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Abstract

U-Net architectures are ubiquitous in state-of-the-art deep learning, however their
regularisation properties and relationship to wavelets are understudied. In this
paper, we formulate a multi-resolution framework which identifies U-Nets as
finite-dimensional truncations of models on an infinite-dimensional function space.
We provide theoretical results which prove that average pooling corresponds to
projection within the space of square-integrable functions and show that U-Nets
with average pooling implicitly learn a Haar wavelet basis representation of the
data. We then leverage our framework to identify state-of-the-art hierarchical
VAEs (HVAEs), which have a U-Net architecture, as a type of two-step forward
Euler discretisation of multi-resolution diffusion processes which flow from a
point mass, introducing sampling instabilities. We also demonstrate that HVAEs
learn a representation of time which allows for improved parameter efficiency
through weight-sharing. We use this observation to achieve state-of-the-art HVAE
performance with half the number of parameters of existing models, exploiting the
properties of our continuous-time formulation.

1 Introduction

U-Net architectures are extensively utilised in modern deep learning models. First developed for
image segmentation in biomedical applications [1], U-Nets have been widely applied for text-to-
image models [2], image-to-image translation [3], image restoration [4, 5], super-resolution [6],
and multiview learning [7], amongst other tasks [8]. They also form a core building block as the
neural architecture of choice in state-of-the-art generative models, particularly for images, such as
HVAEs [9, 10, 11, 12] and diffusion models [2, 13, 14, 15, 16, 17, 18, 19, 20]. In spite of their
empirical success, it is poorly understood why U-Nets work so well, and what regularisation they
impose.

In likelihood-based generative modelling, various model classes are competing for superiority, includ-
ing normalizing flows [21, 22], autoregressive models [23, 24], diffusion models, and hierarchical
variational autoencoders (HVAEs), the latter two of which we focus on in this work. HVAEs form
groups of latent variables with a conditional dependence structure, use a U-Net neural architecture,
and are trained with the typical VAE ELBO objective (for a detailed introduction to HVAEs, see
Appendix B). HVAEs show impressive synthesis results on facial images, and yield competitive like-
lihood performance, consistently outperforming the previously state-of-the-art autoregressive models,
VAEs and flow models on computer vision benchmarks [9, 10]. HVAEs have undergone a journey
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Figure 1: U-Nets with average pooling learn a Haar wavelet basis representation of the data.

of design iterations and architectural improvements in recent years, for example the introduction a
deterministic backbone [25, 26, 27] and ResNet elements [28, 29] with shared parameters between
the inference and generative model parts. There has also been a massive increase in the number of
latent variables and overall stochastic depth, as well as the use of different types of residual cells in the
decoder [9, 10] (see §4 and Fig. A.1 for a detailed discussion). However, a theoretical understanding
of these choices is lacking. For instance, it has not been shown why a residual backbone may be
beneficial, or what the specific cell structures in VDVAE [9] and NVAE [10] correspond to, or how
they could be improved.

In this paper we provide a theoretical framework for understanding the latent spaces in U-Nets, and
apply this to HVAEs specifically. Doing so allows us to relate HVAEs to diffusion processes, and also
to motivate a new type of piecewise time-homogenenous model which demonstrates state-of-the-art
performance with approximately half the number of parameters of a VDVAE [9]. More formally, our
contributions are as follows: (a) We provide a multi-resolution framework for U-Nets. We formally
define U-Nets as as acting over a multi-resolution hierarchy of L2([0, 1]2). We prove that average
pooling is a conjugate operation to projection in the Haar wavelet basis within L2([0, 1]2). We use this
insight to show how U-Nets with average pooling implicitly learn a Haar wavelet basis representation
of the data (see Fig. 1), helping to characterise the regularisation within U-Nets. (b) We apply this
framework to state-of-the-art HVAEs as an example, identifying their residual cell structure as a type
of two-step forward Euler discretisation of a multi-resolution diffusion bridge. We uncover that this
diffusion process flows from a point mass, which causes instabilities, for instance during sampling,
and identify parameter redundancies through our continuous-time formulation. Our framework both
allows us to understand the heuristic choices of existing work in HVAEs and enables future work to
optimise their design, for instance their residual cell. (c) In our experiments, we demonstrate these
sampling instabilities and train HVAEs with the largest stochastic depth ever, achieving state-of-the-
art performance with half the number of parameters by exploiting our theoretical insights. We explain
these results by uncovering that HVAEs secretly represent time in their state and show that they use
this information during training. We finally provide extensive ablation studies which, for instance,
rule out other potential factors which correlate with stochastic depth, show the empirical gain of
multiple resolutions, and find that Fourier features (which discrete-time diffusion models strongly
benefit from [19]) do not improve performance in the HVAE setting.

