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A Biological Background

Fish species prefer different temperatures and will change their swimming patterns or vertical
alignment based on the surrounding water temperature [[1]. Generally, adult salmonids prefer water
temperature within the 8-9 degrees Celsius range [2]], whereas yellowtail amberjack and red seabream
like higher temperatures [3} 4]]. Caged fish also show distinct swimming patterns at daytime and night.
They move very little and stay closer to water surface after sunset, but gradually become more active
and swim deeper after sunrise as the amount of sunlight increases [3} 6]. Additionally, when fish in
the cage reach a certain crowding density threshold, they attempt to maintain their optimal personal
space while still being able to move around [[7]] by forming a circular schooling pattern, consistent
with the Boids model [8]. Fish normally react to their neighbors within a distance of 2 to 3 body
lengths (BLs) [9,[10] and can learn to avoid cage walls [[11}112]. The reaction appears regulated by
visual stimuli [7], as well as the lateral line system, which allows the fish to feel the vibrations of
their neighbors [13]]. Fish align their orientation primarily to the fish in front of them, and adjust
speed as necessary to avoid collision with neighbors [[10]. Caged fish like salmonids often settle
into two or three vertical layers [14] since they typically group with similarly sized fish [15], where
larger fish tend to swim at lower depths and smaller fish stay at higher depths [[16}[17]. Moreover,
the decision making interval of 95% of fish species is controlled by the Mauthner cells (M-cells)
that trigger a rapid escaping movement (C-start) for risk avoidance and command neurons active in
decision-making [18}[19]. Miller et al. [20] studied zebrafish social groups and found that action
potentials for swimming, which is generated by the neural circuit, lasted for a duration of 50-200 ms.
Since salmonids have lower body temperature whereas yellowtail amberjack and red seabream have
similar body temperatures as zebrafish, we set 200ms as the the decision-making interval for coho
salmon and 100ms as that for yellowtail amberjack and red seabream.

B Environmental Background

Colors underwater are determined by the intrinsic colors of objects and the scattering and absorption
of light. The main factors that determine the absorption and scattering are the properties of the water
itself and the particulates in the water, usually chlorophyll and sediments [21]. Water absorbs light
of different wavelengths at different rates, characterized by attenuation coefficients, which can be
changed by the presence of particulates [22] 23]]. The exact relationship between transmitted light
and the light absorbed is expressed by the Beer Lambert law [21]]. Chlorophyll absorbs blue light the
most, followed by red, then green. Thus a higher concentration of chlorophyll shifts the coloring in a
reddish green direction. Sediments in the water scatter the light, altering the amount of light absorbed
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as well as changing the attenuation coefficients. Sediments and suspended solids also create turbidity
and occlusion underwater. In our model, sediment concentration is the main driving force behind
turbidity.

C Simulation Setting

We created eleven simulation environments to assess the performance of proposed fish simulation
framework and generate synthetic dataset for computer vision tasks. The configuration of each
environment is available in Table|l} The first three environments reproduce the underwater scenes in
fish farms we collected field data from and are used as default scenes to pretrain each of the three
species. The other eight environments are used to examine the adaptiveness of the framework and
transfer learning is applied. Values in the cage size column are in units of meter. The biological and
environmental parameters used in these scenes are summarized in in Table[2]

Table 1: Simulation environment configurations

| Species | Fish Number [ Body Scale [ Cage Size | Cage Shape |
Coho salmon 1000 [0.9, 1.1] Edge of 3, Height of 4.6 | Octagon
Yellowtail amberjack | 45 [0.9, 1.1] 3x3x3 Cube
Red seabream 10 [0.9,1.1] 3x3x%x3 Cube
Red seabream 10 [0.9,1.1] S5x5x%5 Cube
Red seabream 50 [0.9, 1.1] 3x3x%x3 Cube
Coho salmon 300 0.5 Edge of 3, Height of 4.6 | Octagon
Coho salmon 300 1.0 Edge of 3, Height of 4.6 | Octagon
Coho salmon 300 1.5 Edge of 3, Height of 4.6 | Octagon
Coho salmon 1000 0.5, 1.0 or 1.5 | Edge of 1.8, Height of 3 | Octagon
Coho salmon 1000 0.5, 1.0 or 1.5 | Edge of 3, Height of 4.6 | Octagon
All three species 300 [0.9,1.1] Edge of 3, Height of 4.6 | Octagon

