H/n = Õ(MZ2/γ2), then we can play each core action O(H/n)-times and

get an O(γ/(Z
√
M))-accurate estimator ν̂m for one of {ν∗m′}Mm′=1. Since we have good separation

between samples from different contexts, by proper clustering arguments, the sample complexity
of recovering θ∗ can be polynomial. With Lemma E.2, we can use equation (4) to connect the
near-optimality of returned policy computed with {(ŵm, µ̂m)}Mm=1 and the closeness in Wasserstein
metric. We mention that for H , the dependence on Z can be removed with more computationally
expensive experimental design (see also Remark C.1).

E.3 Proof of Lemma 4.1

We connect the maximum likelihood estimator to total variation distance between observations from
θ∗ and θN . The connection between MLE θN and closeness in distributions of observations b can be
established by the following lemma.

Lemma E.3 There exists a universal constant C > 0 such that with probability at least 1− η,∑
b∈{0,1}H

∑
i∈[n]H

|PθN (b, i)− Pθ∗(b, i)| ≤ C

√
n log(nHN) + log(1/η)

N
.

That is, total variation distance between two observation distributions is bounded by Õ
(√

n/N
)

.
On the other hand, for any l ∈ [min(H, 2M − 1)] and any multi-index (i1, i2, ..., il) ∈ [n]l, we have

C

√
n log(nHN) + log(1/η)

N
≥
∑
b,i

|PθN (b, i)− Pθ∗(b, i)|

≥
∑
b

|PθN − Pθ∗ | (b1:l|a1:l = (ai1 , ai2 , ..., ail)) · P(a1:d = (ai1 , ai2 , ..., ail))

=
∑
b1:l

|PθN − Pθ∗ | (b1:l|a1:l = (ai1 , ai2 , ..., ail)) · n−l ≥ n−l · ∥T̂l − Tl∥∞.

This implies that

∥T̂l − Tl∥∞ ≤ Cnl ·
√

n log(HNn) + log(1/η)

N
.

Applying this to all l ∈ [min(H, 2M − 1)], we get Lemma 4.1.

E.4 Proof of Lemma E.2

From Lemma E.3, without loss of generality, we assume that the total variation distance between
observations from θN and θ∗ is bounded by ϵwmin/2 since N = Õ(w−2

minn/ϵ
2):∑

b,i

|PθN (b, i)− Pθ∗(b, i)| ≤ ϵwmin/2.

We will verify that for every m ∈ [M ], there exists m′ ∈ [M ] such that ∥ν̂m − ν∗m′∥∞ ≤ 2ϵ and
|ŵm − w∗

m′ | ≤ ϵwmin.

First note that for all m ̸= m′ ∈ [M ], we have ∥ν∗m − ν∗m′∥∞ ≥ λ := γ/(Z
√
2M). If it is not, then

the model does not satisfy Assumption E.1. We start with the following lemma:

Lemma E.4 Suppose that there exists m ∈ [M ] such that ∥ν∗m − ν̂m′∥∞ ≥ λ/4 for all m′ ∈ [M ].
For every j ∈ [n], define Em,j an event defined as:

Em,j :=

{∣∣∣∣∣
∑H

t=1 1 {it = j} bt∑H
t=1 1 {it = j}

− ν∗m(j)

∣∣∣∣∣ < λ/8

}
,

and let Em = ∩n
j=1Em,j . Then

Pθ∗(Em) ≥ wm/2, PθN (Em) ≤ ϵwmin. (26)
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Proof. Let us first check that Pθ∗(E) ≥ wm/2. Let nj =
∑H

t=1 1 {it = j}. Since,
Pθ∗(E) ≥ wm · Pθ∗(E|m0 = m) = wm · ∩n

j=1Pθ∗(Ej |m0 = m),

it suffices to show that

Pθ∗(Ej |m0 = m) ≥ Pθ∗

(∣∣∣∣∣
H∑
t=1

1 {it = j} bt − njν
∗
m(j)

∣∣∣∣∣ ≤ njλ/8

∣∣∣∣∣m0 = m,nj ≥ H/(2n)

)
Pθ∗ (nj ≥ H/(2n))

≥
(
1− exp(−λ2 ·H/(64n))

)(
1− exp

(
−(1/2)(H/2n)2

H(1/n)(1− 1/n) + (1/3)(H/2n)

))
.

where in the last inequality we applied Hoeffeding’s concentration inequality for first term, and then
used Bernstein’s inequality. Plugging H > C ·nMZ2 log(1/(ϵwmin))/γ

2 for some sufficiently large
constant C > 0, we get
Pθ∗(Ej |m0 = m) ≥

(
1− exp(−2(γ2/(128Z2M)) ·H/(2n))

)
· (1− exp (−H/(16n))) ≥ 1− (ϵwmin)

2.

