A Proof of Theorem

Proof. We malnly use Hoeffding’s inequality to prove Theoremm Notice that the Integral Probability
Metrics (IPM) is defined as dy(D;, D;) = sup,cy |Lp, (k) — Lp, (h)|. For Vh € H and client
C;,Vie{l,...,N}, we have

N
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For the loss function I, let {Xi,...,X,,, } be the random variables which take on values
%l(h(w),y) for the m; examples (x,y) € S; with respect to h € H. Random variables
{Xmi+1,-- -, X} are defined analogously. Then the weighted empirical risk E;\le aijﬁgj (h) can

be written as follows:
me M

N
> st =32 e Sttt = 575,
t= 7

By the linearity of expectations, we have
N N
> ails,(h)| = aiLp,(h)
j=1 j=1

Then the following result holds for every h € H according to Hoeffding’s inequality:

N N
4 2M?2e? 2¢2
> L, (h) =Y Lo, (h)| 2 e| <2exp | ——————— | =20exp | ——F— -
= = > Range?(X;) Z o
j=1 j=1

By the definition of growth function IT5(+) and according to union bound, the following result holds
for Vh € H:

N . N —2(16)2
Z Oéijﬁsj (h) — Zaijﬁpj (h) Ze|l < 4HH(2M) exp 742

Substituting ¢ for the probability gives the following result:

N 2
Qg 4
e=p Z mj \/S(dlog(2M) + log 5)
j=1
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Note that b} = arg hmljr{l Lp,(h) and hg, = arg }Em% L, (h). Given any § € (0,1), the following
€ €
result holds with probability at least 1 — §:

N
8
\/S(dlog(2M)+log5 +§ @ijdy (Di, Dj)
Jj=1

N
8
\/S(dlog(2M)+log5 )+ E a;;jdy (Di, Dj)

j=1

B Proof of Theorem

Proof. The learning bound in Theorem [I]suggests minimizing the following objective with respect to
«; for client C;.

= ©)
Vi€ {l,.. . N}, X g =1

where \ = u\/S(dlog(QM) + log %). The Lagrangian function of Eq.(H) is

s.t.

To minimize the objective, the following Karush-Kuhn-Tucker (KKT) condition holds:

aaiL(aiaThC) =0.
(6 7} 20, 7720, Q5514 :O7 Vje{l,,N}

lTaZ- =1.
Let the partial derivative equals to zero with respect to V¢t € {1,...,N}:
Q;
Do Leti,0,0) = dp(Di, Dy) = iy — (= A = 0.
N ai
M Zj:l m;
Since a;;m; =0, Vj € {1,..., N}, we discuss the following two cases:

(1) If ayy = 0, then m; = dy (D3, Dy) — € > 0;
(2) If o > 0, then 1, = 0. In this case,

my Z;vlm [¢ = d3(Di, Dy)]

Qi = Y > 0.

Denote Q; = {t¢ | a;; > 0}. Notice that

>0, qe€ 9,

<0, ¢¢ Qi (10

¢ — dy(D;, Dy) {
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Thus we sort the clients according to dy(D;, D;). For convenience, we denote Ef
for client C; where j € {1,...,N},Vi € {1,...,N}. Sort {Z},...

=W =0 e, ~o<1> <. < E?uv)

X e X

get
represents the 1n1t1a1 index.

Notice that

Ygeo, Ma Yorey 22 [¢ — dyy(Dy, Dy))?

, where o(+) :

2

S =
2

qeEQ; Mq

and for indexes q € Q;,

Thus we get

> mgl¢ — du(Di, Dy)?

qEQ;

The discriminant of Eq.(TT)) should satisfy the following property:

2

=A%

Z mg(q)E?(q) — Z Mg (q) Z mg(q

4<q; q4<q; q<q;

= du(Di, D;)
,=N} in ascending order to
[N] — [N] is a bijection which

(1)

