
Appendix

A Omitted Proofs

Lemma A.1. Consider z−k = (1/m, . . . , 1/m), the sequence of mixed strategies z0i , z
k
i , . . . , z

kT ′

i

and the sequence of reward vectors vi(x0
−i), vi(x

k
−i), . . . , vi(x

kT ′

−i ) such that

zk·τisi ←
zk·τ−k
isi

· eηvisi (x
k·τ
−i )∑

s̄i∈Si
zk·τ−k
is̄i

· eηvis̄i (xk·τ
−i )

for all τ ≥ 0

Then, the following guarantee holds,

T ′∑
τ=0

〈
vi(x

k·τ
−i ), z

k·τ
i

〉
− max

xi∈Xi

T ′∑
τ=0

〈
vi(x

k·τ
−i ), xi

〉
≥ − logm

η
.

Proof. To simplify notation let t := k · τ and vti := vi(x
k·τ
−i ). It is known that the zti can be

equivalently described as (see Section 5.4.1 in [22]),

zti = argmax
zi∈Xi

[
γ

〈
t∑

s=0

us
i , zi

〉
− h(zi)

]
for all t ≥ −1

where h(zi) = −
∑

si
zisi log zisi . Now let gt(zi) := γ

〈∑t
s=0 u

s
i , zi

〉
− h(zi) which means that

zti = argmaxzi∈Xi
gt(zi) and let x∗

i := argmaxxi∈Xi

∑T ′

t=0 ⟨vti , xi⟩. Using a simple induction (see
Lemma 5.4 in [22]) one can easily show that

T ′∑
t=−1

gt(z
t
i) ≥

T ′∑
t=−1

gt(x
∗
i )

which implies that

T ′∑
τ=0

〈
vi(x

t
−i), z

t
i

〉
−

T ′∑
τ=0

〈
vi(x

t
−i), x

∗
i

〉
≥ h(z−1)

γ
− h(x∗

i )

γ
≥ logm

γ

B Proof of Lemma 3.4

To simplify notation we drop the dependence on xt
i and denote with fsi(vi) the si coordinate of

fxt
i
(vi). Notice that for any si, s

′
i ∈ Si with si ̸= s′i we have:

∂fsi
∂visi

= ηi
xt
isi

exp (ηi · visi)
(∑

s̄i∈Si
xt
is̄i

exp (ηi · vis̄i)
)

(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2 −

(
xt
isi

exp (ηi · visi)
)2

(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2

= ηix
t+1
isi

(1− xt+1
isi

)

Moreover,

∂fsi
∂vis′i

= −ηi
xt
isi

exp (ηi · visi)xt
is′i

exp (ηi · vis′i)(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2

= −ηixt+1
isi

xt+1
is′i
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It follows that ∥∇fsi(vi)∥1 = 2ηix
t+1
isi
· (1− xt+1

isi
) ≤ 2ηix

t+1
isi

and thus
∑

si∈Si
∥∇fsi(vi)∥1 ≤ 2ηi.

∥fxt
i
(vi)− fxt

i
(v′i)∥1 =

∑
si∈Si

|fsi(vi)− fsi(v
′
i)|

=
∑
si∈Si

|
∫ 1

t=0

⟨∇fsi ((1− t)vi + tv′i) , vi − v′i⟩ ∂t|

≤
∑
si∈Si

∫ 1

t=0

| ⟨∇fsi ((1− t)vi + tv′i) , vi − v′i⟩ |∂t

≤
∫ 1

t=0

( ∑
si∈Si

∥∇fsi ((1− t)vi + tv′i)∥1
)
· ∥vi − v′i∥∞∂t

≤ 2ηi∥vi − v′i∥∞

C Experimental Results

In this section we present several experimental results that show the fast convergence of CMWU to
CCE. In Figure 1 we compare the performance of CMWU dynamics (Algorithm 2) to the current
state of the art OMWU with step-sizes selected according to [13]. The game is a randomly generated
4-player, 10-strategy normal form game and in each run, the players’ initial conditions are randomly
generated. The update rule for (OMWU), also referred to as Optimistic Hedge, can be written as

xt+1
isi

=
xt
isi

exp (ηi ·
(
2visi(x

t)− visi(x
t−1)

)∑
s̄i∈Si

xt
is̄i

exp (ηi ·
(
2vis̄i(x

t)− vis̄i(x
t−1)

) (OMWU)

In order to account for the internal update rule of CMWU dynamics, we run the OMWU experiment
for a longer time and compute the regret of the OMWU dynamic only at each log(T )-th iterate. We
observe that CMWU allows for faster computation of CCE than OMWU.