D Effects of Light Intensity and Temperature on Fish Behavior

A fish prefers to stay within a certain area of the tank where its light intensity preference matches the
local light intensity computed by the Beer-Lambert law:

I=1yxe (1)

where [ and I denote the light intensity at the local depth and on water surface, a is an attenuation
coefficient and d is the depth of fish. [y and « are valued based on the field data collected from
aquaculture sites as described in Sec. [ Any deviation of I from the light intensity preference range
results in a vertical delta velocity (Avyn,) for the fish as shown in Eq. @):
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where parameters [iseep and Ingeep control the steepness of the reaction to light and are set in an
identical manner to [9]. Iiprer and Ipprer denote the lower and upper bounds of the light preference
interval and are valued based on the biological studies of each simulated species [24}13,14,15]. Similarly,
a fish likes to stay in the area where the local temperature satisfies its temperature preference. We
calculate the temperature induced vertical delta velocity (Aviemp)
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where the under-water ambient temperature (') is obtained using a two-layer method based on the
studies by [25] and [26]]. The temperature response steepness parameters (Tigeep and Thgeep) are set
to be the same as those in [9]], and the bounds of the temperature preference interval (Tiprer and Thprer)
are determined according to [3], [4] and [2].



Table 2: Biological and environmental parameters in fish simulation

[ Description | Parameters | Unit | Value |
Body length BL m [0.34, 0.52]
Speed while schooling (coho salmon) vy BL/second | [0.2, 1.9]
Speed while schooling (yellowtail amberjack) vy BL/second | [0.2,2.1]
Speed while schooling (red seabream) vy BL/second | [0.2,2.7]
Initial speed Vg BL/second | 0.2
Maximum delta speed in cage environment AUmax BL/second | 4.1
Light intensity at water surface (Onmaehama) Iy PAR [0, 519.69]
Light intensity at water surface (Nishiki) Iy PAR [0, 15.13]
Light attenuation coefficient (Onmaehama) a N/A 1.5
Light attenuation coefficient (Nishiki) a N/A 0.26
Lower bound of preferred light intensity (coho salmon, regular size) | Jiprer PAR [1.1,4.5]
Lower bound of preferred light intensity (coho salmon, small size) Tipref PAR [1.1,4.5]
Lower bound of preferred light intensity (coho salmon, large size) Lipref PAR [0.1,0.5]
Lower bound of preferred light intensity (yellowtail amberjack) Lipref PAR [0.01, 0.02]
Lower bound of preferred light intensity (red seabream) Lipref PAR 5.75
Upper bound of preferred light intensity (coho salmon, regular size) | Inprer PAR [3.5,7]
Upper bound of preferred light intensity (coho salmon, small size) Thpret PAR [17.5, 35]
Upper bound of preferred light intensity (coho salmon, large size) Thpret PAR [2.5,4]
Upper bound of preferred light intensity (yellowtail amberjack) Thpret PAR [341.55, 805]
Upper bound of preferred light intensity (red seabream) Thpret PAR 368
Steepness parameter of light reaction Listeep PAR -20
Steepness parameter of light reaction Thsteep PAR 1000
Lower bound of preferred temperature (coho salmon) Tipref °C 8
Lower bound of preferred temperature (yellowtail amberjack) Tipret °C 18
Lower bound of preferred temperature (red seabream) Tipref °C 20
Upper bound of preferred temperature (coho salmon) Thpref °C 9
Upper bound of preferred temperature (yellowtail amberjack) Thpref °C 28
Upper bound of preferred temperature (red seabream) Thpref °C 28
Steepness parameter of temperature reaction Tisteep °C -60
Steepness parameter of temperature reaction Thsteep °C 80
Temperature at water surface at noon Turt °C 8.3