By union bound, we have Pθ∗(E) ≥ wm · (1− nϵ2w2
min) ≥ wm/2.

Now we check that PθN (E) ≤ ϵwmin. Starting from

PθN (E) =

M∑
m′=1

wm′PθN (E|m0 = m′),

it suffices to show that PθN (E|m0 = m′) ≤ ϵwmin for all m′ ∈ [M ]. Let us fix m′ and define

Em′,j :=

{∣∣∣∣∣
∑H

t=1 1 {it = j} bt∑H
t=1 1 {it = j}

− ν̂m(j)

∣∣∣∣∣ < λ/8

}
,

and let Em′ = ∩n
j=1Em′,j . Following the same argument for Pθ∗(Ej |m0 = m), we can show that

PθN (Em′ |m0 = m′) ≥ 1− (ϵwmin)
2.

If this happens, then it implies Ec since ∥ν∗m − ν̂m′∥∞ ≥ λ/2. Thus,
M∑

m′=1

ŵm′PθN (Em′ |m0 = m′) ≤
M∑

m′=1

ŵm′PθN (Ec|m0 = m′) = PθN (Ec).

In other words, we have

PθN (E) ≤ 1−
M∑

m′=1

ŵm′PθN (Em′ |m0 = m′) ≤ ϵ2w2
min.

□

The conclusion of Lemma E.4 contradict that |Pθ∗(Em)− PθN (Em)| ≤ ϵwmin/2 due to the total
variation distance bound from Lemma E.3. Thus, we ensure that for all m ∈ [M ], there exists
m′ ∈ [M ] such that ∥ν∗m − ν̂m′∥∞ ≤ λ/4.
Now without loss of generality, we can ignore the permutation invariance of models and assume that

∥ν∗m − ν̂m∥∞ ≤ λ/4, ∀m ∈ [M ].

Then we now show that for all m ∈ [M ], it holds that
|w∗

m − ŵ∗
m| ≤ ϵwmin, ∥ν∗m − ν̂∗m∥∞ ≤ ϵ.

For every m, let us define Em similarly to Lemma E.4:

Em,j :=

{∣∣∣∣∣
∑H

t=1 1 {it = j} bt∑H
t=1 1 {it = j}

− ν∗m(j)

∣∣∣∣∣ < λ/2

}
,

and Em := ∩n
j=1Em,j . Then we proceed as the following:∑

b,i

|PθN (b, i)− Pθ∗(b, i)| ≥
∑

(i,b)∈Em

|PθN (b, i)− Pθ∗(b, i)|
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=
∑

(i,b)∈Em

∣∣∣∣∣
M∑

m′=1

ŵm′PθN (b, i|m0 = m′)−
M∑

m′=1

wm′Pθ∗(b, i|m0 = m′)

∣∣∣∣∣
≥
∑
i

∑
b

|ŵmPθN (b, i|m0 = m)− wmPθ∗(b, i|m0 = m)|

− (ŵmPθN (Ec
m|m0 = m) + wmPθ∗(Ec

m|m0 = m))

−
∑

m′ ̸=m

(ŵm′PθN (Em|m0 = m′) + wm′Pθ∗(Em|m0 = m′)) .

Recall that for any m′ ̸= m, the event Em implies Ec
m′ since every ν∗m and ν∗m′ are separated by at

least λ = γ/(Z
√
2M), which implies that ν∗m and ν̂m′ are separated by (3/4)λ. Following the same

argument as in the proof for Lemma E.4,
PθN (Em|m0 = m′) ≤ PθN (Ec

m′ |m0 = m′) ≤ ϵ2w2
min,

Pθ∗(Em|m0 = m′) ≤ Pθ∗(Ec
m′ |m0 = m′) ≤ ϵ2w2

min.

Similarly, we can also check that
PθN (Ec

m|m0 = m) ≤ ϵ2w2
min,

Pθ∗(Ec
m|m0 = m) ≤ ϵ2w2

min.

