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1 Effects of the introduction of the entity mask

The introduction of the extra entity mask has huge significance for one-shot adaptation task, to
illustrate that we use the same references with and without masks to adapt the GANs. The results in
Fig. 1(a) prove the mask helps to clearly define the target domain. If there is no mask, the synthesis
only obtains the exemplary style, otherwise both the entity and style. Fig. 1(b) shows that, without a
mask, the hair is polluted by the color and texture of the Christmas hat, thus a mask can prevent the
style of the entity from negatively impacting other areas. In Fig. 1(c), the mask allows the model to
pay more attention to the interesting objects, note that the eyes on the right are closer to the reference
than the eye on the left.
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Figure 1: Adapting the GANs with and without entity masks can obtain different results.

2 Comparison of different distribution matching losses

Both style transfer and entity generation can be interpreted by learning the internal distribution of
the example, thus we compare the SWD with the commonly-used Gram loss [5], moment matching
loss [10, 7] to demonstrate the superiority of SWD. Although patch GAN loss [6] is an alternative in
theory and the most prevalent way for image translation, the GAN framework is too bulk (about 50
minutes training time, large GPU memory occupation), and easily causes serious over-fitting for the
single target image. Please refer to the right image in Fig. 3 to see the results of using patch GAN
loss.

In theory, SWD can completely capture the distribution. For two distributions p and q, SWD(p, q) =
0 ⇔ p = q [14, 8]. However, as proved in [10], Gram loss vanishes just means p and q have same
expectation (i.e., the first center moment). And the moment matching loss [10, 7] vanishes just means
p and q have the same high order center moments. Hence, SWD, Gram loss, and moment matching
loss are theoretically practicable for Style adaptation. It is well known that a successful generative
model needs learn the exact distribution, thus only SWD can be used for entity adaptation.

We conduct the experiment to validate the theoretical analysis. We adopt Gram loss [5], moment
matching loss [10], and SWD to Lstyle and Lent respectively. They will run with the same vgg
features as stated in the main paper. After careful adjustment of weights, for Gram loss we set the
weight of Lstyle as 2e− 6, the weight of Lent as 2e− 5. For moment loss we set the weight of Lstyle

as 2e− 3, the weight of Lent as 2e− 2. The results are shown in Fig. 2. These three losses can get
similar visual effects for style adaptation, but behave very differently for entity adaptation. Obviously,
Gram loss gets the worst results. Hence most pixels in entity masks are zero, and the mean value
of the target entity image is close to zero, causing the synthesized entities to be grey. The moment
matching loss can precisely transfer the red color of the hats than Gram loss, but it still cannot transfer
the glass completely. Finally, SWD can achieve the best results. The experiment proves that SWD is
more suited to our task than other distribution matching losses.

3 Laplacian regularization

3.1 PyTorch-style pseudo code

The PyTorch-style pseudo code is shown in Algorithm 1, note that a normalization process is needed
to eliminate the impact of batch and channel number at last.
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Figure 2: Comparisons of different internal distribution losses.

Algorithm 1: PyTorch-style pseudocode for LV LapR

# encoder - CLIP (or other) image encoder
# z [B,C] or [B,d,C] - latent codes
# source_sample [B,C,H,W] - syntheses from source generator
# target_sample [B,C,H,W] - syntheses from target generator
# t - scalar
# compute Laplacian matrix
z = z.flatten(1)
W = torch.exp(-(z.unsqueeze(1)-z.unsqueeze(0)).norm(dim=-1, p=2)/t)
D = torch.diag(torch.sum(W, dim=-1))
L = D-W
# compute loss
R = encoder(target_sample)-encoder(source_sample)
loss = torch.trace(R.permute(1, 0)@L@R)
# eliminate the influence of B and C
B,C = R.shape
loss /= ((B**2-B)*C)

3.2 Derivation

In the main paper we have proposed the

LV LapR =

∫
W

∥∥∇W♯ϕ(Gt(w
♯))−∇W♯ϕ(Gs(w

♯))
∥∥2 dP (w), (1)

which can be estimated by

LV LapR =

n∑
i,j=1

wi,j

∥∥ϕ(yi)− ϕ(yj) + ϕ(xj)− ϕj(xi)
∥∥2 (2a)

= 2tr(RTLR). (2b)
Here we make a brief description of the relation of the above formulas. Since the derivation only
relies on some classical conclusions, we do not present them here but provide the necessary references
for readers to consult.