E Deep Reinforcement Learning

Proximal Policy Optimization Proximal Policy Optimization (PPO) algorithm [27] improves
upon vanilla policy gradient method by providing more stability and reliability during learning. It
is a variant of Trust Region Policy Optimization (TRPO) algorithm [28] with significantly simpler
implementation by optimizing a surrogate loss instead of KL divergence constraints. In our work, the
clipped surrogate loss L°“¥ (#) with respect to the current policy parameters € is defined as follows:

LEUIP(0) = B, q, [min(1y(9) Ay, clip(ls(6),1 = &1+ €) Ay
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mg and my_, are current and old policies. {;(0) is the likelihood ratio of the action probability under
current policy over that of old policy. As the new policy deviates from the old policy, 1;(0) will
deviate from 1 and be constrained by the interval [1 — €,1 + €]. This means whenever excessive
policy update happens the gradient will be set to zero and therefore prevents the new policy from
being too different from previous one. A; represents the generalized advantage estimation [29]]. A
minimum value is then chosen to obtain a lower bound of loss.

Since the parameters between the policy and value function are shared in networks, we further
integrate the squared-error loss of value function (L,'¥ (¢)) and an entropy term (S[my](s;)) ensuring
sufficient exploration to obtain the final objective loss:

LtC:LIP+VF+S(9) =E., ., LEYP(9) — cLYF (0) + 65[770](30}

where value function loss coefficient c is valued at 0.5 and entropy coefficient 3 is valued at 0.0005.



Parameters in Action and Reward Definition The values of parameters used in action definition
and reward function for PPO are listed in Table [3| The weight of each reward term is set according to
the objective of each training. For example, we set the boundary avoidance weight to be the highest
when the DRL controller was trained for the very first time because the primary goal of the training
for the fish was to avoid the collision to the fish cage. When it is learnt, we increased the weights for
the neighbor collision penalty and energy consumption penalty so that fish learn the smooth schooling
in an environment as well as energy saving, which is an important benefit of being in a school [30].

Table 3: Parameters in action definition and reward function

| Description | Parameter | Unit | Value |

Sensing range (coho salmon and red seabream) sense BL 3
Sensing range (yellowtail amberjack) dgense BL 2
Clamping angle of rotation about z-axis 07* Degree 10
Pitch angle threshold ot Degree 53
Speed threshold V5 BL/second | 0.3
Probability to start chase mode at each time step | p, N/A 0.005
Neighbor collision weight (pretraining) wNC N/A 0.5
Neighbor collision weight (transfer learning) wNC N/A 4
Boundary avoidance weight wBP N/A 2
Neighbor interaction weight wNP N/A 1.5
Rotation penalty weight (pretraining) w” N/A 0.001
Rotation penalty weight (transfer learning) w” N/A 0.5
Speed penalty weight (pretraining) w? N/A 5
Speed penalty weight (transfer learning) w? N/A 10
Chase reward weight for aggressors wes N/A 8
Escape penalty weight for targets W' N/A 1

PPO Training Configuration We present the training hyperparameters of PPO in Table |4} Similar
configurations were used for pretraining and transfer learning phases except the total number of steps
when training coho salmon. This is primarily due to the variation in environment configurations,
which makes retraining necessary. We also include an illustration of the learning curves of the three
species in Fig. [T|to showcase the performance improvements over the entire training process.

SAC Training Configuration We report the training hyperparameters of Soft Actor-Critic (SAC)
algorithm [31] that we employed to train the fish agents aside from PPO in Table[5] Since we only
compare the results of SAC and PPO in the default environment of coho salmon, the total numbers of
time steps for SAC agents in pretraining and fine tuning phases are also four and one million.

