
A Adversarial spatiotemporal attack under different settings

A.1 Adversarial spatiotemporal attack under the white-box setting

Since the adversaries can fully access the data and label under the white-box setting, we directly use
the real ground truth traffic states to generate the adversarial traffic states, as detailed in algorithm 2.

Algorithm 2: Adversarial spatiotemporal attack under the white-box setting
Input: Previous traffic data, pre-trained spatiotemporal model fθ∗(·), pre-trained traffic state

prediction model gφ(·), maximum perturbation budget ε, victim node budget η, and
iterations K.

Result: Perturbed adversarial traffic states H′
t−T+1:t.

/* Step 1: Identify time-dependent victim nodes */
1 Compute the time-dependent node saliency Mt with Ht−T+1:t and Yt+1:t+τ by Equations 6-9;
2 Obtain the victim node set St by Equation 10 ;
/* Step 2: Attack with adversarial traffic state */

3 Initialize adversarial traffic state H′(0)
t−T+1:t = Ht−T+1:t;

4 for i = 1 to K do
5 Generate perturbed adversarial features X′(i)

t−T+1:t by Equation 11;

6 △H′(i)
t−T+1:t = ((X

′(i)
t−T+1:t −X

(i)
t−T+1:t) · St, 0);

7 end
8 Return H′

t−T+1:t = Ht−T+1:t +△H′
t−T+1:t.

A.2 Adversarial spatiotemporal attack under the black-box setting

The most restrictive black-box setting assumes limited accessibility to the target model and labels.
Therefore, we first employ a surrogate model, which can be learned on the training data or query the
traffic forecasting service [16, 17]. Then we generate adversarial traffic states based on the surrogate
model to attack the target model. In details, we use a surrogate model to generate the adversarial
traffic states based on algorithm 1, the generated adversarial traffic states can be used to attack the
target model.

B Proof
In this section, we show the details of the proof. First, we recall the assumptions as follows: let the
k-th layer embedding of spatiotemporal traffic models is

Z
(k+1)
i = σ(

∑
j∈Ni

eijM
(k)
j ), (13a)

where Z
(k+1)
i (Z(0) = Ht−T+1:t) represents the embedding of node vi in k + 1-th layer of the

spatiotemporal forecasting model. M(k)
i = Z

(k)
i W(k), where W(k) denotes the weight matrix for

k-th layer of the forecasting model. σ is an activation function, such as the sigmoid function, relu
function, etc. eij is the weight value used to aggregate node j’s neighbors. Ni represents the index
used to keep track of node j’s neighbors. Let λ denotes maximum weight bound in all layers of
the forecasting model, where maxk

∥∥W(k)
∥∥
2
≤ λ, ∀k ∈ {1, · · · , L}. We denote that the maximum

degree in graph G is C.

Assumption 1 The activation function σ used in spatiotemporal traffic forecasting model is locally
Lipschitz continuous as,∥∥∥∥∥∥σ(

∑
j∈Ni

eijM
(k)
j )− σ(

∑
j∈Ni

eijM
′(k)
j )

∥∥∥∥∥∥
2

≤ β

∥∥∥∥∥∥
∑
j∈Ni

eijM
(k)
j −

∑
j∈Ni

eijM
′(k)
j

∥∥∥∥∥∥
p

, (14)

where β denotes parameter of the activation function in fθ(·).
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Proof 1
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Remarks. Assumption 1 provides a more general activation function assumption. This assumption
is met by the ReLU, sigmoid, tanh function [10, 11, 2] etc. We also noticed that [31] also analyzes
traffic forecasting loss under query-based attack. Our theorem is different in that we first give the
worst performance bound of an adversarial traffic forecasting attack, but [31] does not provide the
worst performance bound. Second, our theorem is more general because we do not specify a specific
activation function.

C Data statistics

We conclude the data statistics for two-real world datasets in Table 5.

Table 5: Data statistics

Data Sample Nodes Traffic events
PeMS-BAY 34,272 325 16,937,700
METR-LA 52,116 207 7,094,304
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D Evaluation metric
The Global MAE (G-MAE), Local MAE (L-MAE), Global RMSE (G-RMSE), Local RMSE (L-
RMSE) are defined in Equations 16a-17b.

G-MAE =
1

m× n

∑
t

∥fθ(H′
t−T+1:t)−Yt+1:t+τ∥ (16a)

L-MAE =
1

m× n

∑
t

∥fθ(H′
t−T+1:t)− fθ(Ht−T+1:t)∥ , (16b)

G-RMSE =

√
1

m× n

∑
t

∥fθ(H′
t−T+1:t)−Yt+1:t+τ∥2 (17a)

L-RMSE =

√
1

m× n

∑
t

∥fθ(H′
t−T+1:t)− fθ(Ht−T+1:t)∥2, (17b)

where m represents the number of samples in test sets, and n denotes the number of nodes.

