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A Information content of maximally efficient algorithms

Consider an IB problem where we are interested in an information efficient representation of 𝑌 that is
predictive of 𝑊 (Fig 1a). When 𝑌 and 𝑊 are Gaussian correlated, the central object in constructing an
IB solution is the normalized regression matrix Σ𝑌 |𝑊Σ−1

𝑌 ; in particular, its eigenvalues 𝜈𝑖 [Σ𝑌 |𝑊Σ−1
𝑌 ]

completely characterize the information content of the IB optimal representation 𝑇 via (see Ref [1]
for a derivation)

𝐼 (𝑇 ;𝑊) = 1
2

𝑁∑︁
𝑖=1

max

(
0, ln

1 − 𝛾−1

𝜈𝑖 [Σ𝑌 |𝑊Σ−1
𝑌 ]

)
(1)

𝐼 (𝑇 ;𝑌 | 𝑊) = 1
2

𝑁∑︁
𝑖=1

max(0, ln(𝛾(1 − 𝜈𝑖 [Σ𝑌 |𝑊Σ−1
𝑌 ]))), (2)

where 𝑁 is the dimension of 𝑌 and 𝛾 parametrizes the IB trade-off [Eq (1)].

Our work focuses on the following generative model for 𝑊 and 𝑌 (see Sec 1.1)

𝑊 ∼ 𝑁 (0, 𝜔2

𝑃 𝐼𝑃) and 𝑌 | 𝑊 ∼ 𝑁 (𝑋T𝑊, 𝜎2𝐼𝑁 ). (3)
Marginalizing out 𝑊 yields

𝑌 ∼ 𝑁 (0, 𝜎2𝐼𝑁 + 1
𝑃 𝑋

T𝑋). (4)
As a result, the normalized regression matrix reads

Σ𝑌 |𝑊Σ−1
𝑌 = 𝜎2𝐼𝑁

1
𝜎2𝐼𝑁 + 1

𝑃 𝑋
T𝑋

=

(
𝐼𝑁 + 1

𝜆∗
𝑋T𝑋

𝑁

)−1

where 𝜆∗ ≡ 𝑃

𝑁

𝜎2

𝜔2 . (5)

Substituting Eq (5) into Eqs (1-2) gives

𝐼 (𝑇 ;𝑊) = 1
2

𝑁∑︁
𝑖=1

max
(
0, ln

(
(1 − 𝛾−1) (1 + 𝜙𝑖 [𝑋T𝑋/𝑁]/𝜆∗)

))
(6)

𝐼 (𝑇 ;𝑌 | 𝑊) = 1
2

𝑁∑︁
𝑖=1

max
(
0, ln

𝛾𝜙𝑖 [𝑋T𝑋/𝑁]
𝜆∗ + 𝜙𝑖 [𝑋T𝑋/𝑁]

)
, (7)

where 𝜙𝑖 [𝑋T𝑋/𝑁] denote the eigenvalues of 𝑋T𝑋/𝑁 . Since the eigenvalues of 𝑋T𝑋/𝑁 and the
sample covariance Ψ = 𝑋𝑋T/𝑁 are identical except for the zero modes which do not contribute to
information, we can recast the above equations as

𝐼 (𝑇 ;𝑊) = 1
2

𝑃∑︁
𝑖=1

max
(
0, ln(1 − 𝛾−1) (1 + 𝜓𝑖/𝜆∗)

)
(8)

𝐼 (𝑇 ;𝑌 | 𝑊) = 1
2

𝑃∑︁
𝑖=1

max
(
0, ln

𝛾𝜓𝑖

𝜆∗ + 𝜓𝑖

)
, (9)
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where 𝜓𝑖 are the eigenvalues of Ψ and the summation limits change to 𝑃, the number of eigenvalues
of Ψ. Introducing the cumulative spectral distribution 𝐹Ψ and replacing the summations with integrals
results in

𝐼 (𝑇 ;𝑊) = 𝑃

2

∫
𝑑𝐹Ψ (𝜓) max

(
0, ln

(
(1 − 𝛾−1) (1 + 𝜓/𝜆∗)

))
(10)