Table 4: Hyperparameters used in training fish agents with PPO.

| Parameter | Value |
Value function loss coefficient for PPO ¢ 0.5
Entropy coefficient for PPO 5 0.0005
PPO clip threshold e 0.2
Regularization parameter for GAE A 0.95
Batch size 1024
Buffer size 10240
Learning rate 0.001
Num. of epochs 3
Discount factor ~y 0.99
Time horizon 64
Total number of steps (pretraining, coho salmon) 4 million
Total number of steps (transfer learning, coho salmon) 1 million
Total number of steps (pretraining, yellowtail amberjack and red seabream) 2 million
Total number of steps (transfer learning, yellowtail amberjack and red seabream) | 2 million
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Figure 1: Learning curves from PPO of the three fish species in pretraining and transfer learning
phases in their corresponding default environments. Performance is measured by mean cumulative
reward per episode smoothed by exponential moving average. Notably, coho salmon took four million
time steps during pretraining followed by one million during transfer learning because of its larger
quantity. Nevertheless the other two species were trained for two million steps in both phases.

F Physically Based Environment Simulation

Light Attenuation The simulation colors the water by first marching rays in fixed distance steps
for every pixel on screen. The ray’s direction is determined based on the pixel’s location when
transformed into world space. The current color of the pixel is then treated as incoming light, and
becomes the input for the attenuation calculation using the Beer-Lambert Law shown in Eq.

Iy represents the incoming light (or in this case the current associated pixel color) of the ray, a (or
in this case a,p) is the attenuation coefficient of red, green or blue color in the vector ac which
is determined by three components that we explain next, and d is the distance the ray of light has
traveled through the water [32]. Then the simulation calculates the ambient light at the current point
the ray is at. This is calculated by first summing up all the light that is heading towards the current

Table 5: Hyperparameters used in training coho salmon agents with SAC.

| Parameter | Value |
Target smoothing coefficient 7 0.005
Initial entropy coefficient « (pretraining) | 0.3
Initial entropy coefficient « (fine tuning) | O
Average steps per update of policy 1000
Batch size 1024
Replay buffer size 102400
Learning rate (pretraining) 0.001
Learning rate (fine tuning) 0.0005
Discount factor ~y 0.99
Time horizon 64
Total number of steps (pretraining) 4 million
Total number of steps (fine tuning) 1 million




point, and multiplying it by the dot product of the sunlight direction and ray direction. Next, the
output of the ambient calculation is multiplied by the output of the attenuation calculation and is then
added to a running total. Then the ray marches for a step in its set direction and the process repeats
until it reaches its maximum distance. Once that is done, the running total is returned as the output
color for the pixel associated with the given ray.

The attenuation coefficient vector consists of three parts: the attenuation of the water itself, the
attenuation of chlorophyll, and the attenuation of the suspended sediments. Each part is a 3 dimen-
sional vector representing the attenuation coefficients for red, green, and blue. The values of these
coefficient vectors are determined based on data found in [32,|33}134]. The coefficients of each are
combined together, with the chlorophyll and sediments both multiplied by the concentration of their
respective parameters using the model described in [32] and [35]. The formula is as follows:

aC = aCpw 1 COch1ACchl + COsedACsed €]

where acy,, is the attenuation coefficient vector of the base water, co.y is the concentration of
chlorophyll, acy is the attenuation coefficient vector of chlorophyll, cosq is the concentration of the
sediments, and acgq is the attenuation coefficient vector of sediments.

The factors such as the concentrations of sediments and chlorophyll are set by the simulation to
random values from within user defined ranges. These ranges are based off values found in real
world, like those laid out in [33]] and [35]. The scene uses these factors to determine everything else
about the environment. For example, the turbidity of the water is determined by the concentration of
suspended sediments.

