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Abstract

In this supplement we provide additional background material and all the technical
results and proofs not included in the main article. For the convenience of the
reader, we repeat the statements of results that we prove here. We continue the
equation numbering scheme from the main document to the supplement.
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A Remaining proofs: Lemmas 4-6, and Theorem 3

A.1 Proof of Lemmas 4-6

Lemma 4. Let f0 ∈ L2[0, 1]d, f̄n = EΠ[f |Y ] denote the posterior mean based on a mean-zero
Gaussian process prior Π on L2[0, 1]d and set µ2

n = Ef0‖f̄n − f0‖2L2 . Then for n ≥ 1,

Pf0
(
‖f̄n − f0‖2L2 ≤ µ2

n/4
)
≤ 4e−

nµ2n
32 .

Proof. Using (8), under Pf0 the posterior mean equals

f̄n =
∑
k

nλk
nλk + 1

Ykφk =
∑
k

nλk
nλk + 1

f0kφk +
∑
k

nλk
nλk + 1

wk√
n
φk.

Since f0 =
∑
k f0kφk, we deduce

‖f̄n − f0‖2L2 =
∑
k

( √
nλk

nλk + 1
wk −

1

nλk + 1
f0k

)2

=
∑
k

1

(nλk + 1)2

[
nλ2

k(w2
k − 1) + nλ2

k − 2
√
nλkwkf0k + f2

0k

]
= I + II + III + IV.

Taking Ef0 -expectation yields

Ef0‖f̄n − f0‖2L2 =
∑
k

nλ2
k

(nλk + 1)2
+

f2
0k

(nλk + 1)2
= II + IV.

We will now show that I + III are of smaller order with high Pf0 -probability, so that ‖f̄n − f0‖2L2

is close to its expectation, and hence the size of its expectation drives its behaviour.

I: Using Lemma 1 of [4] with ak =
nλ2

k

(nλk+1)2 , we get

P
(
|I| ≥ 2‖a‖`2

√
x+ 2‖a‖`∞x

)
≤ 2e−x

for any x > 0 (we write P instead of Pf0 here to emphasize the above probability does not depend
on f0). Further set αk = λk

λk+1/n , so that nak = α2
k. Then

n2‖a‖2`2 = ‖α‖4`4 ≤ sup
k
|αk|2

∑
k

α2
k = sup

k

∣∣∣∣ λ2
k

(λk + 1/n)2

∣∣∣∣ ‖α‖2`2 ≤ ‖α‖2`2 .
Using that ‖α‖2`2 = nII , this implies ‖a‖`2 ≤ 1

n‖α‖`2 =
√
II/n. For the `∞ term,

‖a‖`∞ =
1

n
sup
k

∣∣∣∣ n2λ2
k

(nλk + 1)2

∣∣∣∣ ≤ 1

n
.

In conclusion, we have the exponential inequality

P

(
|I| ≥ 2

√
IIx

n
+

2x

n

)
≤ 2e−x.

III: We have III ∼ N(0,
∑
k

4nλ2
kf

2
0k

(nλk+1)4 ), whose variance is bounded by
4
n supk

n2λ2
k

(nλk+1)2

∑
k

f2
0k

(nλk+1)2 ≤
4
nIV . Thus using the standard Gaussian tail bound, for

any x ≥ 0,
Pf0

(
|III| ≥ 2

√
IV/nx

)
≤ 2e−x

2/2,

uniformly over f0 ∈ L2.
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The triangle inequality gives
∣∣‖f̄n − f0‖2L2 − Ef0‖f̄n − f0‖2L2

∣∣ = |I + III| ≤ |I| + |III|. Since
for any real numbers a, b, Pf0(|I|+ |III| ≥ a+ b) ≤ Pf0({|I| ≥ a} ∪ {|III| ≥ b}) ≤ Pf0(|I| ≥
a) + Pf0(|III| ≥ b), combining the bounds for I and III , we get

sup
f0∈L2

Pf0

(∣∣‖f̄n − f0‖2L2 − Ef0‖f̄n − f0‖2L2

∣∣ ≥ 2

√
IIx

n
+

2x

n
+

√
8IV x

n

)
≤ 4e−x

for all x > 0, a non-asymptotic inequality. Using ab ≤ (a2+b2)/2 gives
√

8IV x/n ≤ IV/2+4x/n

and 2
√
IIx/n ≤ II/2 + 2x/n. Since Ef0‖f̄n − f0‖2L2 = II + IV , it holds that for any x > 0,

sup
f0∈L2

Pf0

(∣∣‖f̄n − f0‖2L2 − Ef0‖f̄n − f0‖2L2

∣∣ ≥ 1

2
Ef0‖f̄n − f0‖2L2 +

8x

n

)
≤ 4e−x.