2 The Multi-Resolution Framework

A grayscale image with infinite resolution can be thought of as the graph2 of a two-dimensional
function over the unit square. To store these infinitely-detailed images in computers, we project them
to some finite resolution. These projections can still be thought of as the graphs of functions with
support over the unit square, but they are piecewise constant on finitely many intervals or ‘pixels’,
e.g. 5122 pixels, and we store the function values obtained at these pixels in an array or ‘grid’. The
relationship between the finite-dimensional version and its infinitely-fine counterpart depends entirely
on how we construct this projection to preserve the details we wish to keep. One approach is to
prioritise preserving the large-scale details of our images, so unless closely inspected, the projection

2For a function f( · ), its graph is the set
S

x2[0,1]2{x, f(x)}.
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is indistinguishable from the original. This can be achieved with a multi-resolution projection [30] of
the image. In this section we introduce a multi-resolution framework for constructing neural network
architectures that utilise such projections, prove what regularisation properties they impose, and show
as an example how HVAEs with a U-Net [1] architecture can be interpreted in our framework. Proofs
of all theorems in the form of an extended exposition of our framework can be found in Appendix A.

2.1 Multi-Resolution Framework: Definitions and Intuition

What makes a multi-resolution projection good at prioritising large-scale details can be informally
explained through the following thought experiment. Imagine we have an image, represented as the
graph of a function, and its finite-dimensional projection drawn on the wall. We look at the wall,
start walking away from it and stop when the image and its projection are indistinguishable by eye.
The number of steps we took away from the wall can be considered our measure of ‘how far away’
the approximation is from the underlying function. The goal of the multi-resolution projection is
therefore to have to take as few steps away as possible. The reader is encouraged to physically conduct
this experiment with the examples provided in Appendix B.1. We can formalise the aforementioned
intuitions by defining a multi-resolution hierarchy [30] of sub-spaces we may project to:
Definition 1. [Daubechies (1992) [30]] Given a nested sequence of approximation spaces · · · ⇢
V1 ⇢ V0 ⇢ V�1 ⇢ · · · , {V�j}j2Z is a multi-resolution hierarchy of the function space
L2(Rm) if: (A1)

S
j2Z V�j = L2(Rm); (A2)

T
j2Z V�j = {0}; (A3) f(·) 2 V�j , f(2j ·) 2 V0;

(A4) f(·) 2 V0 , f(·� n) 2 V0 for n 2 Z. For a compact set X ⇢ Rm, a multi-resolution hierarchy
of L2(X) is {V�j}j2Z as defined above, restricting functions in V�j to be supported on X.

In Definition 1, the index j references how many steps we took in our thought experiment, so negative
j corresponds to ‘zooming in’ on the images. The original image3 is a member of L2([0, 1]2), the
space of square-integrable functions on the unit square, and its finite projection to 2j · 2j many
pixels is a member of V�j . Images can be represented as piecewise continuous functions in the
subspaces V�j = {f 2 L2([0, 1]) | f |[2�j ·k,2�j ·(k+1)) = ck, k 2 {0, . . . , 2j � 1}, ck 2 R}. The
nesting property V�j+1 ⇢ V�j ensures that any image with (2j�1)2 pixels can also be represented
by (2j)2 pixels, but at a higher resolution. Assumption (A1) states that with infinitely many pixels,
we can describe any infinitely detailed image. In contrast, (A2) says that with no pixels, we cannot
approximate any images. Assumptions (A3) and (A4) allow us to form a basis for images in any
V�j if we know the basis of V0. One basis made by extrapolating from V0 in this way is known as a
wavelet basis [30]. Wavelets have proven useful for representing images, for instance in the JPEG
standard [31], and are constructed to be orthonormal.

Now suppose we have a probability measure ⌫1 over infinitely detailed images represented in
L2([0, 1]2) and wish to represent it at a lower resolution. Similar to how we did for infinitely
detailed images, we want to project the measure ⌫1 to a lower dimensional measure ⌫j on the finite
dimensional space V�j . In extension to this, we want the ability to reverse this projection so that we
may sample from the lower dimensional measure and create a generative model for ⌫1. We would
like to again prioritise the presence of large-scale features of the original image within the lower
dimensional samples. We do this by constructing a multi-resolution bridge from ⌫1 to ⌫j , as defined
below.
Definition 2. Let X ⇢ Rm be compact, {V�j}1j=0 be a multi-resolution hierarchy of scaled so
L2(X) =

S
j2N0

V�j and V0 = {0}. If D(L2(X)) is the space of probability measures over L2(X),
then a family of probability measures {⌫t}t2[0,1] on L2(X) is a multi-resolution bridge if:

(i) there exist increasing times I := {tj}j2N0 where t0 = 0, limj!1 tj = 1, such that s 2
[tj , tj+1) implies supp(⌫s) ⇢ V�j , i.e ⌫s 2 D(V�j); and,

(ii) for s 2 (0, 1), the mapping s 7! ⌫s is continuous for s 2 (tj , tj+1) for some j.