Light Scattering A light scattering system computes the light refraction based on the medium’s
properties such as the particles inside a fluid [36]. It uses a phase function, which can be obtained
from a volume scattering function (VSF), to calculate the amount of light traveling through a medium
and being scattered towards the viewer. We use the Kopelevich model [37]] as the VSF to determine
how different wavelengths of light are scattered underwater using large and small suspended particles.
It can be formulated as the following equation [38]]:

1.7 0.3
VSF = g+ s (50) 4w (5F) ®
where 3, 8, and 3; denote the VSF of pure sea water, small and large particles respectively and
their values can be selected from tabular values in [37] by performing visual inspection. v, and v; are
the concentrations of small and large particles (in units of parts per million). 1) is the angle between
the light and view directions, and A is the wavelengths of red, green and blue. The resulting VSF is
stored in a vector that is used to calculate the scattering coefficients for the three colors via numerical
integration using the trapezoidal rule. Finally, the VSF vector is divided by the scattering coefficients
to obtain the phase function for each of the colors, which is then used to multiply the output of the
ray marching system to scatter the color based on the RGB value.

G Characteristics of fish school states

Data provided by the simulation are body length [py,, position x = (z, y, z) of fish body center, speed
v and its direction vector d = (d;,dy,d,) (Jd| = 1) for each individual fish and each time slice.

The velocity vector is v = vd, and the deviation from the center of the school x, = % Zfil X; 18
r; = X; — X, where N denotes the number of fish in the school.

Order parameters According to [39}140] two parameters, a polar order parameter P and a normal-
ized angular momentum M of the school, are used to characterize state of school. The parameters P
and M are given respectively as

1 N 1 Nr-><v- 1 Nr-xd-
P=|-Sq|, M=|S XV _| N E X 6
93 N 2 el |~ [ & e ©

in the same manner as in Ref.[40]. All fish move in the same direction in parallel when P ~ 1
[39,140], which cannot be observed in a fish cage. A large M ~ 1 and small P ~ 0 brings about the
milling state, in which fish in a school rotate around an axis regularly [39, 40]. The smaller M and P
indicate that the state is swarming state rather than milling state [39].
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Figure 2: Comparison between (a) real and (b) simulated obtained images. For both (a) and (b), left,
middle, and right panels are respectively the fish-eye view picture, black and white images made
from the left ones with some threshold, and density of black pixels for each bin obtained from the
fish-eye images by dividing them into 16 annuli whose centers are the center of each picture.
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Figure 3: Fish detection model network architecture. This module is a region proposal network based
on the YOLOv4 model. A sliding window is added as a first layer to crop sub-windows to magnify
smaller fish in original images, which effectively avoids false negatives during smaller fish detection.

Similarity between pictures of real and the simulation To see how the simulation results are
consistent with the real data obtained from the field work, we compare the images obtained by both of
them. These images are fish-eye lens view, and black and white images are made with some threshold
from them. We compare the density of black pixels for each bin obtained by dividing each image into
16 annuli. As a result exhibited in Fig. |2} the simulation image seems to be consistent with the real
one.

H Fish Counting

Image Pre-Processing The first module converts the input video to a sequence of images and
applies denoising to produce the data format required by the fish detection module. The denoising
process applies median blur to the images to reduce the effect of noise, resulting from caustics and
sediment and other particles, often seen in underwater photography.



Fish Detection Fig. 3| shows the network architecture of the fish detection model, based on
YOLOv4 [41]]. The input to the model is a sequence of images, and the output is a list of proposed
bounding boxes (z, y,w, h), where (z,y) is the coordinate of the top left corner of the bounding box,
and w and h are the width and height of the bounding box, respectively, with an associated class
label and confidence score. We set the confidence score threshold to be 0.5 and any proposed regions
below the threshold are discarded. In order to solve the issue of false negatives in the case of smaller
fish, a sliding window is added as the first layer of the network. Each window crops a sub-image
S1; with a size of 416x416 from the original image /. The sliding window is shifted repeatedly
horizontally and vertically by an amount equal to half the window size, producing a sub-image SI;
at each position that is fed to the YOLOv4 network. The produced number of sub-images, R, is

computed using Eq. (7).
+ 1> X ( + 1) , )

X

where S1yiqn and Slpeign are the width and height of the sliding window, and Iyiqn and Iheigh; are
the width and height of the original image, respectively. s is a step-size term and is set to be half of
the sliding window size. This technique magnifies small fish in the original images. The computation
time increases by a factor of R when processed serially; however, it helps to reduce the number of
false negatives which is a major problem with the original YOLOv4. Note that we concatenate all the
results from the cropped images into a single array, and apply Non-Maximum Suppression (NMS)
to produce a single output, unlike the standard YOLO where the NMS is applied just after a single
detection block.