Set x = nµ2
n/32 so that 8x/n = µ2

n/4. Then the last inequality implies that for all f0 ∈ L2,

Pf0

(
‖f̄n − f0‖2L2 ≤

1

2
Ef0‖f̄n − f0‖2L2 −

µ2
n

4

)
≤ 4e−

nµ2n
32 .

Substituting in µ2
n = Ef0‖f̄n − f0‖2L2 gives the result.

Lemma 5. Let Πn be a sequence of mean-zero Gaussian process priors on L2[0, 1]d. Then the
corresponding posterior means f̄n = EΠn [f |Y ] satisfy

Pf0
(
‖f̄n − f0‖L2 ≥ 2γn

)
≤ 2
√
Ef0Πn(f : ‖f − f0‖L2 ≥ γn|Y )

for any sequence γn and n ≥ 1.

Proof. Write vn = Ef0Πn(f : ‖f − f0‖L2 ≥ γn|Y ). We may assume vn < 1/4, otherwise the
right side is greater than one and there is nothing to prove. Using Markov’s inequality, the events
An,f0 = {Πn(f : ‖f − f0‖L2 ≥ γn|Y ) ≤ √vn} then satisfy Pf0(Acn,f0) ≤ √vn.

Recall that the posterior distributions Πn(f |Y ) are also Gaussian by conjugacy, see (7). Since
{f ∈ L2 : ‖f‖L2 ≤ γn} is convex and symmetric, Anderson’s inequality (e.g. [3], Theorem 2.4.5)
implies that

1− vn = Ef0Πn(f : ‖f − f0‖L2 ≤ γn|Y ) ≤ Ef0Πn(f : ‖f − f̄n‖L2 ≤ γn|Y ).

Using the same argument as above, we thus have Pf0(Bcn) ≤
√
vn for Bn = {Πn(f : ‖f − f̄n‖L2 ≥

γn|Y ) ≤ √vn}, so that Pf0(An,f0 ∩Bn) ≥ 1− 2
√
vn. Now on the event An,f0 ∩Bn, we have

Πn(f : ‖f − f0‖L2 ≤ γn, ‖f − f̄n‖L2 ≤ γn|Y ) ≥ 1−Πn(f : ‖f − f0‖L2 ≥ γn|Y )

−Πn(f : ‖f − f̄n‖L2 ≥ γn|Y )

≥ 1− 2
√
vn.

The right-hand side is strictly positive for vn < 1/4 and hence so is the left posterior probability.
Thus there must exist f ∈ L2 in the left set, in which case

‖f̄n − f0‖L2 ≤ ‖f̄n − f‖L2 + ‖f − f0‖L2 ≤ 2γn.

We have thus shown that Pf0(‖f̄n − f0‖L2 ≤ 2γn) ≥ 1− 2
√
vn as required.

Lemma 6. Let f0 ∈ L2[0, 1]d, Πn be a sequence of mean-zero Gaussian process priors with
corresponding posterior means f̄n = EΠn [f |Y ], and set µ2

n = Ef0‖f̄n − f0‖2L2 . Then for n ≥ 1,

Ef0Πn(f : ‖f − f0‖L2 ≥ µn/4|Y ) ≥ 1

4

(
1− 4e−

nµ2n
32

)2

+

.

Furthermore, suppose Fn ⊂ L2 satisfy supf0∈Fn Ef0‖f̄n − f0‖2L2 ≥ γ2
n > 0 for some sequence

γn for which nγ2
n → ∞ as n → ∞. Then for any 0 < δ < 1/4 and n such that nγ2

n ≥
32 log

(
5

1−
√

1−4δ

)
,

sup
f0∈Fn

Ef0Πn(f : ‖f − f0‖L2 ≥ γn/5|Y ) ≥ 1/4− δ.