(a) OMWU (decreasing step-sizes) (b) CMWU (constant step-size)

Figure 1: State-of-the-art OMWU [13] vs. CMWU in a 4-player 10-strategy game. We plot the
max over agents’ cumulative regret for several common random initializations. The shaded region
represents the max/min regret range across runs. CMWU allows for significantly faster computation
of approximate coarse correlated equilibria than OMWU, i.e., it needs significantly less oracles call
for the same accuracy level. For a zoom-in on the cumulative regret of CMWU for larger step-sizes η
see Fig. 2.

In Figure 2 we plot the cumulative regret of CMWU for various fixed step-size values. As the
step-size increases, we note empirically that the time required to compute a CCE decreases.
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Figure 2: Zoomed-in cumulative regret over time for Figure 1b with larger η values. As the learning
rate increases, antithetical with other approaches, the speed of convergence of CMWU to CCE
increases. Colored horizontal lines represent the respective theoretical regret bounds for each value
of η.

D CMWU Dynamics as an Anytime Algorithm

Our formulation of the internal update rule of CMWU dynamics in Algorithm 2 can also be framed
as an anytime algorithm. In this setting, the time horizon T is not known in advance and thus the
algorithm has to have bounded regret for all T . Typically one can obtain such an anytime algorithm
via a doubling trick, but we propose a simple modification of the internal update rule which achieves
the same effect in Algorithm 3. Our convergence result of Theorem 4.1 can also be extended to the
anytime setting, as we show in Theorem D.1.

Theorem D.1. Let x0, . . . , xT−1 be the strategy vector once each agent internally adopts Algorithm 3
with η = 1/2nV . Then for each agent i,∑

τ∈T ′

〈
vi(x

τ
−i), x

τ
i

〉
− max

xi∈Xi

∑
τ∈T ′

〈
vi(x

τ
−i), xi

〉
≥ −O(nV logm)

Moreover |T ′| = Ω(T/ log T ) and thus the distribution µ̂ :=
∑

τ∈T ′ µxτ /T ′ is a
O (nV logm log T/T )-approximate CCE.

Proof. Notice that the set T ′ is the same for any agent i. In order to simplify notation let T ′ =
{1, . . . , τk−1, τk, . . . , τK}. At the same time, note that if Algorithm 3 is run for T time-steps, then
K = Ω(T/ log T ). As in the proof of Theorem 3.2 we have that for any τk ∈ T ′, by definition of
Algorithm 3, ∣∣∣∣∣∣xτk

isi
−

x
τk−1

isi
· eηvisi (x

τk−1
−i )∑

s̄i∈Si
x
τk−1

isi
· eηvis̄i (x

τk−1
−i )

∣∣∣∣∣∣ ≤ 1

2τk−τk−1
≤ 1

k2
(3)

To simplify notation we rewrite the above inequality as

∥xτk − yτk∥ ≤ 1/k2

where

yτkisi ←
x
τk−1

isi
· eηvisi (x

τk−1
−i )∑

s̄i∈Si
x
τk−1

isi
· eηvis̄i (x

τk−1
−i )
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Algorithm 3 Anytime internal update rule of Clairvoyant MWU Dynamics

1: Input: η > 0

2: x0
i ← (1/m, . . . , 1/m) and z0i ← (1/m, . . . , 1/m)

3: T ′ ← {1} and τ ← 0

4: for each round t = 1, · · · , T − 1 do
5: if t == τ + log

(
|T ′|2

)
then

6: xt
i ← xt−1

i

7: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).

8: Updates zti such that for all si ∈ Si,

ztisi ←
zt−1
isi

eη·visi (x
t
−i)∑

s̄i∈Si
zt−1
is̄i

eη·vis̄i
(xt

−i)

9: T ′ ← T ′ ∪ {t} and τ ← t
10: else
11: zti ← zt−1

i

12: Updates xt
i such that for all si ∈ Si,

xt
isi ←

ztisie
η·visi (x

t−1
−i )∑

s̄i∈Si
ztis̄ie

η·vis̄i (x
t−1
−i )

13: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).
14: end if
15: end for

The proof is completed with the exact same argument as in Theorem 3.2. More precisely,

K∑
k=1

⟨vi(xτk
−i), x

τk
i ⟩ ≥

K∑
k=1

⟨vi(xτk
−i), y

τk
i ⟩ − |⟨vi(x

τk
−i), x

τk
i − yτki ⟩|

≥
K∑

k=1

⟨vi(xτk
−i), y

τk
i ⟩ −

K∑
k=1

∥vi(xτk
−i)∥∞/k2

≥
K∑

k=1

⟨vi(xτk
−i), y

τk
i ⟩ −O(V )

≥ max
xi∈Xi

K∑
k=1

⟨vi(xτk
−i), xi⟩ −O(nV logm)
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