The continuous time dependence in Definition 2 plays a movie of the measure ⌫0 supported on V0

growing to ⌫1, a measure on images with infinite resolution. At a time interval [tj , tj+1), the space
V�j which the measure is supported on is fixed. We may therefore define a finite-dimensional model

3We here focus on grayscale, squared images for simplicity, but note that our framework can be seamlessly
extended to colour images with a Cartesian product L2([0, 1]2)⇥L2([0, 1]2)⇥L2([0, 1]2), and other continuous
signals such as time series.
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transporting probability measures within V�j , but at tj+1 the support flows over to V�j�1. Given a
multi-resolution hierarchy, we may glue these finite models, each acting on a disjoint time interval,
together in a unified fashion. In Theorem 1 we show this for the example of a continuous-time
multi-resolution diffusion process truncated up until some time tJ = T 2 (0, 1) and in the standard
basis discussed in §2.2, which will be useful when viewing HVAEs as discretisations of diffusion
processes on functions in §2.3.
Theorem 1. Let Bj : [tj , tj+1) ⇥ D(V�j) 7! D(V�j) be a linear operator (such as a diffusion
transition kernel, see Appendix A) for j < J with coefficients µ(j),�(j) : [tj , tj+1)⇥ V�j 7! V�j ,
and define the natural extensions within V�J in bold, i.e. Bj := Bj � IV ?

�j
. Then the operator

B : [0, T ]⇥ D(V�J) 7! D(V�J) and the coefficients µ,� : [0, T ]⇥ V�J 7! V�J given by

B :=
JX

j=0

[tj ,tj+1) ·Bj , µ :=
JX

j=0

[tj ,tj+1) · µ
(j), � :=

JX

j=0

[tj ,tj+1) · �
(j),

induce a multi-resolution bridge of measures from the dynamics for t 2 [0, T ] and on the standard
basis as dZt = µt(Zt)dt+�t(Zt)dWt (see Appendix A.4 for details) for Zt 2 V�j for t 2 [tj , tj+1),
i.e. a multi-resolution diffusion process.
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Figure 2: A U-Net in our
multi-resolution framework.
See Appendix B.2 for details.

The concept of a multi-resolution bridge will become important in
Section 2.2 where we will show that current U-Net bottleneck struc-
tures used for unconditional sampling impose a multi-resolution
bridge on the modelled densities. To preface this, we here pro-
vide a description of a U-Net within our framework, illustrated
in 2. Consider Bj,✓, Fj,✓ : D(V�j) ! D(V�j) as the forwards
and backwards passes of a U-Net on resolution j. Further, let
P�j+1 : D(V�j) ! D(V�j+1) and E�j : D(V�j+1) ! D(V�j)
be the projection (here: average pooling) and embedding maps (e.g.
interpolation), respectively. When using an L2-reconstruction er-
ror, a U-Net [1] architecture implicitly learns a sequence of models
Bj,� : D(V�j+1)⇥D(V ?

�j+1) 7! D(V�j) due to the orthogonal de-
composition V�j = V�j+1�U�j+1 where U�j+1 := V�j \V ?

�j+1.
The backwards operator for the U-Net has a (bottleneck) input from
D(V�j+1) and a (skip) input yielding information from D(V ?

�j+1).
A simple bottleneck map Uj,✓ : D(V�j) ! D(V�j) (without skip
connection) is given by

Uj,✓ := Bj,✓ � E�j � P�j+1 � Fj,✓, (1)

and a U-Net bottleneck with skip connection is

Uj,� := Bj,�(E�j � P�j+1 � Fj,✓, Fj,✓). (2)

In HVAEs, the map Uj,� : D(V�j)! D(V�j) is trained to be the identity by minimising reconstruc-
tion error, and further shall approximate Uj,✓ ⇡ Uj,� via a KL divergence. The L2-reconstruction
error for Uj,� has an orthogonal partition of the inputs from V�j+1 ⇥ V�j , hence the only new
subspace added is U�j+1. As each orthogonal U�j+1 is added sequentially in HVAEs, the skip
connections induce a multi-resolution structure of this hierarchical neural network structure. What
we will investigate in Theorem 3 is the regularisation imposed on this partitioning by enforcing
Uj,✓ ⇡ Uj,�, as is often enforced for generative models with VAEs.