In particular, the posteriors cannot contract at rate γn/5, uniformly over Fn.
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Proof. Using Lemma 5 and then Lemma 4, the square-root of the left-side of the first display is lower
bounded by

1

2
Pf0

(
‖f̄n − f0‖L2 ≥ µn/2

)
≥ 1

2

(
1− 4e−

nµ2n
32

)
.

Squaring everything then gives the first result.

By hypothesis, for any η > 0, there exists f0,n ∈ Fn such that µ2
n = Ef0,n‖f̄n − f0,n‖2L2 ≥ γ2

n − η.
Let η = ηn be small enough that e

nη
32 ≤ 5/4 and

√
γ2
n − η/4 ≥ γn/5. By the first part of the lemma,

Ef0,nΠn(f : ‖f − f0,n‖L2 ≥
√
γ2
n − η/4|Y ) ≥ 1

4

(
1− 5e−

nγ2n
32

)2

+

.

After rearranging, the right-side is at least 1/4− δ for nγ2
n ≥ 32 log

(
5

1−
√

1−4δ

)
. The second part

then follows from upper bounding the left-side of the last display by Ef0,nΠn(f : ‖f − f0,n‖L2 ≥
γn/5|Y ).

A.2 Proof of Theorem 3

Similar to the proof of Theorems 1 and 2, we derive a lower bound for the L2-risk of the posterior
mean over a suitable subset of the class G.

For a wavelet prior Πn defined as in (4) (with possibly n-dependent λγ) and f̄n the corresponding
posterior mean, the conclusion of Lemma 7 reads, for m = 1,

Ef‖f̄n − f‖2L2 ≥
∑
γ∈Γd

〈f, ψγ〉2L2 ∧
1

n
, any f ∈ L2[0, 1]d. (10)

By applying Lemma 2 in [5] (with α = K = 1), for a constant c(d, ψ) > 0 only depending on d and
the wavelet basis, letting jn ∈ N satisfy

1

n
≤ c(d, ψ)2−jn(2+d) ≤ 22+d

n

there exists for each n a Lipschitz function hjn : [0, d]→ [0, 1] with Lipschitz constant bounded by 1
such that the generalized additive function fjn(x1, . . . , xd) := hjn(x1 + · · ·+ xd) satisfies for all
p1, . . . , pd ∈ {0, 1, . . . , 2jn−q−ν − 1},

〈fjn , ψ(jn,2q+νp1),...,(jn,2q+νpd)〉2L2 = c(d, ψ)22−jn(2+d) ≥ 1

n
.

Above, q > 0 is such that the mother wavelet ψ is supported within [0, 2q] and ν = dlog2 de + 1.
Noting that with our choice of jn we have 2jn ≥ 1

2 (c(d, ψ)2n)
1

2+d , it follows from (10) that

Efjn ‖f̄n − fjn‖
2
L2 ≥

∑
p1,...,pd∈{0,1,...,2jn−q−ν−1}

1

n

= 2−(qd+νd) 1

n
2jnd ≥ 2−(q+ν+1)d(c(d, ψ))

2d
2+dn−

2
2+d .

Since fjn ∈ G, this proves the second claim of Theorem 3. Another application of Lemma 6
with Fn = {fjn} ⊂ G, γ2

n = 2−(q+ν+1)d(c(d, ψ))
2d

2+dn−
2

2+d then proves the first claim taking

N(d, δ) ≥ 32 log
(

5
1−
√

1−4δ

)
/γ2
n and C = C(d, ψ) = 2−(q+ν+1)d/2(c(d, ψ))

d
2+d /5.

