
Appendix (i.e., Supplementary Material) of “Unsupervised Cross-Task

Generalization via Retrieval Augmentation” (Submission # 2811)

This appendix include more implementation details, additional experimental results for ablation
studies, and more analysis as well as findings. Please note that we have uploaded our code too
(named “ReCross” folder). We first further analyze the performance of ReCross with more ablation
analysis in Sec. A, and present detailed case studies for specific datasets in Sec. B, and introduce
more implementation details in Sec. C.

A Additional analysis

A.1 Utility analysis by grouping upstream tasks.

Table 4 shows the results of ReCorss under the scenarios where one specific group of upstream tasks
are excluded from the index. This allows us to evaluate the impact of various upstream task categories
on each downstream task.

Task None �MCQA �SUM. �EQA �Stmt. �CBQA �S2txt �TopCls �ParaIden

ARC-c. 38.44±0.99 39.36±0.86 37.94±1.51 39.54±1.24 37.94±1.51 39.32±0.54 37.32±1.77 37.94±1.51 37.94±1.51

anli_r3 35.76±0.90 36.18±0.88 36.90±0.83 36.78±1.04 35.72±1.92 35.84±2.35 37.42±0.97 35.92±1.32 36.42±1.20

hswag 47.28±2.95 40.56±8.71 49.28±5.79 39.02±7.49 46.46±3.39 37.62±5.98 46.00±6.32 39.14±7.50 44.34±6.19

obqa 39.58±2.80 36.12±0.88 38.32±2.33 38.52±2.08 38.32±2.33 35.98±2.37 36.32±2.86 38.32±2.33 35.94±1.70

piqa 41.42±1.02 39.60±1.35 40.46±2.08 41.64±2.65 41.30±2.47 41.56±1.46 40.26±2.17 40.42±0.99 40.56±0.80

squad2 30.58±1.61 31.70±2.02 31.64±1.63 33.10±2.48 30.70±1.61 31.06±1.91 30.70±1.61 31.60±1.90 30.70±1.61

cb 44.79±3.36 49.36±3.55 44.50±4.52 43.93±3.26 40.79±3.05 44.00±5.42 43.36±4.15 42.36±7.36 40.50±5.62

wic 50.58±0.24 49.82±1.12 49.96±0.93 50.08±0.96 48.96±2.47 48.90±2.16 50.30±0.79 49.74±0.73 49.42±0.92

wsc 61.46±1.47 58.04±2.78 60.23±2.66 60.54±1.23 58.85±3.67 59.19±2.47 59.69±2.21 60.19±1.45 59.54±3.27

wngrnd 55.46±0.88 53.30±1.52 52.34±3.94 51.00±4.94 54.44±3.12 53.82±2.59 52.20±5.32 52.20±3.33 50.74±3.96

@mean 44.53±0.42 43.40±0.92 44.16±0.47 43.41±1.20 43.35±0.89 42.73±0.75 43.36±1.08 42.78±1.38 42.61±0.96

Table 4: Performance on each downstream task when a given category of upstream tasks is re-
moved from the upstream dataset and prevented from being retrieved. The column names are
the task group names: MCQA=Multiple-Choice QA, SUM=Summarization, EQA=Extractive QA,
Stmt.=Sentiment analysis, CBQA=closed-book QA, S2txt=structure-to-text, TopCls=Topic Classifi-
cation, and ParaIden=Paraphrase Identification.

Our key findings are as follows:

• (1) Using all upstream tasks leads to the best overall performance, although for many target
tasks there are some particular groups that are less useful than others. The last row shows
this result and the summarization is the least useful group of upstream tasks.

• (2) The potential best performance of retrieval-augmentation methods can be even higher.
That is, if we have an enhanced version of ReCross that can avoid examples from less useful
groups, then the final performance can be even higher. For example, if ReCross were able
to ignore MCQA examples for ARC task during retrieval augmentation, then the overall
performance of ReCross can be even higher.

• (3) The utility analysis via grouping upstream tasks by their original task formulations does
not align with general intuition. For example, people may think that MCQA (multiple-choice
QA) should be more useful than other groups for the task of ARC, which is also a multiple-
choice QA dataset. However, removing MCQA doesn’t hurt the performance of ARC.
Instead, it actually improves the performance by 1 point. We argue that the example-based
utility is of more importance for analysis.

A.2 Template Perturbation

To investigate the importance of templates in retrieval quality, we investigated two methods of
perturbing the templates of query examples Q: 1. Simply concatenate the elements in the raw data. 2.
Change the words in the templates to random words to remove the semantic meaning. See figure 4
for an example. We than used these updated query examples and the same setup and configurations
described in Section 4.3 to perform unsupervised cross-task generalization.
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Figure 4: Example of concatenation and random word change perturbation.