Thcight — Sheight
s

Lyian — STwidn

Fish Counting After the completion of the detection module, the estimation of fish count is
tabulated for each frame, and the maximum value is taken as the final estimate of the number of
fish in the cage. Despite its simplicity, we found the MAX method to give us the highest counting
accuracy.

Training We trained the model for 2000 epochs on a single Nvidia GeForce GTX 1080 Ti with an
initial learning rate of 0.001. The training process completed in 5 hours. We then manually annotated
5 frames from 5 videos recorded at a real fish farm-a total of 25 images—and used them to fine-tune
the model.

I Field Data collection

We collected data on four species (two salmonids, yellowtail, red seabream) at marine fish cages. The
salmonids cages are in the north, and the yellowtail and red seabream are in the south. Our goal was
to measure the physical properties and dimensions of the environment and fish, to set the parameters
of our simulation, and to record video of caged fish schooling behavior. In this appendix, we will
discuss that data collection process and show our results.

Location In March, May and July of 2021, we collected data from coho salmon and trout salmon
cages on a northern fish farm (latitude 38.465, longitude 141.480). Both fish cages were cubes with
a side length of 6.5m (Fig. a)). Then, in June and November of 2021, we collected data from
yellowtail and red seabream cages on a southern fish farm (latitude 34.215 and longitude 136.386).
Both cages were cubes with side lengths of 3m (Fig. @]b)).

Equipment Fig. [5 shows the equipment used. Fig. [5a|is circuit board used to measure light
intensity. A Raspberry Pi is used to collect data from the TSL2571 light intensity sensor. To help it
withstand the water pressure, the circuit board was placed in a clear smartphone case with the sensor
positioned to avoid being obstructed. Additionally, the case was placed in a waterproof housing. After
waterproofing, the sensor was attached alongside cameras to PVC pipes and used to measure light
intensity at various depths underwater. Fig. [5b|shows the device used to measure water temperature,
the SK SATO SK1260. The sensor must be in direct contact with sea water, so it was lowered into the
ocean. To film video of the fish schooling behaviors, we used KODAK 4KVR360 cameras. A camera
placed at the center of the floor of the cage pointing up (Fig[5c) was fixed in place with four ropes.
The cameras placed at the sides of the cage facing the center (Fig[5d) were fixed to PVC pipes and



(a) In north (b) In south (c) Camera locations

Figure 4: Fish firming cages and camera locations. (a) Salmonoids fish cages in north (coho salmon
and trout salmon), (b) yellowtail and red sea bream fish cages in south, (c) camera locations in a cage.

(@)

Figure 5: Equipment used at the fish cage. (a) light intensity sensor, (b) water temperature sensor,
(c) center bottom camera, (d) side camera. A light intensity sensor is set behind the camera, (e) fixing
PVC pipe, with cameras attached, to the cage, (f) cameras attached to a PVC pipe.

lowered to the target depth. When filming from multiple depths simultaneously, the cameras were
fixed to long PVC pipes at 1m intervals, as in Fig[5f] The PVC pipe fixtures are shown in Fig[5¢] By
fixing the T-shaped part to the iron pipes of the cage, long video shoots are possible. The cameras are
placed at R, G, B, and Y as shown in Fig.