2.2 The regularisation property imposed by U-Net architectures with average pooling

Having defined U-Net architectures within our multi-resolution framework, we are now interested in
the regularisation they impose. We do so by analysing a U-Net when skip connections are absent, so
that we may better understand what information is transferred through each skip connection when
they are present. In practice, a pixel representation of images is used when training U-Nets, which
we henceforth call the standard basis (see A.2, Eq. (A.9)). The standard basis is not convenient to
derive theoretical results. It is instead preferable to use a basis natural to the multi-resolution bridge
imposed by a U-Net with a corresponding projection operation, which for average pooling is the Haar
(wavelet) basis [32] (see Appendix A.2). The Haar basis, like a Fourier basis, is an orthonormal basis
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of L2(X) which has desirable L2-approximation properties. We formalise this in Theorem 2 which
states that the dimension reduction operation of average pooling in the standard basis is a conjugate
operation to co-ordinate projection within the Haar basis (details are provided in Appendix A.2).
Theorem 2. Given V�j as in Definition 1, let x 2 V�j be represented in the standard basis Ej and
Haar basis j . Let ⇡j : Ej 7!  j be the change of basis map illustrated in Fig. 3, then we have the
conjugacy ⇡j�1 � pool�j,�j+1 = projV�j+1

� ⇡j .

(V�j ,Ej) (V�j+1,Ej�1)

(V�j , j) (V�j+1, j�1)

pool�j,�j+1

projV�j+1

⇡j�1⇡�1
j

Figure 3: The function space V�j re-
mains the same, but the basis changes
under ⇡j .

Theorem 2 means that if we project an image from V�j

to V�j+1 in the Haar wavelet basis, we can alternatively
view this as changing to the standard basis via ⇡�1

j , per-
forming average pooling, and reverting back via ⇡j�1 (see
Figure 3). This is important because the Haar basis is
orthonormal, which in Theorem 3 allows us to precisely
quantify what information is lost with average pooling.
Theorem 3. Let {V�j}Jj=0 be a multi-resolution hierar-
chy of V�J where V�j = V�j+1 � U�j+1, and further,
let Fj,�, Bj,✓ : D(V�j) 7! D(V�j) be such that Bj,✓Fj,� = I with parameters � and ✓. Define
Fj1|j2,� := Fj1,� � · · · � Fj2,� by Fj,� : D(V�j) 7! D(V�j+1) where Fj,� := projV�j+1

� Fj,�, and
analogously define Bj1|j2,✓ with Bj,✓ := Bj,✓�embdV�j . Then, the sequence {B1|j,✓(F1|J,�⌫J)}Jj=0

forms a discrete multi-resolution bridge between F1|J,�⌫J and B1|J,✓F1|J,�⌫J at times {tj}Jj=1, and

JX

j=0

EXtj⇠⌫j

���projU�j+1
Xtj

���
2

2
/
��Fj|J,�

��2
2
 (W2(B1|J,✓F1|J,�⌫J , ⌫J))

2, (3)

where W2 is the Wasserstein-2 metric and
��Fj|J,�

��
2

is the Lipschitz constant of Fj|J,�.
Theorem 3 states that the bottleneck component of a U-Net pushes the latent data distribution to a
finite multi-resolution basis, specifically a Haar basis when average pooling is used. To see this, note
that the RHS of Eq. (A.65) is itself upper-bounded by the L2-reconstruction error. This is because
the Wasserstein-2 distance finds the infinimum over all possible couplings between the data and the
‘reconstruction’ measure, hence any coupling (induced by the learned model) bounds it. Note that
models using a U-Net, for instance HVAEs or diffusion models, either directly or indirectly optimise
for low reconstruction error in their loss function. The LHS of Eq. (A.65) represents what percentage
of our data enters the orthogonal subspaces {U�j}Jj=0 which are (by Theorem 2) discarded by the
bottleneck structure when using a U-Net architecture with average pooling. Theorem 3 thus shows
that as we minimise the reconstruction error during training, we minimise the percentage of our
data transported to the orthogonal sub-spaces {U�j}Jj=0. Consequently, the bottleneck architecture
implicitly decomposes our data into a Haar wavelet decomposition, and when the skip connections
are absent (like in a traditional auto-encoder) our network learns to compress the discarded subspaces
U�j . This characterises the regularisation imposed by a U-Net in the absence of skip connections.

These results suggest that U-Nets with average pooling provide a direct alternative to Fourier
features [19, 33, 34, 35] which impose a Fourier basis, an alternative orthogonal basis on L2(X), as
with skip connections the U-Net adds each subspace U�j sequentially. However, unlike Fourier bases,
there are in fact a multitude of wavelet bases which are all encompassed by the multi-resolution
framework, and in particular, Theorem 3 pertains to all of them for the bottleneck structure. This
opens the door to exploring conjugacy operations beyond average pooling induced by other wavelet
bases optimised for specific data types.

