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Abstract

3D object detection from the LiDAR point cloud is fundamental to autonomous
driving. Large-scale outdoor scenes usually feature significant variance in instance
scales, thus requiring features rich in long-range and fine-grained information to
support accurate detection. Recent detectors leverage the power of window-based
transformers to model long-range dependencies but tend to blur out fine-grained
details. To mitigate this gap, we present a novel Mixed-scale Sparse Voxel Trans-
former, named MsSVT, which can well capture both types of information simul-
taneously by the divide-and-conquer philosophy. Specifically, MsSVT explicitly
divides attention heads into multiple groups, each in charge of attending to infor-
mation within a particular range. All groups’ output is merged to obtain the final
mixed-scale features. Moreover, we provide a novel chessboard sampling strategy
to reduce the computational complexity of applying a window-based transformer in
3D voxel space. To improve efficiency, we also implement the voxel sampling and
gathering operations sparsely with a hash map. Endowed by the powerful capability
and high efficiency of modeling mixed-scale information, our single-stage detector
built on top of MsSVT surprisingly outperforms state-of-the-art two-stage detectors
on Waymo. Our project page: https://github.com/dscdyc/MsSVT.

1 Introduction

3D object detection has received increasing attention due to its successful autonomous driving
applications. Unlike 2D images with a regular structure of pixels, LiDAR point clouds are naturally
irregular and unordered. Hence directly applying CNN-like operations [11, 12] to them can be
difficult. To solve this, many researchers have rasterized point clouds into regular voxel grids [24]
and employed 3D CNNs to extract high-dimensional voxel features. With the recent rise of vision
transformer (ViT) [42] on 2D images, some attempts have been made to generalize global or more
efficient window-based transformers to 3D voxels [23] or pillars [7]. These methods successfully seek
long-range context by utilizing transformers’ powerful abilities in modeling long-range information.
However, they ignore that blindly increasing receptive fields would easily blur fine-grained details,
especially in sparse 3D space, crucial to accurate object recognition and localization.

Standard window-based transformers update the features of queries in a local window by attending to
keys from the same window. Hence simultaneously aggregating long-range context and fine-grained
details require enlarging the window size to embrace local and distant voxels. Nevertheless, directly
gathering all the voxels within the window as keys suffers a cubical growth of the computational
load with the window size. Some attempts alleviate this by sampling only a certain number of key
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Figure 1: Top: In contrast to sampling key voxels from b) a single-scale 3D window in a) raw point
clouds, our MsSVT samples key voxels from c) multi-scale windows, thus keeps finer granularity on
the target object while covering large-scale neighborhood. Bottom: Different head groups accept
keys sampled from windows of different scales, and are respectively responsible for obtaining d)
fine-grained details and e) long-range context (reflected by higher attention weights), thus together
contribute to accurate object detection collaboratively.

voxels [23]. While a trivial sampling strategy quickly leads to the sparse sampling of local voxels
(Fig. 1 b), thus bias mainly on long-range context. To mitigate the above, we try to set up multiple
key windows of varying sizes centered on a query window and sample the same number of local and
distant key voxels separately from the smaller and larger windows. As a result, we can keep finer
granularity in the local region to retain fine-grained details while collecting distant voxels roughly to
enlarge the receptive field (Fig. 1 (c)).

With the sampled voxels ready, the next question is how to effectively attend to voxels from different
windows and simultaneously capture long-range context and fine-grained details. We argue that the
divide-and-conquer philosophy can satisfactorily resolve this issue. Specifically, inspired by the
recent findings [42, 59, 26] that transformers learn different levels of self-attention by different heads,
we propose a novel Mixed-scale Sparse Voxel Transformer (MsSVT), which explicitly divides the
transformer heads into multiple groups. Different head groups accept voxels sampled from windows
of different sizes, so they are each in charge of capturing information of a particular scale. Combining
the outputs from all the head groups, we can capture mixed-scale information, i.e., long-range context,
and fine-grained details. We also design a novel scale-aware relative position encoding strategy to
adaptively adjust the position encoding used in each head group according to the range of the keys.
We provide some resulting attention maps by two different head groups (Fig. 1 (d), (e)). It is also
worth mentioning that the mixed-scale attention enables information exchange across local windows,
making MsSVT more compact by saving additional shift window operation commonly required by
window-based transformers [21, 7].

Moreover, to improve the efficiency of applying transformers in 3D voxel space, we strive to reduce
computational costs in two ways. First, we propose a novel chessboard sampling (CBS) strategy
to reduce the number of query voxels that need to be sampled within the query window, to reduce
computational costs without losing information. Specifically, we partition the query window into
chess-like spaced, and termed as "�", "
", "4", "�" positions separately. During each attention
layer, only one specific position of voxels is sampled and updated by serving as queries, and the
updates of the other voxels can be obtained by interpolation. Four positions are selected in the circular.
Thus, we can update all the voxels without introducing deviation. Second, we take advantage of
non-empty voxels’ sparsity by performing mixed-scale window-based attention solely on non-empty
sites in 3D space. Furthermore, we parallelize the search and feature gathering for non-empty voxels
using hash mapping for further acceleration.
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We build a 3D detector by replacing the original sparse 3D CNN backbone in SECOND [50] with our
MsSVT and conduct extensive experiments on the large-scale Waymo open dataset [38]. Bene�ting
from the powerful capability of abstracting mixed-scale voxel features, our single-stage detector
based on MsSVT surprisingly outperforms state-of-the-art two-stage detectors. We summarize our
contributions as follows:

• We present a novel Mixed-scale Sparse Voxel Transformer (MsSVT), which simultaneously
abstracts voxel features with long-range context and �ne-grained details.