From Eq. (1) to Eq. (2a) 1⃝ If we define f(w) = ϕ(Gt(w))− ϕ(Gs(w)), since the linearity of
derivative is true on Riemannian manifold (Theorem 2.1 in [11]), the Eq. (1) is equivalent to∫

W

∥∥∇W♯f(w♯)
∥∥2 dP (w). (3)
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P is the probability measure of w defined in W . 2⃝ Recalling the classic Laplacian regularization∫
Ms

∥∇Ms
y∥2 dP (x) =

∫
Ms

y∆Ms
ydP (x) (see Preliminaries in the main paper, here we abuse

the symbol P to denote the corresponding probability measure). The latter one can be estimated by∑
i,j wi,j

∥∥yi − yj

∥∥2 because the Laplacian graph operator and Laplacian operate has a point-wise
convergence relation (Theorem 3.1 in [2]). Just replacing y with f(w♯), we can immediately obtain
the approximation between Eq. (2a) with∫

W♯

∥∥∇W♯f(w♯)
∥∥2 dµ(w♯), (4)

where µ is the probability measure of w♯. 3⃝ Note that µ is the push-forward measure of P , according
to the change-of-variables formula (Theorem 1.6.12 in [1]), Eq. (3) is equivalent to (4). Thus we
have obtained the approximation between Eq. (1) and Eq. (2a)

From Eq. (2a) to Eq. (2b) Let ri = ϕ(yi)− ϕ(xi), then

tr(RTLR) = tr(RTDR)− tr(RTWR) (5)

= tr(
√
DR(

√
DR)T )− tr(WRRT ) (6)

=

n∑
i=1

di,ir
T
i ri −

n∑
i=1

 n∑
j=1

wi,jr
T
j

 ri (7)

=

n∑
i=1

n∑
j=1

wi,jr
T
i ri −

n∑
i=1

n∑
j=1

wi,jr
T
j ri (8)

=
1

2

n∑
i=1

n∑
j=1

wi,jr
T
i ri −

n∑
i=1

n∑
j=1

wi,jr
T
j ri +

1

2

n∑
i=1

n∑
j=1

wi,jr
T
j rj (9)

=
1

2

n∑
i=1

n∑
j=1

wi,j ∥ri − rj∥2 (10)

3.3 Replacing LCDC with LV LapR

FSGASource

Target

Replacing ℒ𝑪𝑫𝑪 with ℒ𝑽𝑳𝒂𝒑𝑹

Figure 3: Replacing LCDC with LV LapR.

We have shown in the article that both LCDC and LV LapR can be viewed as the regularization of
the manifold in nature. Here we replace LCDC with LV LapR to prove that LV LapR has obvious
advantages over LCDC in maintaining cross-domain correspondence since it is of isometric property
in semantic space. We set the weight of LV LapR to 100, leaving all other configurations of FSGA
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[13] unchanged. It can be seen from the Fig. 3 that LV LapR significantly remedies the collapse of
FSGA.

4 Auxiliary network

Our auxiliary network includes a UNet architecture (unet) [15] shown in Fig. 4. It receives the feature
f in from StyleGAN and outputs feature fent and mask m of entity. Then they will be processed by
the Eq. (1) of the main paper. Note that, the predicted mask m is of 256× 256 resolution rather than
32 × 32 to label the entity more finely. We do not emphasize it in the main paper to highlight our
core idea.

512 ൈ 32 ൈ 32

64 ൈ 32 ൈ 32

128 ൈ 16 ൈ 16

128 ൈ 8 ൈ 8

64 ൈ 16 ൈ 16

64 ൈ 32 ൈ 32

256 ൈ 8 ൈ 8

256 ൈ 4 ൈ 4

512 ൈ 32 ൈ 32
𝒇 𝒇௧

1 ൈ 256 ൈ 256
𝒎

⋯

Figure 4: UNet architecture in the auxiliary network. It receives the f in from StyleGAN and outputs
the fent and m.

5 Failure cases

As we mentioned in the conclusion, our method could be failed for two main cases. As shown in
Fig. 5), the first case is the synthesized entities are distorted too much when the internal distribution
cannot provide an accurate guide to the shape of the entity. For example, the second row shows the
bandages that are of regular shape can be synthesized well, however the synthesized irregular moons
or stars on the hair are of poor quality. The second case is the synthesized entities maybe not in
the proper place when the heads rotate too much. We believe this is because rotated head images,
which are extreme samples, occupy a small percentage of all generated samples so the stochastic
optimization algorithm is difficult to optimize for these samples.

Failure case 1 Failure case 2Target Target

Figure 5: Some failure cases.