𝐼 (𝑇 ;𝑌 | 𝑊) = 𝑃

2

∫
𝑑𝐹Ψ (𝜓) max

(
0, ln

𝛾𝜓

𝜆∗ + 𝜓

)
. (11)

We see that the contributions to the integrals come from the logarithms but only when they are
positive. This condition can be recast into integration limits (note that 𝛾 > 0 and 𝜆∗ > 0)

ln
(
(1 − 𝛾−1) (1 + 𝜓/𝜆∗)

)
> 0 =⇒ 𝜓 > 𝜆∗/(𝛾 − 1) (12)

ln
𝛾𝜓

𝜆∗ + 𝜓
> 0 =⇒ 𝜓 > 𝜆∗/(𝛾 − 1). (13)

Finally we define the lower cutoff 𝜓𝑐 ≡ 𝜆∗/(𝛾 − 1) and use the above limits to rewrite the expressions
for relevant and residual informations,

𝐼 (𝑇 ;𝑊) = 𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln
𝜓 + 𝜆∗

𝜓𝑐 + 𝜆∗
=

𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln
(
1 + 𝜓 − 𝜓𝑐

𝜓𝑐 + 𝜆∗

)
(14)

𝐼 (𝑇 ;𝑌 | 𝑊) = 𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln
𝜓

𝜓𝑐

𝜓𝑐 + 𝜆∗

𝜓 + 𝜆∗
=

𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln
𝜓

𝜓𝑐
− 𝐼 (𝑇 ;𝑊). (15)

These equations are identical to Eqs (8-9) in the main text.

B Information content of Gibbs-posterior regression

To compute the information content of Gibbs regression [Eq (14)], we first recall that the mutual
information between two Gaussian correlated variables, 𝐴 and 𝐵, is given by

𝐼 (𝐴; 𝐵) = 1
2

ln detΣ𝐴Σ
−1
𝐴 |𝐵, (16)

where Σ𝐴 is the covariance of 𝐴, and Σ𝐴 |𝐵 of 𝐴 | 𝐵.

We now write down the relevant information, using the covariances Σ𝑇 |𝑊 and Σ𝑇 from Eqs (17-18),

𝐼 (𝑇 ;𝑊) = 1
2

ln det
(
Σ𝑇Σ

−1
𝑇 |𝑊

)
(17)

=
1
2

ln det
1

2𝛽
1

Ψ+𝜆𝐼𝑃 + 𝜎2

𝑁
Ψ

(Ψ+𝜆𝐼𝑃)2 + 𝜔2

𝑃
Ψ2

(Ψ+𝜆𝐼𝑃)2

1
2𝛽

1
Ψ+𝜆𝐼𝑃 + 𝜎2

𝑁
Ψ

(Ψ+𝜆𝐼𝑃)2

(18)

=
1
2

ln det

(
𝐼𝑃 + Ψ2/𝜆∗

Ψ + 𝑁
2𝛽𝜎2 (Ψ + 𝜆𝐼𝑃)

)
(19)

=
1
2

tr ln

(
𝐼𝑃 + Ψ2/𝜆∗

Ψ + 𝑁
2𝛽𝜎2 (Ψ + 𝜆𝐼𝑃)

)
(20)

=
1
2

𝑃∑︁
𝑖=1

ln

(
1 + 𝜓2

𝑖 /𝜆∗
𝜓𝑖 + 𝑁

2𝛽𝜎2 (𝜓𝑖 + 𝜆)

)
(21)

=
𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln

(
1 + 𝜓2/𝜆∗

𝜓 + 𝑁
2𝛽𝜎2 (𝜓 + 𝜆)

)
, (22)

where 𝜆∗ = 𝑃𝜎2/𝑁𝜔2. In the above, we use the identity ln det𝐻 = tr ln𝐻 which holds for any
positive-definite Hermitian matrix 𝐻, let 𝜓𝑖 denote the eigenvalues of the sample covariance Ψ and
introduce 𝐹Ψ, the cumulative distribution of eigenvalues. We also assume that 𝜆 and 𝛽 are finite
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and positive. Note that the integral is limited to positive real numbers because the eigenvalues of a
covariance matrix is non-negative and the integrand vanishes for 𝜓 = 0.