(12)

where ¢; is the largest index that makes Eq.(12) hold. Thus ¢ is the larger solution of Eq.(11). In

addition, ¢ should satisfies Eq.(10). Thus

2

_ ':U(t) ':U(‘Z) :U(Q) 2 2
¢; = argmax 4 ¢ ' ¢2E{Y A D moE; > (D Mo | | D Mo (E] )= A
g<t q<t X
Notice that 1T a; = 1, thus we have
N o}
Z ZqGQi ULy Zj:l mj K - dH(DZ’ Dq)]
g =
q€Q; A
Thus we obtain
i A
m; qugi my[¢ — dy(Di, Dy)]’
Thus we get the required result
* m; < B Ez
ol = i ):U(q)
S gcq o€~ Z D) ]
where [-]; = max(-,0).
O
C Proof of Theorem 3 and Lemma
First we prove that maximizing Eq.(6) is equivalent to maximizing Eq.(7).
Lemma 4. Maximizing the objective ) (i L Zmlf? )i - v; is equivalent to maximizing objective
0]
> Migvi vy + 5 =M (1= v, - vy) where M = 5 — 34
M+ M-
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Proof. Note that 3 M;; = 0, thus P = Z M;; = Y —M;j is a constant. Add constant P to
ij M-
the original objective, then the new ob]ectlve is

i did;
Z(;UWJ/_4W2) v+ P = ZMUW VJ+Z —Mi;
i,
—ZMUVI VJ+Z —M;; (1 vj).

Thus maximizing these two objective is equivalent. O

Then we prove Lemma[2]

Proof. Suppose G = {G1,...,Gk} is the group partition returned by Algorithm 1. Let Q(G) be
the modularity of G. We have Q(G) > KOPTQ @) — (1 — n) according to Lemma 1, Recall that

modularity is defined as Q(G) = & S8 WS — 1o S (WSH)2. Note that 5 WSk = 2W.
By Cauchy inequality,

1 & 11 & 1
Gry2 > = G2 L
4W2 p ( vol) = 4W2 K(Z 1)01) K
Thus we get
K ) X
DWEE > W(QG) + ) > W(kOPTq) — (1 - k) + ).
k

Since U is defined as U = D,, 2AATD 3 the weight of strong edge in U satisﬁes wi; < L

wm
According to the definition of weak edge, the weight of weak edge satisfies w;; < N Let &, be

the set of all intra-group edges. The total number of intra-group edges |E;,,| = kK 1 W

% (Zszl N,? — N). We have that

K
DW= D wut ) wy
k

€ij€Zin €i; €E€in\Zin
1
< Z N Z (I€in] = Zinl) -
€ij€Zin €ij€Ein\Zin

Thus we obtain

Zzn X <|gl7l ZWz?Lk>

N Z , 1
N N2
<——|—-N-=-2 PT -1
N1 | K W(/{O Q) kK +K>]
N (N2 — KN K-1
= -2 1)OPT -—— .
2N 1) - K W((H-F )O Q%) % >:|

Assume there are xy, bad client in group Gy, which will yield xy, (N — i) weak edge in group Gy
Thus we have

K
> Zxk(Nk - xk) > xl(Nmin - xl)'
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Nmin—+/N2 ;. —4Zin

Since Nyin = V22, we have 1 < o < 2 . Since N,,;,, = ming Ng, one
bad client in other groups will yield more weak edge than in Gmm corresponding to N,,;,,. Thus
|B| Noin—A/N2,,—4Zin
~X 2 .
O

To prove Theorem [3] we first provide the following supporting lemma.

Lemma 5. Suppose two vectors o, 3 € RN which satisfy Zf\;1 a;B8; = T where T > % isa

constant, then
N

D (i =Bi)* < (1- T)zm~

i=1
Proof. We seek to maximize the distance between « and 3, which can be formalized as follows.

. _ _ 2
min e = Bl

s

st. SN =1, YN, 8 =1, (13)
Zilaiﬂi =T

The Lagrangian function of Eq.(T3) is
N

N N N
L(a, B, A1, A2, A3) = *Z(Oéi - Bi)? - )\1(2 a; — 1) — )\2(2 Bi—1) — )‘S(Z ol — T
i1 im1 i1

i=1
The following Karush-Kuhn-Tucker (KKT) condition holds.
L(a767 )\17 )‘27 AS) = 07 aﬁ]L(a7 /67 )‘17 )‘27 >\3) = 07
Ziil aiffi =T, A3 20, AB(Z?; a;fi —7) =0,
Zij\il a; =1, Zi\; Bi = 1.
Let the partial derivative equals to zero with respect to a;, Vi € {1,..., N}.
Oa;L(a, B, A1, X2, A3) = —2(i — Bi) — A1 — X33 = 0.