Target Task T0-3B BART0 Random SBERT ReCross† ReCross Concat Change

anli_r3 26.00 30.50 35.34±1.52 32.64±2.53 36.70±0.53 35.76±0.90 34.14±2.24 32.84±6.33

h-swag 34.40 39.40 33.84±5.59 30.92±7.82 44.36±3.07 47.28±2.95 35.74±5.06 35.40±10.82

cb 53.93 39.64 47.07±1.25 48.00±3.28 44.50±4.20 44.79±3.36 39.29±3.48 44.00±5.36

wic 45.70 46.70 41.04±2.18 46.78±2.22 49.90±0.50 50.58±0.24 46.88±2.93 47.32±1.91

wsc 50.00 57.88 52.50±2.29 52.69±6.13 59.27±1.96 61.46±1.47 52.31±5.17 57.31±1.75

winogrande 47.60 51.10 52.68±0.83 52.18±3.20 54.60±1.35 55.46±0.88 52.28±0.57 54.76±2.07

arc-chan. 41.30 35.70 33.28±1.50 37.90±1.22 37.78±0.73 38.44±0.99 37.92±0.48 38.24±1.20

obqa 38.50 34.40 28.72±2.46 33.28±1.24 36.98±1.55 39.58±2.80 36.12±3.14 38.56±2.06

piqa 45.30 36.10 37.00±2.71 38.54±2.17 41.34±1.75 41.42±1.02 39.76±0.99 42.16±1.86

squadv2 30.60 32.40 29.86±5.46 29.46±0.84 30.26±1.54 30.58±1.61 30.74±1.66 30.10±1.22

All@mean 41.33 40.38 39.13±2.06 40.24±1.61 43.57±0.68 44.53±0.42 40.52±1.2 42.07±1.5

@median 41.33 40.38 39.93 40.91 43.43 44.31 40.96 41.69
@min 41.33 40.38 35.66 38.28 42.65 44.16 38.77 40.37
@max 41.33 40.38 40.59 41.76 44.51 45.07 41.61 44.33

Table 5: Two methods of template perturbation (concatenation and random word change) compared
with main experiment results.

Table 5 shows that when we simply concatenate the elements in raw data, the performance degrades
to a level close to random retrieval. On the other hand, if we construct the query examples as specified
by the templates, even if we break the semantics of the template, the performance boost is largely
preserved. This might mean that the formatting of input, for example the existence of parallel choices
in some form, potentially plays an important role in the performance gain.

A.3 Re-ranking for Random and SBERT
Target Task Random Random+RR SBERT SBERT+RR

anli_r3 35.34±1.52 31.58±4.39 32.64±2.53 28.10±4.83

h-swag 33.84±5.59 33.20±9.86 30.92±7.82 37.80±6.92

cb 47.07±1.25 40.71±1.84 48.00±3.28 40.86±7.80

wic 41.04±2.18 44.74±0.88 46.78±2.22 45.88±2.19

wsc 52.50±2.29 50.38±6.03 52.69±6.13 55.42±2.66

winogrande 52.68±0.83 49.44±13.80 52.18±3.20 53.02±3.49

arc-chan. 33.28±1.50 33.52±3.76 37.90±1.22 37.54±1.87

obqa 28.72±2.46 25.96±6.53 33.28±1.24 35.08±3.27

piqa 37.00±2.71 35.22±5.25 38.54±2.17 38.82±2.06

squadv2 29.86±5.46 25.28±3.93 29.46±0.84 29.56±1.40

All@mean 39.13±2.06 37.00±2.91 40.24±1.61 40.21±1.83

@median 39.93 37.06 40.91 39.81
@min 35.66 33.32 38.28 38.45
@max 40.59 40.26 41.76 42.82

Table 6: Random and SBERT with Re-Ranking
(RR) (bold font columns)

We evaluated training re-rankers for random and
SentenceBERT retrievers. Specifically, we ap-
plied the same distant supervision mining meth-
ods introduced in Section 3.4 on data retrieved
by Random and SBERT. Table 6 shows the
results. We can see that reranking does not im-
prove the results for both Random and SBERT
retriever. We believe it is because that the initial
retrieval results are not good enough, so that the
distant supervision mined from them are thus
also not of good quality.

A.4 Mining distant supervision for multiple iterations.

The algorithm that we proposed in Alg. 1 can be extended to an iterative process. That is, we can
continually update the reranker module and uses the retrieved results from the latest reranker to mine
the training data for the next iteration. Although this self-training style process sounds promising,
our empirical results show that the overall performance starts to saturate after the first iteration and
using the 2nd-iteration re-ranker won’t improve the overall performance anymore. We think there
can be better methods of continual learning to obtain a reranker module for better performance, while
it is beyond the scope of this work. We hope this can be a promising future direction.
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A.5 Transferring ReCross for Larger Base Models.