E Defense adversarial traffic states
Given a spatiotemporal forecasting model fθ(·), the adversarial training in spatiotemporal traffic
forecasting is defined as

min
θ

max
H′

t−T+1:t

t∈Ttrain

∑
t∈Ttrain

L(fθ(H′
t−T+1:t),Yt+1:t+τ ), (18)

where L(·) is the loss function measuring the distance between the predicted traffic states and ground
truth, and θ is parameters learned during the training stage. Ttrain denote the set of time steps of all
training samples. We use strategies that include (1) adversarial training (AT) [8]. We use adversarial
training with the PGD-Random adversarial attack method to generate the adversarial samples under
white-box setting. (2) Mixup [24]. We randomly sample the clean and adversarial samples to train
the forecasting model. The adversarial sample are also generated by PGD-Random method under
white-box setting. (3). We use adversarial sampels generated by our method STPGD-TDNS under
white-box setting to train the model.

F Further experiments

F.1 Experiments on other models

The other spatiotemporal traffic forecasting models are summarized as follows. (1) STGCN [10]
applies graph convolution and gated causal convolution to capture the spatiotemporal information
in the traffic domain. (2) To overcome the spatiotemporal forecasting problem, ASTGCN [11]
presented a spatial-temporal attention method for capturing dynamic spatiotemporal correlations. (3)
MTGNN [33] created a self-learned node embedding for forecasting traffic conditions that is also not
dependent on a pre-defined graph.

We report the evaluation results on other target models in Tables 6-8. By carefully selecting victim
nodes, the attacker can achieve more effective attack performance with less attack budget. In particular,
STPGD-TDNS achieves (62.23.80%, 55.86%) global performance improvement and (66.95.35%,
59.25%) local performance improvement on the PeMS-BAY dataset for MTGNN.

F.2 Ablation study under white-box setting

Since selecting a few set as the victim nodes is important to attack traffic forecasting model, we
conduct further ablation study to evaluate the method TDNS under the white-box setting. Table 9
reports the overall results on Gwnet under white-box attack.
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Table 6: Grey-box attack on STGCN for PeMS-BAY

Methods G-MAE L-MAE G-RMSE L-RMSE
non-attack 2.8324 - 5.1708 -

PGD-Random 5.7924 4.0880 9.5659 8.0560
PGD-PR 9.6118 8.1697 15.4945 14.6314

PGD-Centrality 6.9712 5.1407 11.9507 10.7645
PGD-Degree 6.3903 4.3974 11.8196 10.6630

MIM-Random 6.0461 4.4043 9.8926 8.4604
MIM-PR 9.5573 8.1512 15.2504 14.3865

MIM-Centrality 6.9748 5.1906 11.6700 10.4777
MIM-Degree 6.5071 4.5425 11.8073 10.6640

STPGD-TDNS 9.3440 7.8039 5.1708 14.8150
STMIM-TDNS 10.2563 8.7318 5.1708 15.0358

Table 7: Grey-box attack on ASTGCN for PeMS-BAY

Methods G-MAE L-MAE G-RMSE L-RMSE
non-attack 2.3581 - 4.9165 -

PGD-Random 5.2302 3.1082 11.5757 10.4736
PGD-PR 5.2565 3.1282 11.6177 10.5154

PGD-Centrality 5.2260 3.1101 11.5842 10.4797
PGD-Degree 5.2504 3.1377 11.6332 10.5305

MIM-Random 5.1907 3.0609 11.4680 10.3509
MIM-PR 5.2080 3.0787 11.5024 10.3861

MIM-Centrality 5.1733 3.0569 11.4584 10.3409
MIM-Degree 5.2042 3.0900 11.5236 10.4065

STPGD-TDNS 5.2635 3.1476 11.6880 10.5896
STMIM-TDNS 5.2929 3.1799 11.7534 10.6579

Table 8: Grey-box attack on MTGNN for PeMS-BAY

Methods G-MAE L-MAE G-RMSE L-RMSE
non-attack 2.1501 - 4.2637 -

PGD-Random 5.4748 4.6839 9.5824 8.7328
PGD-PR 4.7997 3.8990 8.7011 7.7349

PGD-Centrality 5.6504 4.8921 9.6820 8.8529
PGD-Degree 4.9282 4.0396 8.8791 7.9403

MIM-Random 5.7671 4.9483 9.9446 9.1007
MIM-PR 4.8927 3.9385 8.9900 8.0265

MIM-Centrality 5.6832 4.8927 9.8080 8.9533
MIM-Degree 4.9599 4.0260 9.0387 8.0839