Thus we get

oy =

(2 — )\5)51 — )\1

Note that ZZ\LI a; = 1 and Zfil B = 1.

Z%*Z%*P%*ﬁf\f

=1

Thus A3 = —N ;. Analogously, A\3 = —NAs. Set Ay = Ay = —\ # 0 and thus A3 = NX # 0.
Substituting A\; with —\ and A3 with N\, we have

o — (2—=NXN)Bi+ A
(2 2 °

Since )\3(2511 aiﬁi — T) = 0, we have Zfil aiﬁi =T.

_ 2 _ N
Z%@—ZQ N)\)Qﬁ +/\51:%+2 QN/\Z@Z:T
=1 =1

Denote .~ | 32 = x, then
2x — 27

:Nx—l
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2
Thusz > 7 > & Since 1 > YN | f2 > L (vazl Bi> = % thus z € [r,1].

The distance is then
N N

A—NX3;., N(z—r1)?2
>0 = Ly = Ty

Let f(z) = ((If[;ii)f) with its derivative

(@) = Nz? —2x + 27 — N72
(Nz —1)2

Obviouly, f'(x) > 0 when = € [7, 1]. Thus f(z) is monotonically increasing for « € [r, 1]. Thus we
get the required result
N

N
ig(ai —BPSNFO)=0-7 5
O]
We use the above lemma to prove Theorem [3]
Proof. Since U is defined as U;, = D, >AATD, 2, its elements are expressed as U;; =

1 N in _ N _ — —_ N
i >t AitAji. Note that & = > 707 ) of; = Land Ay = oy Thus Uy = 35,0, oo,
Considering two good clients C; and C;. If e;; is a strong edge, i.e., w;; > %, then |laf — a;‘-||2 <

(1-7) % according to Lemma|5. Otherwise, C; can reach C; through a path whose length is

less than 7). According to the triangle inequality, [|a; — o[> < (1 —7) .

Note that f(x) = 22 is a convex function on [0,00). According to Jensen inequality,
N N
f(% > iz il) < % 2iz1 f(lzi]). Thus

1 Y ’ 1 Y N
2
(NZW) <ol = 2l = Y feil <
=1 =1 i=1

N
N lail® = VN|[]l2.
i=1

Thus we get the required result

N N 2 N %2
. . . ag ol
upp(ha,) = upp(hay) =2 (g, — afy) du(Di, D) + 27 | (| D mi” - mf”
j=1 j=1 g=1 """
N N *\2
gy — O
<2[3 (a6, —ap)| +21,| 30 20 )

j=1 j=1 J

ar — il + 2N ag, — afl2

<o (s-ny/55).

D Proof of Theorem 4 and Lemma 3|

First we prove Lemma [3]
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Proof. When {af,..., a5} satisfy the (1 + +, e)-approximation-stability property, let P* =
{Pf,..., Pg} be the optimal group partition with the minimum ®(P). The average distance
in P* is defined as d = %OPTqmp). For any constant ¢t > 2, lemma 3 in|Balcan et al. (2009) reveals
that there are less than 6eN clients with da(a}) — di (o) < ;d and less than “VN clientss with
dy(af) = zd in P*. Recall that the critical distance in P* is defined as d* = 2¢. In Algorithm
2, we run a constant-factor & -median approximation algorithm on {af, ..., le to compute an
estimate d € [d, 3d] where 3 > 1 is a given constant. Let P = {P, ... ,PK} be the group parti-
tion returned by the DIVIDE part in Algorithm [2l Note that the critical distance in P is defined as
d* = g—i < 7? = d*. Wehave that the set B = {a} € S | dy(a}) > d*Vdy(af)—dy (af) < %ci*}

of bad clients in P has size |B| < (6 + L)BeN. O

Then we prove Theorem 4]

Proof. For good client C; in group Py, di (a}) < d* = gi < Z—f. According to the equivalence of
norms in the normed vector spaces, we assume d(-,-) = || - ||1. Notice the following inequality:

N 3 N 1 N
2 2
Jll2 = <Z e ) <> (1) =Y lail = Il
=1 =1

i=1

Let aep, be the average collaboration vector that Algorithmuses to train model hq, for group P.
Then we get the required result

N N 2 N %2

~ ~ s - g
upp(hp,) = upplha;) =2 (apy — ofy) du(Di, D) +20 | ([ D — [ 372
=1 j=1 =1

. N (apy — afy)?
(ap,; — ajj)| +2A Z e e—

1 j=1

N
[\

J
2|lap, —ajlli + 2M|ap, — ;
(24 2)) lap, — aflly

<0 YOPTg(p) _
etN

<
<

E Proof of the relationships between two divergences

We begin by proving some useful lemmas.

Let (X, .A) be a measurable space. Let P and () be two probability measures on (X, .A). Suppose
that v is a o-finite measure on (X, .A) satisfying P < v and Q < v. Define p = dP/dv, and
g = d@Q/dv. The total variation distance between P and () is defined as follows:

A@—@W

It is easy to prove that V' (P, Q) satisfies the axioms of distance and 0 < V(P, Q) < 1. In this section,
we will often write for brevity f ) instead of f .)dv for simplicity.

Q) = %/IpchIde 1 */min(p,q)dv

20

V(P,Q) = sup [P(A) = Q(A)| = sup
AcA AcA

Lemma 6.



Proof. Denote Ag = {x € X' : q(v) > p(x)}. Then we get [ [p — g|dv =2 [, (¢ — p)dv and
1 .
V(PQ) 2 Qo) = P(40) = 5 [ I~ aldv =1~ [ min(p, )
On the other hand, for all A € A we have

(¢ — p)dv (¢ —p)dv+ (g —p)dv
I, Jont=9 [

Smax{/Ao(q—p)d%/Ag(p—Q)dV} = %/Ip—q\dv

where A§ is the complement of Ay. Then V(P,Q) = Q(Ay) — P (Ap) implies the required
result. O

Lemma 7.

/min(p, q)dv > % </ \/m>2-

Proof. By noticing that [ max(p, ¢) + [ min(p, ¢) = 2, we obtain

(fvi) = ([ Ve n) < [ w0 [ mosipa)
- / min(p, q) [2— / min(p, q)} <2 / min(p, q)

which proves the required inequality. O

Lemma 8. )
[ minto. )i > 5 (- (PIQ).
where dk1,(P||Q) is the Kullback-Leibler (KL) divergence.

Proof. 1t is sufficient to assume that dky,(P||Q) < +oc. Using the Jensen inequality we get

(f o) = (2w | i) =exo (2w [ nf3)
> oxp (2 / e \/g) — expldn (P Q).

By comparing this result with that in Lemma[7] we yield the required result. O
Now we prove the result in our paper.

Proof. When the hypothesis space H is the class of functions taking values in [—1, 1], the Integral
Probability Metrics (IPM) dy(D;, D;) = supy,c4 |Lp, (k) — Lp, (h)| can also be viewed as the
total variation distance. According to Pinsker’s inequality we have

dk1(Di|D;)
2 )
where dir,(D;, D;) is the Kullback—Leibler (KL) divergence. We can get the following result by notic-

ing that djs(D;||D;) = $dxi(Ds||D;) + sdkr(D;]|D;) where djs(D; || D;) is the Jensen—Shannon
(JS) divergence

dw(D;, Dj) <

o du(Ds,D;) < dJS(IDiHDj).

dxL(Dil|D;) | dxi(Dy||D:)
+ 2

2d#(D;, D;)? < 5 5
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By combining Lemma[6]and Lemmal|[8] we can easily obtain that

1
du(Di,Dj) <1-35 exp(—dxw(D;i||Dy))-

Notice that
dxL(Di||D;) n dx1(D;[D;)

—log (2 — 2dw(D;, D)) < T 5

1
e d’H(DZ,DJ) <1- iexp(fdJS(DZHD]))

Thus we get the required result

dy(D;, D;) <min 1 — le*d.IS(IDiHDj) d;s(Di|D;) )
s Vg 9 y 9
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