2.3 Example: HVAEs as Diffusion Discretisations

To show what practical inferences we can derive from our multi-resolution framework, we apply it
to analyse state-of-the-art HVAE architectures (see Appendix B.3 for an introduction), identifying
parameter redundancies and instabilities. Here and in our experiments, we focus on VDVAEs [9]. We
provide similar results for Markovian HVAEs [36, 37] and NVAEs [10] (see § 4) in Appendix A.5.

We start by inspecting VDVAEs. As we show next, we can tie the computations in VDVAE cells to
the (forward and backward) operators Fj,� and Bj,✓ within our framework and identify them as a
type of two-step forward Euler discretisation of a diffusion process. When used with a U-Net, as is
done in VDVAE [9], this creates a multi-resolution diffusion bridge by Theorem 4.
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Theorem 4. Let tJ := T 2 (0, 1) and consider (the p✓ backward pass) B✓,1|J : D(V�J) 7! D(V0)
given in multi-resolution Markov process in the standard basis:

dZt = ( �µ 1,t(Zt) +
 �µ 2,t(Zt))dt+

 �� t(Zt)dWt, (4)

where projU�j
Ztj = 0, kZtk2 > kZsk2 with 0  s < t  T and for a measure ⌫J 2 D(V�J) we

have XT , Z0 ⇠ F�,J|1⌫J = �{0}. Then, VDVAEs approximates this process, and its residual cells
are a type of two-step forward Euler discretisation of this Stochastic Differential Equation (SDE).

To better understand Theorem 4, we visualise its residual cell structure of VDVAEs and the cor-
responding discretisation steps in Fig. 4, and together those of NVAEs and Markovian HVAEs in
Appendix A.5, Fig. A.1. Note that this process is Markov and increasing in the Zi variables. Similar
processes have been empirically observed as efficient first-order approximates to higher-order chains,
for example the memory state in LSTMs [38]. Further, VDVAEs and NVAEs are even claimed to be
high-order chains (see Eqs. (2,3) in [9] and Eq. (1) in [10]), despite only approximating this with a
accumulative process.
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Figure 4: The VDVAE [9] cell is a type of two-step
forward Euler discretisations of the continuous-
time diffusion process in Eq. A.76. See Fig. A.1
for similar schemas on NVAE [10] and Markovian
HVAE [36, 37].

To show how VDVAEs impose the growth of
the Zt, we prove that the bottleneck component
of VDVAE’s U-Net enforces Z0 = 0. This is
done by identifying that the measure ⌫0, which
a VDVAE connects to the data ⌫1 via a multi-
resolution bridge, is a point mass on the zero
function. Consequently the backward pass must
grow from this, and the network learns this in
a monotonic manner as we later confirm in our
experiments (see §3.2).
Theorem 5. Consider the SDE in Eq. (A.76),
trained through the ELBO in Eq. B.101. Let
⌫̃J denote the data measure and ⌫0 = �{0} be
the initial multi-resolution bridge measure im-
posed by VDVAEs. If q�,j and p✓,j are the densi-
ties of B�,1|jFJ|1⌫̃J and B✓,1|j⌫0 respectively,
then a VDVAE optimises the boundary condition
min✓,� KL(q�,0,1||q�,0p✓,1), where a double in-
dex indicates the joint distribution.

Theorem 5 states that the VDVAE architecture
forms multi-resolution bridge with the dynamics
of Eq. (A.76), and connects our data distribution to the trivial measure on V0: a Dirac mass at 0
as the pooling here cascades completely to V0. From this insight, we can draw conclusions on
instabilities and on parameter redundancies of this HVAE cell. There are two major instabilities
in this discretisation. First, the imposed ⌫0 is disastrously unstable as it enforces a data set, with
potentially complicated topology to derive from a point-mass in U�j at each t = tj , and we observe
the resulting sampling instability in our experiments in §3.3. We note that similar arguments are
applicable in settings without a latent hierarchy imposed by a U-Net, see for instance [39]. The
VDVAE architecture does, however, bolster this rate through the Z(�)

i,+ term, which is absent in
NVAEs [10], in the discretisation steps of the residual cell. We empirically observe this controlled
backward error in Fig. 6 [Right]. We refer to Fig. A.1 for a detailed comparison of HVAE cells and
their corresponding discretisation of the coupled SDE in Eq. (A.76).