B An alternative proof of Theorems 1 and 2

As part of the proofs of Theorems 1 and 2 in Section 4, we directly lower bounded the L2-risk of the
posterior mean in Lemma 7. We now provide an alternative strategy to prove a lower bound via first
reducing the regression setting to a one-sparse sequence model in which we can explicitly evaluate
the minimax risk for linear estimators.
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B.1 Reduction to a one-sparse sequence model

Consider the Gaussian white noise model (2) with finite parameter space Fn = {f1, . . . , fm},
m = mn, satisfying

〈fi, fj〉L2 = δijc
2
n, cn > 0 (11)

[we will ultimately take f1, . . . , fm ∈ G as in Lemma 8, but this approach may be useful for other
function classes]. Denote by f ∈ Fn the regression function driving (2) and define

yi :=
1

c2n

∫
[0,1]d

fi(x)dYx =
1

c2n
〈fi, f〉L2 +

1√
nc2n

∫
[0,1]d

fi(x)dWx, (12)

i = 1, . . . ,m. Further write

θi :=
1

c2n
〈fi, f〉L2 , wi :=

1

cn

∫
[0,1]d

fi(x)dWx ∼iid N(0, 1), σn :=
1

cn
√
n
. (13)

Since f ∈ Fn in our statistical model satisfy (11), θ = (θ1, . . . , θm)T is a one-sparse vector. The
present statistical model thus yields an observation from the finite Gaussian sequence model

yi = θi + σnwi, i = 1, . . . ,m, (14)

with θ ∈ Θm = {e1, . . . , em} for ei the ith basis vector, that is eij = δij .

We now relate estimation in the full Gaussian white noise model with f ∈ Fn with estimation in (14).
Since θi = 〈fi, f〉L2/c2n, fi/cn are L2-normalized and orthogonal, and f ∈ Fn trivially lies in the
linear span of {f1, . . . , fm}, we can express the function f in terms of θ = (θ1, . . . , θm)T via

f =

m∑
i=1

〈fi, f〉L2

cn

fi
cn

=

m∑
i=1

θifi.

Any estimator θ̂ = (θ̂1, . . . , θ̂m)T for θ thus yields a series estimator f̂θ̂ =
∑m
i=1 θ̂ifi for f ∈ Fn,

and ∥∥f̂θ̂ − f∥∥2

L2 =

m∑
i=1

(
θ̂i − θi

)2‖fi‖2L2 = c2n

m∑
i=1

(
θ̂i − θi

)2
= c2n|θ̂ − θ|2. (15)

We next show that in the full Gaussian white noise model with restricted parameter space Fn, the risk
of the posterior mean is larger than that of an estimator of the form f̂θ̂ with θ̂ = Ay a linear function
of the observations y = (y1, . . . , ym)T in (12).

Lemma 7. Let Πn be a sequence of mean-zero Gaussian process priors on L2[0, 1]d with corre-
sponding posterior means f̄n = EΠn [f |Y ]. Then there exists a matrix sequence An ∈ Rm×m such
that for every n and every f ∈ Fn = {f1, . . . , fm} satisfying (11),

Ef‖f̄n − f‖L2 ≥ Ef‖f̂An − f‖L2 ,

where f̂An =
∑m
i=1(Any)ifi and y1, . . . , ym are defined in (12).

Proof. Recall from (8) that the posterior mean takes the form f̄n =
∑∞
k=1 akYkφk, where ak =

nλk
1+nλk

with (λk), (φk) the eigenvalues/vectors arising in the Karhunen-Loève expansion (5), and
Yk = 〈Y, φk〉L2 defined in (6). We can decompose each φk as

φk = ψk + gk, ψk =

m∑
i=1

ψk,ifi ∈ span{f1, . . . , fm}, gk ⊥ {f1, . . . , fm}

using the orthogonality relation (11), giving

f̄n =

∞∑
k=1

ak〈Y, ψk + gk〉L2ψk +

∞∑
k=1

ak〈Y, ψk + gk〉L2gk =: f̄1 + f̄2.

Define the matrix An ∈ Rm×m by

(An)ij = c2n

∞∑
k=1

akψk,iψk,j .
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Using that 〈Y, fj〉L2 = c2nyj from (12), we can rewrite

f̄1 =

∞∑
k=1

ak

 m∑
j=1

ψk,j〈Y, fj〉L2 + 〈Y, gk〉L2

 m∑
i=1

ψk,ifi

=

m∑
i=1

 m∑
j=1

[ ∞∑
k=1

akψk,iψk,j

]
c2nyj +

∞∑
k=1

akψk,i〈Y, g〉L2

 fi

=

m∑
i=1

(
(Any)i +

∞∑
k=1

akψk,i〈Y, g〉L2

)
fi.