Environment Data  Fig.[6h shows an example of the results of our light intensity measurements.
The measurements were taken at the southern fish farm in November 2021, starting at 11:10 AM.
The x-axis shows the number of minutes since the start, while the y-axis is the light intensity (Lux).
Light blue shows the readings at a depth of Sm (center bottom), red shows readings at 3m (side),
yellow shows readings at 2m (side), and black shows readings at 1m (side). It can be seen that light
has lower intensity at greater depths. Sudden noisy drops in brightness are likely the result of fish
blocking light from reaching the sensor. Fig.[6b shows the temperature at each depth. The top green
line is data from the southern farm in June. The rest are data from the north farm, recorded in (from
bottom to top) March, May, and July. Although there are seasons without any temperature variation,
at other times the temperature can differ by 3-4 degrees. During the period from May to July, when
water temperature exceeds 10 degrees, the chlorophyll content of the water increases, lowering the
clarity of the water.

Body Measurements and Fish Count The number of fish in a fish farm is unclear. Fish are
purchased by weight as juveniles. This weight is divided by an average weight to give an approximate
count, but this can result in up to 50% error. A fish’s value on the market is determined by weight.
Therefore, fish farmers try to monitor the state of their fish (Iength, height, width, and weight) in
order to optimize their feeding, but the process is dependent on farmers’ intuition. The only way to
accurately measure a fish is by hand after removing it from the watelﬂ To do so, fish are scooped

“These measurement methods, while designed to avoid injuring the fish, are neither completely safe nor
particularly accurate. There is a demand for an alternative method to obtain these data from video data
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Figure 6: Environment data: (a) November 2021, Northern farm light intensity. From bottom to top:
center bottom (5m), 3m, 2m, 1m. (b) Water temperature for each depth.

(a) Scooping fish (b) Fish body measurement (c) Fish counting

Figure 7: Fish body measurement and counting process

up by a net a few fish at a time; when the fish are released again, they are counted by eye. When
populations are small this process can be performed for all fish, but it is not realistic for more than
1000 fish. For such cases, the process is performed for approximately 10% of the fish and the result is
multiplied by 10, giving an inexact value. Fig. [7c shows the current fish counting process.

Fish body measurements are even more difficult. To measure a fish, the fish is removed from the
water and anesthetized to prevent injury, and measured by hand with a tape measure (see Fig. [7).
Fig. [ shows the body lengths of 10 randomly selected fish. Fig. [8a] shows the results for salmon
(coho salmon and trout salmon), and Fig. [8b] shows the results for yellowtail and red seabream. The
x-axis shows the month the measurement was performed. The lines show the range of body lengths,
and the symbol is the average length (coho salmon: gray, trout salmon: orange, yellowtail: yellow,
red seabream: red). Salmon farming begins in December, and they are shipped to market in July.
The graph shows that there exists large variation in salmon body length, which gets smaller as July
approaches. The shipping date for yellowtail and red seabream is not fixed; they are shipped once
they reach a set size.

Video Recording Videos at the fish farm were filmed with KODAK 4KVR360 cameras. One
camera was placed at the bottom center of the cage, facing the ocean surface. The others were
attached to PVC pipes placed at the center of each side at Im intervals. The footage captured in
March, May, and July 2021 on the northern farm and June 2021 on the southern farm was filmed in
the KODAK 4KVR360 235 degree dome mode. The November 2021 footage on the southern farm
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Figure 8: Body length: (a) Salmon body length. Orange: trout salmon, gray: coho salmon. (b) Yel-
lowtail and red seabream body length. Red marks: Red seabream, yellow marks: yellowtails.
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(c) Red seabreams at a depth of 2m in November, 2021 at south fish cage.

Figure 9: Examples of recorded video shots of (a) coho salmon, (b) yellowtail amberjack, and (c) red
seabreams. For each fish species, from left to right panels show camera views located at R, G, B, and
Y respectively.

was filmed in the KODAK 4KVR360 155 degree front mode. The coho salmon, yellowtail, and red
seabream footage is show in Fig.[9] The cameras are placed at R, G, B, Y in Figfdc| The salmon and
yellowtail footage was taken at a depth of 3m, while the red seabream footage was taken at a depth of
2m. The footage at these depths contained the largest number of fish for each species, showing that
the preferred depth differs per species.
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