Moreover, the current form of VDVAEs is over-parameterised and not informed by this continuous-
time formulation. The continuous time analogue of VDVAEs [9] in Theorem 4 has time dependent
coefficients �µ t,1,

 �µ t,2,
 �� t. We hypothesise that the increasing diffusion process in Zi implicitly

encodes time. Hence, explicitly representing this in the model, for instance via ResNet blocks with
independent parameterisations at every time step, is redundant, and a time-homogeneous model
(see Appendix A.6 for a precise formulation)—practically speaking, performing weight-sharing
across time time steps/layers—has the same expressivity, but requires far fewer parameters than
the state-of-the-art VDVAE. It is worth noting that such a time-homogeneous model would make
the parameterisation of HVAEs more similar to the recently popular (score-based) diffusion models
[40, 41] which perform weight-sharing across all time steps.
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Figure 5: A small-scale study on parameter efficiency of HVAEs. We compare models with with
1,2,3 and 4 parameterised blocks per resolution ({x1, x2, x3, x4}) against models with a single
parameterised block per resolution weight-shared {2, 3, 5, 10, 20} times ({r2, r3, r5, r10, r20}).
We report NLL (#) measured on the validation set of MNIST [left] and CIFAR10 [right]. NLL
performance increases with more weight-sharing repetitions and surpasses models without weight-
sharing but with more parameters.

3 Experiments

Table 1: A large-scale study of parameter efficiency in HVAEs.
We compare our runs of VDVAE with original hyperparameters
[9] (VDVAE⇤) against our weight-shared VDVAE (WS-VDVAE).
While WS-VDVAEs have improved parameter efficiency by a fac-
tor of 2, they reach similar NLL as VDVAE⇤ with the simple
modification inspired by our framework (weight sharing). We
note that a parameter count cannot be provided for VDM [19] as
the code is not public and the manuscript does not specify it.

Dataset Method Type #Params NLL #

M
N

IS
T

28
⇥
28

WS-VDVAE (ours) VAE 232k  79.98
VDVAE⇤ (ours) VAE 339k  80.14

NVAE [10] VAE 33m  78.01

C
IF

A
R

10
32
⇥

32

WS-VDVAE (ours) VAE 25m  2.88
WS-VDVAE (ours) VAE 39m  2.83
VDVAE⇤ (ours) VAE 39m  2.87

NVAE [10] VAE 131m  2.91
VDVAE [9] VAE 39m  2.87
VDM [19] Diff –  2.65

Im
ag

eN
et

32
⇥

32

WS-VDVAE (ours) VAE 55m  3.68
WS-VDVAE (ours) VAE 85m  3.65
VDVAE⇤ (ours) VAE 119m  3.67

NVAE [10] VAE 268m  3.92
VDVAE [9] VAE 119m  3.80
VDM [19] Diff –  3.72

C
el

eb
A

64
⇥
64 WS-VDVAE (ours) VAE 75m  2.02

VDVAE⇤ (ours) VAE 125m  2.02
NVAE [10] VAE 153m  2.03

In the following we probe the the-
oretical understanding of HVAEs
gained through our framework,
demonstrating its utility in four
experimental analyses: (a) Im-
proving parameter efficiency in
HVAEs, (b) Time representation
in HVAEs and how they make use
of it, (c) Sampling instabilities in
HVAEs, and (d) Ablation studies.

We train HVAEs using VD-
VAE [9] as the basis model on
five datasets: MNIST [42], CI-
FAR10 [43], two downsampled
versions of ImageNet [44, 45],
and CelebA [46], splitting each
into a training, validation and
test set (see Appendix D for de-
tails). In general, reported nu-
meric values refer to Negative
Log-Likelihood (NLL) in nats
(MNIST) or bits per dim (all
other datasets) on the test set
at model convergence, if not
stated otherwise. We note that
performance on the validation
and test set have similar trends
in general. An optional gra-
dient checkpointing implementa-
tion to trade in GPU memory
for compute is discussed in Ap-
pendix F. Appendices F and G
define the HVAE models we train,
i.e. p✓(zL), p✓(zl|z>l), q�(zL|x), q�(zl|z>l,x) and p✓(x|~z), and present additional experimental
details and results. We provide our PyTorch code base at https://github.com/FabianFalck/unet-vdvae
(see Appendix C for details).
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Figure 6: HVAEs secretly represent a notion of time: We measure the L2-norm of the residual state
for the [Left] forward/bottom-up pass and the [Right] backward/top-down pass over 10 batches with
100 data points each. In both plots, the thick, central line refers to the average and the thin, outer
lines refer to ±2 standard deviations.