6 Mask-guided transfer

In our paper, we focus on adapting the GANs to the new domain, thus the framework needs to
predict the entity mask of each latent, which is not always accurate, e.g., the right image in Fig. 5.
In practice, we may want to only transfer the style and entity for our desired images, or provide a
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Target Source Guide mask Resultw/o Guide

Figure 6: Mask-guided transfer. The third column images are synthesized by our adapted model in
the main paper. The user can control the location of the entity by providing the guide mask.

manually annotated mask to improve the location of the entity. This function can be realized by
slightly modifying our framework. If the source (content) image corresponds to latent w0 and there
exists a mask muser provided by user, we just feed w0 into the framework rather than random latent
codes, and constrain the predicted mask m0 with ∥m0 −muser∥2. As shown in Fig. 6, the location
entities can be controlled by the guide mask. This would be helpful for artistic creation in practice.

7 Broader impact

Our work has the following potential positive impact on society. First, it is resource-efficient and
just needs only a single GPU and a small amount of power. Secondly, the generated data avoids
manual data collection and privacy security issues. Like other synthesis techniques, our work may
have a negative consequence, the generated data may cause fraud in some scenarios, which needs to
be solved by developing the DeepFake detection.

8 Hyperparameter selection

8.1 Style fixation

In the main paper, we have introduced the style fixation,
w♯ = diag(α)w + diag(1−α)wref , αi = 1i<=l(i), i = 1, . . . , 18. (11)

In the above equation, the hyper-parameter l is very important to determine how well the content of
w is merged with the style of wref . For achieving cross-domain correspondence, the style fixation
should ensure that Gs(w) and Gs(w

♯) have similar content. We randomly sample two latent codes
as w and wref , then compute the similarity between Gs(w) and Gs(w

♯) by the pre-trained Arcface
model [4]. The process is repeated 10000 times to estimate

Ew∼P (w),lArcface(Gs(w), Gs(w
♯)), l ∈ {0, . . . , 18}. (12)

The results have been illustrated in Fig. 7, we find setting l = 8 obtains 65% average similarity,
which is acceptable to say that Gs(w) and Gs(w

♯) are the same person. Setting l = 9 will make
the style of Gs(w

♯)) and reference have obvious visual difference. That means the first eight blocks
encode the most content information and the least style information.

8.2 Style loss and entity loss

Determining the optimal setting of style loss is very difficult, since a judgment of how good a
stylization is depended on aesthetic preferences and remains subjective. By altering the weight of
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𝑮𝒔ሺ𝒘ሻ

𝑮𝒔ሺ𝒘𝒓𝒆𝒇ሻ

Average identity similarity

Figure 7: Average identity similarity of syntheses before and after style fixation. The X-axis denotes
the change of l in Eq. (11) from 0 to 18. Both w and wref are randomly sampled from the latent
space. The red arrow means the case when l = 8.

style loss, our model can generate different syntheses. In our paper, we fix all the weights and the
results are very competitive compared with previous methods. In this part, we show some qualitative
results to help readers to determine their desired results.

As shown in Fig. 8, applying the features of different layers in the lpips vgg to style loss can make
different effects. High-level features are stronger than shallow ones in terms of the representation of
style attributes. Choosing which layer to use is very difficult in practice, and a common strategy is to
use all of them. However, we find that removing the shallow layers does not influence the effects
of stylization, but can save about a quarter of time costs. Hence we use the fourth and fifth layers’
features in our paper.

𝑣𝑔𝑔ଵ 𝑣𝑔𝑔ଶ 𝑣𝑔𝑔ଷ 𝑣𝑔𝑔ସ 3,4,51,2,3,4,5𝑣𝑔𝑔ହ 4, 52,3,4,5Style

Figure 8: Applying features of different layers of lpips vgg networks to style loss. For the eighth
column images, the number 1, 2, 3, 4, 5 represents it uses the features from vgg1 to vgg5, and so are
the others.

For the weight λ2 of style loss, Fig. 9 shows that with the increase of λ2, the results will be of a more
fun style like the target. If we want to keep the original expression and identity information as much
as possible, it is best to set this parameter below 2. In the main paper, we just set λ2 = 2 if there is no
entity, otherwise set λ2 = 0.2 to prevent the case that the style loss is too large to influence the entity
learning.

For entity loss, a small weight will make the learning of entity slow, and a large weight (above 20 in
experience) will make the gradient unstable. It is relatively tractable since entity loss does not distort
the content of images like style loss, and we find setting its weight to 2 has a good performance in
most cases.

8.3 Variant Laplacian regularization

In our experiments, a moderate weight λ4 of LV LapR always has a positive impact on training. A
large weight will make the syntheses less distorted by the stylization. As shown in Fig. 10, when
the weight is zero, the bears of the target image will pollute the female faces. With the increase of
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𝝀𝟐 ൌ 𝟏𝟎𝝀𝟐 ൌ 𝟐𝝀𝟐 ൌ 𝟎.𝟐𝝀𝟐 ൌ 𝟎.𝟎𝟐 𝝀𝟐 ൌ 𝟎.𝟐 𝝀𝟐 ൌ 𝟏𝟎𝝀𝟏 ൌ 𝟐Target Target

Figure 9: The effect of various style loss weights.