Since f̄2 ⊥ f for all f ∈ Fn, ‖f − f̄n‖2L2 = ‖f − f̄1‖2L2 + ‖f̄2‖2L2 ≥ ‖f − f̄1‖2L2 . Writing
f =

∑m
i=1 θifi, where θi = 〈f, fi〉L2/c2n, and recalling 〈fi, fj〉L2 = δijc

2
n,

‖f − f̄1‖2L2 =

∥∥∥∥∥
m∑
i=1

(
θi − (Any)i −

∞∑
k=1

akψk,i〈Y, gk〉L2

)
fi

∥∥∥∥∥
2

L2

= c2n

m∑
i=1

(
θi − (Any)i −

∞∑
k=1

akψk,i〈Y, gk〉L2

)2

.

Using the independence between yi = 〈Y, fi〉L2/c2n and 〈Y, gk〉L2 for all i = 1, . . . ,m and k ≥ 1,
and that Ef 〈Y, gk〉L2 = 0, we obtain that for all f ∈ Fn,

Ef‖f − f̄n‖2L2 ≥ c2nEf
m∑
i=1

(θi − (Any)i)
2 +

( ∞∑
k=1

akψk,i〈Y, gk〉L2

)2


≥ c2n
m∑
i=1

Ef [θi − (Any)i]
2

= Ef‖f − f̂An‖2L2 .

Using Lemma 7 and (15), we thus obtain
inf
f̄n

max
f∈Fn

Ef‖f̄n − f‖2L2 ≥ c2n inf
A∈Rm×m

max
θ∈Θm

|Ay − θ|2, (16)

where the infimum on the left side is over all posterior means based on mean-zero Gaussian processes.
If thus suffices to lower bound the right-side, which is the minimax risk for linear estimators in the
one-sparse sequence model (14).

B.2 Minimax risk for linear estimators in the one-sparse Gaussian sequence model

We now study the minimax risk for linear estimators in the one-sparse model (14) for arbitrary noise
level σn > 0. Recall that θ = (θ1, . . . , θm)T has exactly one non-zero coordinate, which is equal to
one, so that the parameter space is Θm = {e1, . . . , em} for ei the ith basis vector, i.e. eij = δij .

A linear estimator of θ in model (14) takes the form

θ̂A = Ay,

for some matrix A ∈ Rm×m and y = (y1, . . . , ym)T . We now show that in this one-sparse model,
such estimators are dominated by diagonal homogeneous linear estimators in terms of their maximal
mean-squared error Eθ|θ̂A − θ|2, where | · | denotes the usual Euclidean norm on Rm and Eθ the
expectation in model (14) with true parameter θ. Hence the minimax risk for linear estimators is
attained by a diagonal homogeneous linear estimator.
Lemma 8. Let A = (aij) ∈ Rm×m be any matrix and let ā2 = 1

m

∑m
j=1 a

2
jj . Then

max
θ∈Θm

Eθ|θ̂A − θ|2 ≥ max
θ∈Θm

Eθ|θ̂āIm − θ|2.

In particular,
inf

A∈Rm×m
max
θ∈Θm

Eθ|θ̂A − θ|2 = inf
a∈R

max
θ∈Θm

Eθ|θ̂aIm − θ|2.

6



Proof. Using the bias-variance decomposition,

Eθ|θ̂A − θ|2 = |Eθ θ̂A − θ|2 + tr[Covθ(θ̂A)]

= |(A− Im)θ|2 + tr[ACovθ(y)AT ]

= |(A− Im)θ|2 + σ2
ntr[AAT ]

=

m∑
i=1

 m∑
j=1

(aij − δij)θj

2

+ σ2
n

m∑
i,j=1

a2
ij ,

since Covθ(y) = Covθ(w) = σ2
nIm. Since θ ∈ Θm = {e1, . . . , em}, let j∗ ∈ {1, . . . ,m} be the

index such that θ = ej∗ . Then

Eθ|θ̂A − θ|2 =

m∑
i=1

(aij∗ − δij∗)2 + σ2
n

m∑
i,j=1

a2
ij .