Thus, we have∑
i,b

|PθN (b, i)− Pθ∗(b, i)| ≥
∑
b,i

|ŵmPθN (b, i|m0 = m)− wmPθ∗(b, i|m0 = m)| − 2ϵ2w2
min.

We remain to lower bound
∑

b,i |ŵmPθN (b, i|m0 = m)− w∗
mPθ∗(b, i|m0 = m)|. First note that

ϵwmin/2 ≥
∑
b,i

|ŵmPθN (b, i|m0 = m)− w∗
mPθ∗(b, i|m0 = m)| ≥ |ŵm − w∗

m|.

Thus we have |ŵm − w∗
m| ≤ ϵwmin. Now given this, we can proceed as

ϵwmin/2 ≥
∑
b,i

|ŵmPθN (b, i|m0 = m)− w∗
mPθ∗(b, i|m0 = m)|

≥ w∗
m ·
∑
b,i

|PθN (b, i|m0 = m)− Pθ∗(b, i|m0 = m)| − |ŵm − w∗
m|.

Now let im := argmaxj∈[n] |ν∗m(j) − ν̂m(j)|. Define an event bt being 1 at the first time aim is
played:

F := {bt = 1, t = arg min
t′∈[H]

it′ = im}.

Note that since H ≫ n log(1/(ϵwmin)), im is played at least once with probability at least 1 −
(ϵwmin)

2. Then we can lower bound the total variation distance as∑
b,i

|PθN (b, i|m0 = m)− Pθ∗(b, i|m0 = m)| ≥ |PθN (F |m0 = m)− Pθ∗(F |m0 = m)|

≥ |ν∗m(im)− ν̂m(im)| − 2(ϵwmin)
2.

Hence we can conclude that
ϵwmin/2 ≥ wm|ν∗m(im)− ν̂m(im)| − 2(ϵwmin)

2 − ϵwmin,

which implies ∥ν∗m − ν̂m∥∞ ≤ 2ϵ.
Note that the Wasserstein distance can thus be bounded as

W (γ∗, γ̂) ≤
M∑

m=1

|w∗
m − ŵm|+

M∑
m=1

w∗
m∥ν∗m − ν̂m∥∞ ≤ ϵMwmin + 2ϵ ≤ 3ϵ.

Remark E.5 In our guarantee, we assumed that H ≫ log(1/ϵ), i.e., H should be increased log-
arithmically with the final accuracy. As one might imagine, this is not the optimal condition for
separations between individual models. A more delicate and technically involved analysis might
reveal that the sub-optimal dependency on log(1/ϵ) can be dropped with the EM algorithm as in
learning Gaussian mixture models (e.g., [22]). Since it is technically much more complicated, we
leave the task of verifying more tight separation conditions as future work.
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E.5 Proof of Lemma E.3

This is a rather standard consequence of MLE for parameterized distributions. Let us define well-
conditioned parameters Θ′ ⊆ Θ defined as follows:

Θ′ =
{
θ = {(wm, νm)}Mm=1|∀j ∈ [n],m ∈ [M ] s.t. wm, νm(j) ∈ R+,

M∑
m=1

wm = 1,

ϵ ≤ wm, ϵ ≤ νm(j) ≤ 1− ϵ, ∀m ∈ [M ], j ∈ [n]
}
.

Let Θϵ be ϵ2-covering of Θ′. Since there are n+M free parameters, log-cardinality of Θϵ is at most
O(1/ϵ)2(n+M). Note that Θϵ is a (not necessarily minimal) ϵ-cover for Θ as well.

To simplify the notation, we often use X := (b, i) (and Xk = (bk, ik)) to replace a sample trajectory.
Our goal is to bound

TV (θN , θ∗) :=
∑

X=(b,i):b∈{0,1}H ,i∈[n]H

|PθN (X)− Pθ∗(X)|,

where TV (θ1, θ2) is a total variation distance between Pθ1 and Pθ2 for any θ1, θ2 ∈ Θ.

Let θ = {(wm, νm}Mm=1 ∈ Θϵ such that

w∗
m

wm
≤ 1 + 2ϵ, ∀m ∈ [M ],

ν∗m(i)

νm(i)
≤ 1 + 2ϵ, ∀m ∈ [M ], i ∈ [n],

1− ν∗m(i)

1− νm(i)
≤ 1 + 2ϵ, ∀m ∈ [M ], i ∈ [n].