STPGD-TDNS 14.9606 14.8017 21.9354 21.7272
STMIM-TDNS 16.0254 15.9020 23.3589 23.1604

Table 9: Ablation study under white-box attack on Gwnet for PeMS-BAY

Methods G-MAE L-MAE G-RMSE L-RMSE
non-attack 2.0288 - 4.2476 -

STPGD-Random 6.1477 5.0463 10.9217 9.5163
STPGD-PR 6.1586 5.0713 10.7584 9.3405

STPGD-Centrality 6.1723 5.0823 10.9468 9.5272
STPGD-Degree 6.1507 5.0495 10.9375 9.5282

STMIM-Random 5.9524 4.8091 10.6488 9.1917
STMIM-PR 5.9311 4.7954 10.4354 8.9565

STMIM-Centrality 5.9159 4.7786 10.5948 9.1180
STMIM-Degree 5.9570 4.8085 10.6692 9.2136
STPGD-TDNS 6.4709 5.4953 12.1764 10.7262
STMIM-TDNS 6.3018 5.2733 11.8618 10.3729
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F.3 Experiments at different time intervals

We conduct further experiments at different time intervals, including 5 minutes, 10 minutes, 15
minutes, 30 minutes, and 45 minutes. We report the results at different time intervals compared with
other baselines in Tables 11-15. Overall, as the time interval increases, the forecasting and adversarial
attack performances decrease, as reported in Table 10.

For example, the G-MAE increases from 3.9458 to 6.1329 from a time interval of 5 minutes to a
time interval of 60 minutes, with the attack performance degradation from 75.93% to 67.80%. One
possible reason is that as the time interval increases, the forecasting error of the spatiotemporal model
will increase. It is more challenging for the adversarial attack methods to estimate the target label to
generate effective adversarial examples.

Table 10: Grey-box attack on Gwnet for PeMS-BAY at different minutes interval

5 minutes 10 minutes 15 minutes 30 minutes 45 minutes 60 minutes
non-attack 0.9496 1.1367 1.2747 1.6154 1.8872 1.9750
STPGD-TDNS (ours) 3.9458 4.2924 3.6028 4.6629 5.2931 6.1329
performance degradation 75.93 % 73.46 % 64.62 % 65.36 % 64.34 % 67.80 %

Table 11: Grey-box attack on Gwnet for PeMS-BAY on 5 minutes interval

G-MAE L-MAE G-RMSE L-RMSE
non-attack 0.9496 1.7694

PGD-Random 3.7926 3.0507 10.1258 9.9924
PGD-PR 3.8226 3.0885 10.1880 10.0526

PGD-Centrality 3.7901 3.0586 10.1208 9.9950
PGD-Degree 3.8302 3.0839 10.1733 10.0395

STPGD-TDNS 3.9458 3.2351 10.7429 10.6116

Table 12: Grey-box attack on Gwnet for PeMS-BAY on 10 minutes interval

G-MAE L-MAE G-RMSE L-RMSE
non-attack 1.1367 2.2430

PGD-Random 4.2301 3.3311 10.9604 10.7417
PGD-PR 4.2628 3.3769 11.0127 10.7993

PGD-Centrality 4.2234 3.3378 10.9677 10.7543
PGD-Degree 4.2779 3.3778 11.0364 10.8219

STPGD-TDNS 4.2924 3.4586 11.4178 11.2231
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Table 13: Grey-box attack on Gwnet for PeMS-BAY on 15 minutes interval

G-MAE L-MAE G-RMSE L-RMSE
non-attack 1.2747 2.5761

PGD-Random 3.6073 2.7355 9.0194 8.6871
PGD-PR 3.6011 2.7540 8.9609 8.6240

PGD-Centrality 3.6004 2.7314 9.0132 8.6853
PGD-Degree 3.6206 2.7510 8.9892 8.6531

STPGD-TDNS 3.6028 2.7798 9.1164 8.7607

Table 14: Grey-box attack on Gwnet for PeMS-BAY on 30 minutes interval

G-MAE L-MAE G-RMSE L-RMSE
non-attack 1.6154 3.2933

PGD-Random 3.4294 2.3903 6.9265 6.0358
PGD-PR 3.4214 2.3999 6.8360 5.9331

PGD-Centrality 3.4666 2.4328 7.0459 6.1729
PGD-Degree 3.4190 2.3731 6.8721 5.9837

STPGD-TDNS 4.6629 3.7733 8.9025 8.1430

Table 15: Grey-box attack on Gwnet for PeMS-BAY on 45 minutes interval

G-MAE L-MAE G-RMSE L-RMSE
non-attack 1.8872 3.8593

PGD-Random 3.6825 2.4705 7.3557 6.2334
PGD-PR 3.6789 2.4925 7.3180 6.1898

PGD-Centrality 3.6872 2.4897 7.4748 6.3791
PGD-Degree 3.7254 2.5300 7.4270 6.3325

STPGD-TDNS 5.2931 4.3660 9.7466 8.9135
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