Following the same logical steps as above and noting that the Markov constraint 𝑊 ↔ 𝑌 ↔ 𝑇 implies
Σ𝑇 |𝑌,𝑊 = Σ𝑇 |𝑌 , we write down the residual information,

𝐼 (𝑇 ;𝑌 | 𝑊) = 1
2

ln det
(
Σ𝑇 |𝑊Σ−1

𝑇 |𝑌,𝑊

)
(23)

=
1
2

ln det
(
Σ𝑇 |𝑊Σ−1

𝑇 |𝑌
)

(24)

=
1
2

ln det ©«
1

2𝛽
1

Ψ+𝜆𝐼𝑃 + 𝜎2

𝑁
Ψ

(Ψ+𝜆𝐼𝑃)2

1
2𝛽

1
Ψ+𝜆𝐼𝑃

ª®¬ (25)

=
𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
(
1 + 2𝛽𝜎2

𝑁

𝜓

𝜓 + 𝜆

)
(26)

where we use the covariance matrices Σ𝑇 |𝑊 and Σ𝑇 |𝑌 from Eqs (17) & (14).

C Marchenko-Pastur law

Consider 𝑋 = Σ1/2𝑍 where 𝑍 ∈ R𝑃×𝑁 is a matrix with iid entries drawn from a distribution with zero
mean and unit variance, and Σ ∈ R𝑃×𝑃 is a covariance matrix. In addition we take the asymptotic
limit 𝑁 → ∞, 𝑁 → ∞ and 𝑃/𝑁 → 𝛼 ∈ (0,∞). If the population spectral distribution 𝐹Σ converges
to a limiting distribution, the spectral distribution of the sample covariance Ψ = 𝑋𝑋T/𝑁 becomes
deterministic [2]. The density, 𝑓 Ψ (𝜓) = 𝑑𝐹Ψ (𝜓)/𝑑𝜓, is related to its Stieltjes transform 𝑚(𝑧) via

𝑓 Ψ (𝜓) = 1
𝜋

Im𝑚(𝜓 + 𝑖 0+), 𝜓 ∈ R. (27)

We can obtain 𝑓 Ψ by solving the Silverstein equation for the companion Stieltjes transform 𝜈(𝑧) [3],

− 1
𝑣(𝑧) = 𝑧 − 𝛼

∫
R+

𝑑𝐹Σ (𝑠) 𝑠

1 + 𝑠𝑣(𝑧) , 𝑧 ∈ C+, (28)

and using the relation
𝑚(𝑧) = 𝛼−1 (𝑣(𝑧) + 𝑧−1) − 𝑧−1. (29)

Here C+ denotes the upper half of the complex plane.
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D Supplementary figure

0.01 1 100

10−3
0.01

0.1

1

# /%

� )
;,
/%

0.01 1 100
# /%

0.01 1 100
# /%

10−6
10−4
0.01
1

�) ;. |,

10−6
10−4
0.01
1

�) ;. |,

0.4
0.6
0.8
1.0

a IB optimal b Gibbs regression, _=10−6 c Information efficiency

Figure 1: Gibbs ridge regression is least information efficient around 𝑁/𝑃=1. a Residual information
𝐼 (𝑇 ;𝑌 |𝑊) of the IB optimal algorithm over a range of sample densities 𝑁/𝑃 (horizontal axis) and
given extracted relevant bits 𝐼 (𝑇 ;𝑊) (vertical axis). The extracted relevant bits are bounded by
the available relevant bits in the data (black curve), i.e., the data processing inequality implies
𝐼 (𝑇 ;𝑊) ≤ 𝐼 (𝑌 ;𝑊). b Same as (a) but for Gibbs regression with 𝜆=10−6. Holding other things equal,
Gibbs regression estimators encode more residual bits than optimal representations. c Information
efficiency, the ratio between residual bits in optimal representations (a) and Gibbs estimator (b), is
minimum around 𝑁/𝑃=1. Here we set 𝜔2/𝜎2 =1 and let 𝑃, 𝑁→∞ at the same rate such that the
ratio 𝑁/𝑃 remains fixed and finite. The eigenvalues of the sample covariance follow the standard
Marchenko-Pastur law (see Sec 4).
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