3.1 “More from less”: Improving parameter efficiency in HVAEs

In §2.3, we hypothesised that a time-homogeneous model has the same expressivity as a model
with time-dependent coefficients, yet uses much less parameters. We start demonstrating this effect
by weight-sharing ResNet blocks across time on a small scale. In Fig. 5, we train HVAEs on
MNIST and CIFAR10 with {1, 2, 3, 4} ResNet blocks (referred to as {x1, x2, x3, x4}) in each
resolution with spatial dimensions {322, 162, 82, 42, 12} (VDVAE⇤), and compare their performance
when weight-sharing a single parameterised block per resolution {2, 3, 5, 10, 20} times (referred to
as {r2,r3,r5,r10,r20}; WS-VDVAE), excluding projection and embedding blocks. As hypothesised
by our framework, yet very surprising in HVAEs, NLL after 1m iterations measured on the validation
set gradually increases the more often blocks are repeated even though all weight-sharing models
have an identical parameter count to the x1 model (MNIST: 107k, CIFAR10: 8.7m). Furthermore,
the weight-sharing models often outperform or reach equal NLLs compared to x2, x3, x4, all of
which have more parameters (MNIST: 140k; 173k; 206k. CIFAR10: 13.0m; 17.3m; 21.6m), yet
fewer activations, latent variables, and number of timesteps at which the coupled SDE in Eq. (A.76)
is discretised.

We now scale these findings up to large-scale hyperparameter configurations. We train VDVAE
closely following the state-of-the-art hyperparameter configurations in [9], specifically with the same
number of parameterised blocks and without weight-sharing (VDVAE⇤), and compare them against
models with weight-sharing (WS-VDVAE) and fewer parameters, i.e. fewer parameterised blocks, in
Table 1. On all four datasets, the weight-shared models achieve similar NLLs with fewer parameters
compared to their counterparts without weight-sharing: We use 32%, 36%, 54%, and 40% less
parameters on the four datasets reported in Table 1, respectively. For the larger runs, weight-sharing
has diminishing returns on NLL as these already have many discretisation steps. To the best of our
knowledge, our models achieve a new state-of-the-art performance in terms of NLL compared to any
HVAE on CIFAR10, ImageNet32 and CelebA. Furthermore, our WS-VDVAE models have stochastic
depths of 57, 105, 235, 125, respectively, the highest ever trained. In spite of these results, it is worth
noting that current HVAEs, and VDVAE in particular remains notoriously unstable to train, partly due
to the instabilities identified in Theorem 5, and finding the right hyperparameters helps, but cannot
solve this.

3.2 HVAEs secretly represent time and make use of it

In §3.1, we showed how we can exploit insight on HVAEs through our framework to make HVAEs
more parameter efficient. We now want to explain and understand this behavior further. In Fig. 6, we
measure kZik2, the L2-norm of the residual state at every backward/top-down block with index i,
over several batches for models trained on MNIST (see Appendix G.2 for the corresponding figure
of the forward/bottom-up pass, and similar results on CIFAR10 and ImageNet32). On average, we
experience an increase in the state norm across time in every resolution, interleaved by discontinuous
‘jumps’ at the resolution transitions (projection or embedding) where the dimension of the residual
state changes. This supports our claim in §2 that HVAEs discretise multi-resolution diffusion
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Figure 7: Unconditional samples (not cherry-picked) of VDVAE⇤. While samples on MNIST and
CelebA demonstrate high fidelity and diversity, samples on CIFAR10, ImageNet32 and ImageNet64
are diverse, but are unrecognisable, demonstrating the instabilities identified by Theorem 1. Tempera-
tures t are tuned for maximum fidelity.

processes which are increasing in the Zi variables, and hence learn to represent a notion of time in
their residual state.

It is now straightforward to ask how HVAEs benefit from this time representation during training: As
we show in Table 2, when normalising the state by its norm at every forward and backward block
during training, i.e. forcing a “flat line” in Fig. 6 [Left], learning deteriorates after a short while,
resulting in poor NLL results compared to the runs with a regular, non-normalised residual state. This
evidence confirms our earlier stated hypothesis: The time representation in ResNet-based HVAEs
encodes information which recent HVAEs heavily rely on during learning.

3.3 Sampling instabilities in HVAEs

Table 2: NLL of HVAEs with
and without normalisation of
the residual state Zi.

Residual state NLL

MNIST
Normalised (7)  464.68
Non-normalised  81.69

CIFAR10
Normalised (7)  6.80
Non-normalised  2.93

ImageNet
Normalised  6.76

Non-normalised  3.68

High fidelity unconditional samples of faces, e.g. from models
trained on CelebA, cover the front pages of state-of-the-art HVAE
papers [9, 10]. Here, we question whether face datasets are an
appropriate benchmark for HVAEs. In Theorem 5, we identified
the aforementioned state-of-the-art HVAEs as flow from a point
mass, hypothesising instabilities during sampling. And indeed, when
sampling from our trained VDVAE⇤ with state-of-the-art configura-
tions, we observe high fidelity and diversity samples on MNIST
and CelebA, but unrecognisable, yet diverse samples on CIFAR10,
ImageNet32 and ImageNet64, in spite of state-of-the-art test set
NLLs (see Fig. 7 and Appendix G.3). We argue that MNIST and
CelebA, i.e. numbers and faces, have a more uni-modal nature, and
are in this sense easier to learn for a discretised multi-resolution
process flowing to a point mass, which is uni-modal, than the other
“in-the-wild”, multi-modal datasets. Trying to approximate the latter
with the, in this case unsuitable, HVAE model leads to the sampling
instabilities observed.