• We design an ef�cient chessboard sampling strategy to vastly reduce the computational cost
of applying a voxel-based transformer in 3D space and sparsely implement all operations to
improve ef�ciency.

• Our MsSVT-based single-stage detector outperforms state-of-the-art two-stage detectors on
Waymo.

2 Related work

3D detection on point clouds. The mainstream 3D object detectors are based on voxels [3, 51, 52,
37, 17, 14, 60, 50, 44, 43] or pillars [16, 32]. VoxelNet [60] utilizes PointNet [27, 32] to aggregate
features within each voxel and then apply sparse 3D convolution to generate detection results.
SECOND [50] investigates improved sparse convolution to further improve speed. Pointpillar [16]
converts the point cloud into pillars such that 2D CNNs can be applied to trade off between accuracy
and ef�ciency. Rapoport-Lavieet al. [28] introduce the Cylindrical Coordinates to leverage the
natural scanning pattern from LiDAR sensors. Chenet al. [2] further operate on both Bird Eye View
(BEV) and Range View (RV) in the uni�ed Hybrid-Cylindrical-Spherical (HCS) voxel representation.
Recon�gurable Voxels [45] improves the local neighbors searching of each voxel using a random
walk scheme. Voxel-FPN [15] and Pillar-in-Pillar [41] adopt a multi-scale voxelization strategy
to rasterize the input point cloud into multi-sized voxels and incorporate FPN [20] to aggregate
multi-resolution feature maps. Two-stage detectors [19, 35, 36, 31] re�ne the bounding boxes output
by a single-stage detector by aggregating raw point clouds or voxel features, yielding state-of-the-art
performance.

Vision transformer. Transformer [42, 5] has recently achieved great success in computer vision [6,
1, 21, 18, 61, 53, 46]. Swin-transformer [21] restricts self-attention to non-overlapping local windows
while allowing cross-window connection to improve ef�ciency. SSA [29] divides attention heads
into multiple groups to aggregate image features with different granularities. Guo et al. [9] and
Zhao et al. [58] make the �rst step towards introducing the transformer for point cloud analysis.
Recently, many approaches [47, 57, 25, 10, 22, 49] apply local self-attention to learn richer 3D
feature representation. Our work extends the window-based attention on 3D voxels by introducing
scale-aware attention learning equipped with novel sampling strategies for the queries and the keys to
improve both accuracy and ef�ciency.

Voxel transformer for 3D detection. VoTr [23] introduces a voxel-based transformer backbone
that performs self-attention on sparse voxels with local and dilated attention mechanisms. Our work
improves VoTr by introducing window-based attention and optimizing sparse operation. The recent
SST [7] follows a single-stride design and the swin-transformer architecture, which performs well
on small objects. Nevertheless, SST is implemented based on pillars. The single window size is not
conducive to capturing multi-scale features, resulting in unsatisfactory performance onVehiclewhen
simultaneously detecting multiple categories. In comparison, our MsSVT can capture mixed-scale
information to boost the detection of objects of various scales.

3 Method

This section �rst gives details of the MsSVT block, then its ef�cient sparse implementation, and
�nally the 3D detector based on MsSVT.
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Figure 2:Top: overall architecture of our detection network.Bottom: details of the MsSVT block.
We gather the non-empty voxels within the query window and apply Chessboard Sampling (CBS) to
sample the queries. For the keys, we gather the non-empty voxels from the key windows of different
sizes separately, and get multiple sets of keys through Balanced Multi-window Sampling, with each
set representing information of a speci�c scale. Keys from windows of different sizes are assigned to
different head groups to perform scale-aware attention learning, thus simultaneously capturing both
long-range context and �ne-grained details.

3.1 Mixed-scale Sparse Voxel Transformer

Fig. 2 illustrates the overall architecture of the MsSVT block. We �rst gather the query and the key
voxels via chessboard sampling and balanced multi-window sampling, respectively. The obtained
queries and keys are then fed into multiple head groups to capture mixed-scale information through
scale-aware attention learning. We further incorporate scale-aware relative position encoding to make
better use of position information in different head groups.

3.1.1 Balanced Multi-window Sampling

Let f sk jsk 2 Z3gM
k=0 denote a series of window sizes, wheres0 is the size of the query window

ands1;:::;M are the sizes ofM successively larger key windows. LetV = f v i jv i = ( x i ; f i )g
jVj
i =1 be

the input voxel set, withxyz coordinatesx i 2 Z3 and feature vectorf i 2 RC for voxel i . We �rst
partition the voxel set into non-overlapping 3D windows each of sizes0, and �nd the non-empty
ones as query windows with their centers denoted byf ci jci 2 Z3gL

i =0 , whereL is the total number
of query windows. To get query voxelsV c i ;s0 for the query window centered onci , one can simply
gather all the non-empty voxels within the window as the queries. While keeping ef�ciency in mind,
we present a novel chessboard sampling strategy, which will be detailed in Section 3.1.2.

As for the key voxels, instead of sampling within a single large window at once as previous meth-
ods [23], which inevitably biases on either local or distant voxels, we simultaneously search for the
neighbors for each centerci within multiple key windows of different sizes. For the key window of
sizesk , we gather no more thanNP non-empty voxelsV c i ;sk = f v j j � sk < x j � ci < sk gN P

j =1 ,
whereNP is a pre-set number. Furthermore, to reduce computational cost and keep balanced sam-
pling, we adopt the farthest point sampling (FPS) algorithm to uniformly sampleNK voxels from
V c i ;sk to obtain the �nal key voxelsV fps

c i ;sk
; k = 1 ; :::; M at different scales, whereNK is a pre-set

maximum number of sampled voxels. Bene�tting from the multi-window strategy equipped with
uniform sampling by FPS, we can achieve balanced sampling of key voxels at various scales, which
is crucial to capturing mixed-scale information.
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