However, applying this last expression also with Ã = diag(A), the diagonal matrix with entries
ãij = aijδij , gives

Eθ|θ̂Ã − θ|
2 = (aj∗j∗ − 1)2 + σ2

n

m∑
i=1

a2
ii ≤ Eθ|θ̂A − θ|2,

a bound which holds for all θ ∈ Θm. Thus we need only consider the estimator θ̂Ã with diagonal
matrix Ã. Using the last display,

max
θ∈Θm

Eθ|θ̂Ã − θ|
2 = max

j=1,...,m
(ajj − 1)2 + σ2

nmā
2.

Since the matrix āIm is also diagonal, this further yields

max
θ∈Θm

Eθ|θ̂āIm − θ|2 = (ā− 1)2 + σ2
nmā

2,

so that it is enough to show (ā− 1)2 ≤ maxj(ajj − 1)2. Since the function ϕ(x) = (
√
x− 1)2 is

convex on (0,∞), Jensen’s inequality implies

(ā− 1)2 =

√√√√ 1

m

m∑
i=1

a2
ii − 1

2

≤ 1

m

m∑
i=1

(|aii| − 1)2 ≤ max
j=1,...,m

(ajj − 1)2

as desired.

The last lemma immediately gives the minimax risk for linear estimators in this model.

Lemma 9 (Linear minimax risk in the one-sparse model). Consider model (14). For θ̂A = Ay, we
have

inf
A∈Rm×m

max
θ∈Θm

Eθ|θ̂A − θ|2 =
mσ2

n

1 +mσ2
n

.

Proof. Lemma 8 implies that a linear estimator of θ with minimal maximal risk over Θm necessarily
has the form θ̂aIm = ay for some a ∈ R. For such an estimator and any θ ∈ Θm, the bias-variance
decomposition gives

Eθ|θ̂aIm − θ|2 = (a− 1)2 +mσ2
na

2,

which can be explicitly minimized at a∗ = 1
1+mσ2

n
with corresponding minimal risk

Eθ|θ̂a∗Im − θ|2 =
(mσ2

n)2

(1 +mσ2
n)2

+
mσ2

n

(1 +mσ2
n)2

=
mσ2

n

1 +mσ2
n

.

7



B.3 Proof of Theorems 1 and 2

We do not keep explicit track of constants in this version of the proof, noting simply they will finally
depend only on the dimension d.

Proof of Theorems 1 and 2. Let rd = 1
2(d+2)! , k = d(rdn)

1
2d+2 e and m = kd. By Lemma 8, there

exist orthogonal function f1, . . . , fm ∈ G with ‖fj‖2L2 = rdm
− 2+d

d . Set Fn = {f1, . . . , fn} so that
(11) is satisfied with c2n = rdm

− 2+d
d . Using (16) and Lemma 9,

sup
f0∈G

Ef‖f̄n − f‖2L2 ≥ max
f∈Fn

Ef‖f̄n − f‖2L2 ≥ c2n
mσ2

n

1 +mσ2
n

=
m

n

1

1 +m/(nc2n)

since σ2
n = 1

nc2n
by (13). Since m = mn satisfies m

c2nn
' n−1+1/d . 1, we deduce

max
f∈Fn

Ef‖f̄n − f‖2L2 &
m

n
' n−

2+d
2+2d ,

which proves Theorem 2. Theorem 1 then follows by applying Lemma 6 with Fn = {f1, . . . , fm} ⊂
G and γ2

n ' n−
2+d
2+2d .

C Background material

C.1 Minimax estimation

Describing the large sample behavior of the smallest achievable worst case risk over all estimation
procedures, minimax (estimation) rates are a standard tool to establish statistical optimality of
a method. For a statistical model (Pnθ : θ ∈ Θ) with sample size n and a loss function `, the
minimax risk is Rn = inf θ̂n supθ∈ΘEθ[`(θ̂n, θ)], where the infimum is taken over all estimators

θ̂n. The minimax rate is any sequence (rn)n such that rn � Rn. Any estimator θ̃n with Rn �
supθ∈ΘEθ[`(θ̃n, θ)] is called minimax rate optimal. By definition, the risk of minimax rate optimal
estimators is at most a constant factor larger than the minimax risk Rn.

If the posterior contraction rate is εn, then under very weak assumptions one can find an estimator
with worst case risk of the order εn, see Theorem 2.5 [2]. This in turn implies that the posterior
cannot contract faster than the minimax rate.