Such θ is guaranteed to exist in Θϵ by construction. A simple algebra shows that for any trajectory X ,
we have

Pθ∗(X)

Pθ(X)
≤ (1 + 2ϵ)H .

As long as ϵ < 1/H2, this is bounded by constant.

Now, fix any θ ∈ Θϵ and let l(X) := 1
2 log

(
Pθ(X)
Pθ(X)

)
. Then using Chernoff’s method, we get

Pθ∗

(
N∑

k=1

l(Xk)− log

(
Eθ∗

[
exp

(
N∑

k=1

l(Xk)

)])
> λ

)

= Pθ∗

(
exp

(
N∑

k=1

l(Xk)− log

(
Eθ∗

[
N∑

k=1

exp(l(Xk))

]))
> exp(λ)

)

≤ Eθ∗

[
exp

(
N∑

k=1

l(Xk)− log

(
Eθ∗

[
exp

(
N∑

k=1

l(Xk)

)]))]
· exp(−λ)

= exp(−λ),

where we used E[exp(S − log(E[exp(S)]))] = E[exp(S)]
E[exp(S)] = 1 for any S and distribution. Taking

union bound over Θϵ, we can conclude that with probability at least 1− η,

− log

(
Eθ∗

[
ΠN

k=1

√
Pθ(Xk)

Pθ(X
k)

])
≤ −1

2

N∑
k=1

log

(
Pθ(X

k)

Pθ(X
k)

)
+ log(|Θϵ|/η).

36



Now, since X1, ..., XN are independent, we have

− log

(
Eθ∗

[
ΠN

k=1

√
Pθ(Xk)

Pθ(X
k)

])
= −

N∑
k=1

log

(
Eθ∗

[√
Pθ(X)

Pθ(X)

])

= −
N∑

k=1

log

(
Eθ∗

[√
Pθ(X)

Pθ∗(X)
·

√
Pθ∗(X)

Pθ(X)

])

≥ −
N∑

k=1

log

(
(1 + 2ϵ)H/2 · Eθ∗

[√
Pθ(X)

Pθ∗(X)

])

= −HN

2
log(1 + 2ϵ)−

N∑
k=1

log

(
Eθ∗

[√
Pθ(X)

Pθ∗(X)

])
.

Using − ln(x) ≥ 1− x, we get

−
N∑

k=1

log

(
Eθ∗

[√
Pθ(X)

Pθ∗(X)

])
≥

N∑
k=1

(
1− Eθ∗

[√
Pθ(X)

Pθ∗(X)

])

=

N∑
k=1

(
1−

∑
X

√
Pθ∗(X)Pθ(X)

)
= NH2(θ∗, θ),

where H(θ1, θ2) is a Hellinger distance between Pθ1 and Pθ2 . Also note that TV (θ∗, θ) ≤ H(θ∗, θ).
Collecting all, we now can say that

N · TV 2(θ∗, θ) ≤ −1

2

N∑
k=1

log

(
Pθ(X

k)

Pθ(X
k)

)
+ log(Θϵ/η) +

HN

2
log(1 + 2ϵ),

with probability at least 1− η. Finally, let θN ∈ Θϵ be the one close to θN such that

PθN (X)

PθN
(X)

≤ (1 + 2ϵ)H ,

similarly to when defining θ. Then,

N · TV 2(θ∗, θN ) ≤ −1

2

N∑
k=1

log

(
PθN (Xk)

Pθ(X
k)

)
+

1

2

N∑
k=1

log

(
PθN (Xk)

PθN
(Xk)

)
+ log(Θϵ/η) +

HN

2
log(1 + 2ϵ)

≤ log(Θϵ/η) +HN log(1 + 2ϵ),

where we used the fact that θN is the maximum likelihood estimator. With a proper scaling of
ϵ ≪ 1/(nHN)4, we get

TV (θ∗, θN ) ≤ O

(√
(n+M) log(nHN) + log(1/η)

N

)
.

Finally, it is not hard to show that TV (θN , θN ) ≤ 2ϵH ≤ 1/N . We can conclude that

TV (θ∗, θN ) ≤ C ·
√

n log(nHN) + log(1/η)

N
,

for some sufficiently large constant C > 0.
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