Recall that we choose to use BART0 as our base model for its smaller size and comparable results.
People may wonder what if we transfer the ReCross methods for larger base models. Therefore,
we conduct a pilot study on this. Considering the size of T0, we choose to only fine-tune its last
few layers of T0-3B and still use the prior materials from BART0 (i.e., the BART0-based index and
the trained reranker). We found that the performance is not improved over simply using T0-3B for
zero-shot inference. We conjecture there are two major reasons for this: 1) the parameter-efficient
tuning method need to added here to improve the training efficiency, 2) the BART0-based index and
the associated reranker do not align with the other models such as T0-3B. We admit this could be one
limitation of our methods – i.e., the index and reranker are specific to the base model that is used to
generate them. In order to address these challenges, we argue that studying the common space of the
index created by different encoders will be an important direction.

B Case studies

In this section, we discuss two specific datasets with detailed analysis as they have quite special
results in Table 1 and Table 4.

B.1 SuperGLUE CommitmentBank (cb)

For the SuperGLUE CommitmentBank dataset, instances retrieved by the BART retriever are pre-
dominantly multiple choice question-answering. However, heat map and remove-one-group analysis
shows that re-training on instances from multiple choice question-answering seems to undermine the
model’s zero-shot performance on this dataset. We examined the output of the model and discovered
that the model tends to make one type of error a lot more often when re-trained using multiple
choice question-answering: instead of answering yes, no, possible, or impossible, it picks part of the
discourse as its prediction.

For example:

Input: “Suppose A: I’m like, I’ll get a job some day and my boss will pay for it, I’ll be needed. B:
Yeah. A: Because, um, I didn’t want to go do it myself because I didn’t think I was really going to
use it. Can we infer that “he was really going to use it”? Yes, no, or maybe?”

Output: “A: I didn’t want to go do it myself because I didn’t think I was really going to use it.”

We believe this is because the model misunderstood the people having the discourse (A and B) to
be the options for answers. The abundance of the template of “A:xxx, B:xxx” in the SuperGLUE
CommitmentBank dataset might be the reason why the BART retriever retrieved mostly from multiple
choice question-answering in the first place.

B.2 SQuAD V2

For the dataset SQuAD V2, the retriever typically finds upstream examples from extractive question
answering datasets, which match the format of SQuAD V2 inputs closely. However, we find that
when we exclude extractive question answering examples from the upstream dataset, performance on
SQuAD V2 improves. To explain this unexpected result, we note that the majority of our test examples
for SQuAD V2, despite being formatted as extractive question answering tasks, are examples which
expect the model to output whether or not the question is answerable. The ‘context and question’
format of the SQuAD V2 examples causes the retriever to focus on extractive question answering
examples, but because most of the examples focus on answerability (a distinct task from extractive
question answering), these examples are not helpful.

We speculate that by excluding extractive question answering from the upstream dataset, the model
avoids these misleading irrelevant examples and is able to retrieve more related examples for de-
termining if a question is answerable. For example, our results show that when extractive question
answering examples are excluded, the retriever finds examples from tasks such as Wiki QA, which
asks whether or not a proposed answer is a valid answer to a given question (a more relevant task to
determining if a question is answerable).
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C Implementation details

C.1 Retrieval aggregation.

Note that the target size of our retrieved data is |R| and we have |Q| query examples. To retrieve |R|
examples, we search for the top-K examples for each query example, where K = d |R|

|Q|e, and then
take the first |R| of them when K|Q| > |R|. Our results have shown that this method is more effective
than other strategies, such as combining the distance scores generated for each query example. Note
that by retrieving the top-K examples, we may repeat examples that are close to multiple query
vectors. This effect is desirable because it allows us to naturally focus more on the especially relevant
upstream examples in re-learning.

C.2 Upstream learning.

Upstream tasks. Here we refer to the T0’s paper (cited in our main paper) for Figure ??, which
shows the list of upstream tasks and their categories. We use this taxonomy to conduct ablation study.
Please find the link to download these datasets from huggingface/dataset from our submitted code.
All datasets are publicly available and their license are suitable for open-source research. We do not
see any ethical concerns from using such datasets for learning a model and developing the ReCross
method to further improve their task generalization performance.

Training details. We specify the hyper-parameters and the concrete for training the BART0
models in our submitted code. Please read the “Readme.md” file where we point to the script and
configurations for training BART0. Our GPU type is Quadro RTX 6000 and 8000.

C.3 Retrieval Methods.

Similarly, we leave the details such as the hyper-parameters and the concrete pipeline for running the
retrieval augmentation methods (i.e., ReCross and the other baseline methods) in a unified framework
that is presented in our code.