3.4 Ablation studies

We conducted several ablation studies which support our experimental results and further probe our
multi-resolution framework for HVAEs. In this section we note key findings—a detailed account of
all ablations can be found in Appendix G.4. In particular, we find that the number of latent variables,
which correlates with stochastic depth, does not explain the performance observed in §3.1, supporting
our claims. We further show that Fourier features do not provide a performance gain in HVAEs, in
contrast to state-of-the-art diffusion models, where they significantly improve performance [19]. This
is consistent with our framework’s finding that a U-Net architecture with pooling is already forced
to learn a Haar wavelet basis representation of the data, hence introducing another basis does not
add value. We also demonstrate that residual cells are crucial for the performance of HVAEs as they
are able to approximate the dynamics of a diffusion process and impose an SDE structure into the
model, empirically compare a multi-resolution bridge to a single-resolution model, and investigate
synchronous vs. asynchronous processing in time between the forward and backward pass.
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4 Related work

U-Nets. A U-Net [1] is an autoencoding architecture with multiple resolutions where skip con-
nections enable information to pass between matched layers on opposite sides of the autoencoder’s
bottleneck. These connections also smooth out the network’s loss landscape [47]. In the litera-
ture, U-Nets tend to be convolutional, and a wide range of different approaches have been used
for up-sampling and down-sampling between resolutions, with many using average pooling for the
down-sampling operation [13, 14, 16, 17, 19]. In this work, we focus on U-Nets as operators on
measures interleaved by average pooling as the down-sampling operation (and a corresponding inclu-
sion operation for up-sampling), and we formally characterise U-Nets in Section 2.1 and Appendix
B.2. Prior to our work, the dimensionality-reducing bottleneck structure of U-Nets was widely
acknowledged as being useful, however it was unclear what regularising properties a U-Net imposes.
We provided these in §2.

HVAEs. The evolution of HVAEs can be seen as a quest for a parameterisation with more expres-
siveness than single-latent-layer VAEs [48], while achieving stable training dynamics that avoid
common issues such as posterior collapse [36, 49] or exploding gradients. Early HVAEs such as
LVAE condition each latent variable directly on only the previous one by taking samples forward
[36, 37]. Such VAEs suffer from stability issues even for very small stochastic depths. Nouveau
VAEs (NVAE) [10] and Very Deep VAEs (VDVAE) [9] combine the improvements of several earlier
HVAE models (see Appendix B for details), while scaling up to larger stochastic depths. Both use
ResNet-based backbones, sharing parameters between the generative and recognition parts of the
model. VDVAE is the considerably simpler approach, in particular avoiding common tricks such as a
warm-up deterministic autoencoder training phase or data-specific initialisation. VDVAE achieves
a stochastic depth of up to 78, improving performance with more ResNet blocks. Worth noting is
that while LVAE and NVAE use convolutions with appropriately chosen stride to jump between
resolutions, VDVAE use average pooling. In all HVAEs to date, a theoretical underpinning which
explains architectural choices, for instance the choice of residual cell, is missing, and we provided
this in Section §2.3.

5 Conclusion

In this work, we introduced a multi-resolution framework for U-Nets. We provided theoretical results
which uncover the regularisation property of the U-Nets bottleneck architecture with average pooling
as implicitly learning a Haar wavelet representation of the data. We applied our framework to HVAEs,
identifying them as multi-resolution diffusion processes flowing to a point mass. We characterised
their backward cell as a type of two-step forward Euler discretisations, providing an alternative to
score-matching to approoximate a continuous-time diffusion process [16, 18], and observed parameter
redundancies and instabilities. We verified the latter theoretical insights in both small- and large-scale
experiments, and in doing so trained the deepest ever HVAEs. We explained these results by showing
that HVAEs learn a representation of time and performed extensive ablation studies.

An important limitation is that the proven regularisation property of U-Nets is limited to using average
pooling as the down-sampling operation. Another limitation is that we only applied our framework to
HVAEs, though it is possible to apply it to other model classes. It could also be argued that the lack
of exhaustive hyperparameter optimisation performed is a limitation of the work as it may be possible
to obtain improved results. We demonstrate, however, that simply adding weight-sharing to the
hyperparameter settings given in the original VDVAE paper [9] leads to state-of-the-art performance
with improved parameter efficiency, and hence view it as a strength of our results.
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