λ4, the female faces are more clear in vision. In our paper, if there is only style loss we set it to 0.5,
otherwise 1 if there exists an extra loss. However, choosing the proper value requires a trade-off
between stylization and content preservation, and it would be better for tuning the weight according
to practical usage. Some quantitative results of LV LapR weight are shown in Table 2.

𝝀𝟒 ൌ 𝟏𝟎𝝀𝟒 ൌ 𝟓𝝀𝟒 ൌ 𝟏𝝀𝟒 ൌ 𝟎.𝟓𝝀𝟒 ൌ 𝟎.𝟏𝝀𝟒 ൌ 𝟎Target Source

Figure 10: The effect of regularization weights on the results.

8.4 Can the auxiliary network be placed elsewhere?

In the main paper, the auxiliary network (aux) is placed after the fourth convolutional block to
receive the 32× 32 feature map containing the most shape information and least style information.
By experiments, we find that placing aux after the fifth convolutional block to receive 64×64 feature
map is an alternative, and anywhere else would be unacceptable. As shown in Fig. 11, when placing
it after the third block, the 16× 16 feature map is too small to provide the exact shape information,
and the predicted feature map cannot also exactly represent the entity, which leads to the poor quality
of the entities. When placing aux after the latter blocks like the sixth block outputting the 128× 128
feature map, the predicted feature map will preferentially lead to the changes in hair or facial style
rather than the emergence of new entities. Moreover, predicting the larger feature map is more
difficult and requires more computing costs. Hence, we place aux after the fourth block in our paper.

(a)     𝟏𝟔 ൈ 𝟏𝟔 (b)     𝟑𝟐 ൈ 𝟑𝟐 (c)     𝟔𝟒 ൈ 𝟔𝟒 (d)     𝟏𝟐𝟖 ൈ 𝟏𝟐𝟖

Figure 11: Altering the placement of the auxiliary network to receive and predict the feature maps of
different sizes.
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Table 1: Average quantitative results of different methods on various domains. The value represents
meanci

std, and mean± ci denotes the confidence interval at 95% confidence level.

Metric MTG OSCLIP JoJoGAN Ours
NME↓ 0.120.010.03 0.170.040.10 0.120.030.10 0.100.040.11

ID↑ 0.160.020.06 0.190.010.03 0.170.010.04 0.270.020.05

Table 2: Average quantitative results of different LV LapR weights on various domains. The value
represents meanci

std, and mean± ci denotes the confidence interval at 95% confidence level.

Metric λ4 = 0 λ4 = 0.5 λ4 = 2 λ4 = 10
NME↓ 0.110.030.10 0.100.040.11 0.100.020.06 0.090.020.06

ID↑ 0.230.020.05 0.270.020.05 0.300.020.05 0.340.020.04

9 More quantitative results

In the main paper, we follow previous works to report the evaluation of each adapted model. Since the
average evaluation on a batch images is more robust, we report the average results on 50 target images
collected from [3, 16, 12], where 25 images are with entities and the others are without entities. For
each model we generate 1000 samples to calculate the metric as we described in the papper. We
evaluate MTG [16], JoJoGAN [3], Oneshot-CLIP [9], and our model on the style adaptation task for
the fair comparison. We do not evaluate FSGA, since in the paper we have been shown that FSGA
performed serious over-fitting. The results are shown in Table 1. We can conclude that our model
has sufficient advantages compared with other methods. It can better preserve the content of source
images and has better visual effects (see Sec. 10 for some random samples). The results in Table 2
also proves that the proposed LV LapR is effective to mitigate the distortion of stylization (see Fig. 10
for qualitative examples.)

10 More qualitative results

In this section we present more randomly sampled qualitative results of MTG [16], OSCLIP [9],
JoJoGAN [3] and our method. Please refer to Fig. 12 to Fig. 37.

Figure 12: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 13: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 14: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 15: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 16: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 17: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 18: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 19: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 20: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 21: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 22: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 23: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 24: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 25: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 26: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 27: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 28: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 29: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 30: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.
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Figure 31: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The following rows show the adapted results of different methods.

Figure 32: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.

Figure 33: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.

Figure 34: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.
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Figure 35: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.

Figure 36: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.

Figure 37: In the first row, the leftmost image is the reference, and the rest of the images are randomly
generated by the source generator. The next row shows the adapted results of our method.

Source

Target

Figure 38: If the mask is not exact to cover the entity, our method can also generate reasonable
results.
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