D Others

D.1 Evaluation metrics.

Results with the standard EM. In Table 7, we report our main experimental results (the equivalent
results to those in Table 1) with the standard EM metric instead of the SoftEM metric used in Table 1.
We can see that the relative performance from the ReCross framework is about the same as in Table 1,
although the absolute numbers are mostly smaller due to a more strict matching by EM.

D.2 Empirical results for few-shot learning.

We show the empirical results related to the few-shot setting in Table 8.

Experimental setup. We assume that the labels of the examples in the query set are available,
and directly use them to fine-tune the upstream model for learning the target task. We tune the
hyper-parameters (epochs and learning rates) such that they do not overfit the few-shot data and
lead to a better performance over BART0. Note that the real performance of few-shot learning
performance may be lower than the ones in the table because there is not enough development data
for us to tune hyper-parameters for each target task.

Few-shot learning is not even better than the unsupervised ReCross. Although FS can outper-
form ReCross in some target tasks, the two approaches have very similar overall performance on 10
tasks. Even in such an unfair setting, ReCross shows great benefits to the users.

ReCross and Few-Shot together can produce better performance. We attempted to use both
the few-shot data and the retrieved data for generalization. The FS+RC(mix) method simply merge
the 16 labeled query examples (i.e., few-shot) and the 512 retrieved data (by ReCross) to get a larger
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Target Task T0-3B BART0 Random SBERT ReCross† ReCross �

anli_r3 24.30 24.30 27.80±2.12 25.62±2.35 31.02±0.87 30.18±1.48 5.88
h-swag 22.20 24.20 26.04±2.61 22.88±2.44 27.48±2.04 26.04±1.19 1.84

cb 49.29 26.79 31.64±3.27 34.21±5.12 30.00±2.65 31.57±6.18 4.79
wic 44.70 45.80 45.26±4.13 46.78±2.22 49.90±0.50 50.58±0.24 4.78
wsc 48.85 54.42 53.96±3.29 52.42±6.09 59.15±1.82 61.42±1.51 7.00

winogrande 47.00 49.50 50.44±0.57 50.80±2.89 54.16±1.18 54.42±1.10 4.92
arc-chan. 32.10 23.70 26.84±1.37 27.02±2.52 26.86±1.90 27.16±1.78 3.46

obqa 38.80 34.10 27.20±1.24 33.76±1.51 36.90±2.56 39.56±2.79 5.46
piqa 33.40 29.10 29.32±3.26 28.94±3.08 31.70±3.17 30.46±2.34 1.36

squadv2 23.70 26.30 24.20±4.34 21.90±1.17 22.96±1.95 23.32±2.16 -2.98

All@mean 36.43 33.82 34.27±1.66 34.43±1.14 37.01±0.94 37.47±0.73 3.65
@median 36.43 33.82 34.90 34.91 36.62 37.17 2.34

@min 36.43 33.82 31.33 32.91 36.22 36.93 1.05
@max 36.43 33.82 35.35 35.79 38.41 38.75 1.70

Table 7: The main experimental results (%) for unsupervised cross-task generalization in the

standard EM metric, i.e., the EM version of Table 1.

Target Task BART0 ReCross (ReX) Few-Shot(FS) FS+ReX(Mix) FS+ReX(2-stage)

anli_r3 30.50 38.44±0.99 34.59±2.33 35.71±1.59 36.26±1.48

h-swag 39.40 35.76±0.90 42.61±2.15 44.04±3.60 43.99±1.92

cb 39.64 47.28±2.95 52.57±6.11 62.64±5.68 65.36±6.70

wic 46.70 39.58±2.80 48.22±2.10 49.23±1.52 48.21±2.57

wsc 57.88 41.42±1.02 53.15±3.80 55.65±7.82 54.54±5.22

winogrande 51.10 30.58±1.61 54.24±1.57 53.24±1.81 53.87±1.72

arc-chan. 35.70 44.79±3.36 36.36±2.20 36.34±2.64 37.50±2.94

obqa 34.40 50.58±0.24 34.49±4.21 38.45±2.68 37.15±2.63

piqa 36.10 61.46±1.47 47.38±4.58 51.93±2.72 52.08±1.95

squadv2 32.40 55.46±0.88 41.92±6.68 51.30±3.23 50.38±6.46

All@mean 40.38 44.54 44.55 47.85 47.93

Table 8: The few-shot related empirical results in SoftEM.

dataset for fine-tuning BART0. The FS+RC(2-stage) method updates the model firstly with the 512
retrieved data and then train the fine-tuned model with the 16 FS data. Both methods show a great
enhancement over FS and RC used separately. This is to say, RC is still beneficial in the FS setting.
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