C.2 Sequence representation and posterior mean

We provide here some explanation behind the sequence representation (6) of the Gaussian white noise
model (2) and the derivation of the posterior distribution (7). Recall that we can realize a random
element f ∼ Π distributed according to a GP prior on L2[0, 1]d via its series expansion (5), namely

f =

∞∑
k=1

√
λkξkφk, ξk ∼iid N(0, 1),

known as the Karhunen-Loève expansion.

The Brownian motion W in (2) can equivalently be viewed via the action of integration on test
functions g ∈ L2[0, 1]d through Wg =

∫
[0,1]d

g(x)dWx, leading to the mean-zero Gaussian process
W = (Wg : g ∈ L2[0, 1]d) indexed by L2[0, 1]d with covariance E(WgWh) = 〈g, h〉L2 . In this
form, the Gaussian white noise model (2) can be interpreted as observing the Gaussian process
Y = (Yg : g ∈ L2[0, 1]d) with

Yg = 〈f, g〉L2 + n−1/2Wg, g ∈ L2[0, 1]d.

It is then statistically equivalent to observe the subprocess (Yk = Yφk : k ≥ 1) for any orthonormal
basis {φk : k ≥ 1} of L2[0, 1]d, in particular the basis corresponding to the Karhunen-Loève
expansion of the prior. The white noise model (2) is thus equivalent to observing

Yk =

∫
[0,1]d

φk(x)dYx = 〈φk, f〉L2 +
1√
n

∫
[0,1]d

φk(x)dWx =: θk +
wk√
n
,
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for k = 1, 2, 3, . . . and where wk ∼iid N(0, ‖φk‖2L2) = N(0, 1). The observations (Yk : k ≥ 1)
in the last equation and the original white noise model (2) are equivalent in the sense that each
can be perfectly recovered from the other as we now explain. One can clearly obtain (Yk) as in
the last display from the whole trajectory (Yx : x ∈ [0, 1]d) by simply computing the integrals
(
∫
φk(x)dYx : k ≥ 1). Conversely, suppose one observes (Yk : k ≥ 1). For any g ∈ L2[0, 1]d, one

can recover Yg in the second last display using the basis expansion g =
∑
k〈g, φk〉L2φk via

Yg =

∫
g(x)dYx =

∫ ∞∑
k=1

〈g, φk〉L2φk(x)dYx =

∞∑
k=1

〈g, φk〉L2Yk.

Since this holds for arbitrary g ∈ L2[0, 1]d, one can reconstruct the process (Yg : g ∈ L2[0, 1]d)
and thus the whole trajectory (Yx : x ∈ [0, 1]d) as in (2). This shows these two representations are
equivalent, and thus we may consider either as our ‘data’.

Viewing the prior Π through its series expansion (5), Π can be viewed as a prior on the space of coef-
ficients in the basis expansion of {φk} leading to the prior distribution f = (θk)k ∼ ⊗∞k=1N(0, λk).
Denoting by Pf = Pnf the distribution of the sequence representation (6), we have

Pf = ⊗∞k=1N(θk, 1/n).

Using Kakutani’s product martingale theorem ([1], Theorem 2.7), the measures (Pf : (θk)k ∈ `2)
are absolutely continuous with respect to ⊗∞k=1N(0, 1/n) with density

e`n(f) =
dPf
dP0

= exp

(
√
n

∞∑
k=1

θkYk −
n

2

∞∑
k=1

θ2
k

)
= exp

(√
n〈f, Y 〉L2 − n

2
‖f‖2L2

)
,

so that e`n(f) and `n(f) are the likelihood and log-likelihood of the model, respectively. Note that
the likelihood is invariant to the choice of basis {φk}, but the particular choice can (and will) provide
a convenient representation.

Since the likelihood factorizes in terms of the coefficients (θk)k, a prior that makes the (θk)k
independent as in (5) will yield similar independence in the posterior. The posterior distribution is
therefore conjugate and takes the form

f =

∞∑
k=1

θkφk, θk|Yk ∼ind N
(

nλk
nλk + 1

Yk,
λk

nλk + 1

)
,

where the exact form follows from standard one-dimensional conjugate computations for the normal
likelihood Yk|θk = N(θk, 1/n) with normal prior θk ∼ N(0, λk). This gives the form of the
posterior (7) and its mean (8).
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