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Abstract

Avoiding overfitting is a central challenge in machine learning, yet many large
neural networks readily achieve zero training loss. This puzzling contradiction
necessitates new approaches to the study of overfitting. Here we quantify overfitting
via residual information, defined as the bits in fitted models that encode noise in
training data. Information efficient learning algorithms minimize residual infor-
mation while maximizing the relevant bits, which are predictive of the unknown
generative models. We solve this optimization to obtain the information content
of optimal algorithms for a linear regression problem and compare it to that of
randomized ridge regression. Our results demonstrate the fundamental trade-off
between residual and relevant information and characterize the relative information
efficiency of randomized regression with respect to optimal algorithms. Finally,
using results from random matrix theory, we reveal the information complexity of
learning a linear map in high dimensions and unveil information-theoretic analogs
of double and multiple descent phenomena.

1 Information bottleneck

Conventional wisdom identifies overfitting as being detrimental to generalization performance, yet
modern machine learning is dominated by models that perfectly fit training data. Recent attempts to
resolve this dilemma have offered much needed insight into the generalization properties of perfectly
fitted models [1, 2]. However investigations of overfitting beyond generalization error have received
less attention. In this work we present a quantitative analysis of overfitting based on information
theory and, in particular, the information bottleneck (IB) method [3].

The essence of learning is the ability to find useful and generalizable representations of training data.
An example of such a representation is a fitted model which may capture statistical correlations be-
tween two variables (regression and pattern recognition) or the relative likelihood of random variables
(density estimation). While what makes a representation useful is problem specific, a good model
generalizes well—that is, it is consistent with test data even though they are not used at training.

Achieving good generalization requires information about the unknown data generating process.
Maximizing this information is an intuitive strategy, yet extracting too many bits from the training data
hurts generalization [4, 5]. This fundamental trade-off underpins the IB principle, which formalizes
the notion of a maximally efficient representation as an optimization problem [3]1

min𝑄𝑇 |𝑆 𝐼 (𝑆;𝑇 | 𝑊) − (𝛾 − 1)𝐼 (𝑇 ;𝑊). (1)

Here 𝑊 denotes the data generating process. The conditional distribution 𝑄𝑇 |𝑆 denotes a learning
algorithm which defines a stochastic mapping from the training data 𝑆 to the hypothesis or fitted

1Note that this minimization is identical to that of the original IB method since 𝐼 (𝑆;𝑇 |𝑊)= 𝐼 (𝑆;𝑇)−𝐼 (𝑇 ;𝑊)
under the Markov constraint 𝑇↔𝑆↔𝑊 .
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model 𝑇 (Fig 1a). The relevant information, 𝐼 (𝑇 ;𝑊), is the bits in 𝑇 that are informative of the
generative model 𝑊 . On the other hand, the residual information, 𝐼 (𝑆;𝑇 |𝑊), is the bits in 𝑇 that are
specific to each realization of the training data 𝑆 and thus are not informative of 𝑊 . In other words
the residual bits measure the degree of overfitting. The parameter 𝛾 controls the trade-off between
these two informations.

The IB method has found success in a diverse array of applications, from neural coding [6, 7],
developmental biology [8] and statistical physics [9–11] to clustering [12], deep learning [13–15]
and reinforcement learning [16].

Indeed the IB principle has emerged as a potential candidate for a unifying framework for understand-
ing learning phenomena [15, 17–19] and a number of recent works have explored deep connections
between information-theoretic quantities and generalization properties [4, 5, 20–28]. However a direct
application of information theory to practical learning algorithms is often limited by the difficulty
in estimating information, especially in high dimensions. While recent advances in characterizing
variational bounds of mutual information have enabled a great deal of scalable, information-theory
inspired learning methods [13, 29, 30], these bounds are generally loose and may not reflect the true
behaviors of information.

To this end we consider a tractable problem of learning a linear map. We show that the level of
overfitting, as measured by the encoded residual bits, is nonmonotonic in sample size, exhibiting a
maximum near the crossover between under- and overparametrized regimes. We also demonstrate
that additional maxima can develop under anisotropic covariates. As the residual information bounds
the generalization gap [4, 5], its nonmonotonicity can be viewed as an information-theoretic analog
of (sample-wise) multiple descent—the existence of disjoint regions in which more data hurt general-
ization (see, e.g., Refs [31, 32]). Using an IB optimal representation as a baseline, we show that the
information efficiency of a randomized least squares regression estimator exhibits sample-wise non-
monotonicity with a minimum near the residual information peak. Finally we discuss how redundant
coding of relevant information in the data gives rise to the nonmonotonicity of the encoded residual
bits and how additional maxima emerge from covariate anisotropy (Sec 4).

1.1 Generative model

Linear map—We consider training data of 𝑁 iid samples, 𝑆 = {(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )}, each of
which is a pair of 𝑃 dimensional input vector 𝑥𝑖 ∈R𝑃 and scalar response 𝑦𝑖 ∈R for 𝑖 ∈ {1, . . . , 𝑁}.
We assume a linear relation between the input and response,

𝑦𝑖 = 𝑊 · 𝑥𝑖 + 𝜖𝑖 and 𝜖𝑖 ∼ 𝑁 (0, 𝜎2), (2)

where 𝑊 ∈R𝑃 denotes the unknown linear map and 𝜖𝑖 a scalar Gaussian noise with mean zero and
variance 𝜎2. In other words the responses and the inputs are related via a Gaussian channel

𝑌 | 𝑋,𝑊 ∼ 𝑁 (𝑋T𝑊, 𝜎2𝐼𝑁 ), (3)

where we define 𝑌 = (𝑦1, . . . , 𝑦𝑁 )T ∈R𝑁 and 𝑋 = (𝑥1, . . . , 𝑥𝑁 ) ∈R𝑃×𝑁 .

Fixed design—We adopt the fixed design setting in which the inputs (design matrix) 𝑋 are de-
terministic and only the responses 𝑌 are random variables (see, e.g., Ref [33, Ch 3]). As a re-
sult, the mutual information between the training data 𝑆 and any random variable 𝐴 is given by
𝐼 (𝐴; 𝑆)= 𝐼 (𝐴; 𝑋,𝑌 )= 𝐼 (𝐴;𝑌 ). In the following analyses, we use 𝑆 and 𝑌 interchangeably.

Random effects—In addition we work in the random effects setting (see, e.g., [34, 35] for recent
applications of this setting) in which the true regression parameter 𝑊 is a Gaussian vector,

𝑊 ∼ 𝑁 (0, 𝜔2

𝑃 𝐼𝑃). (4)

Here we define the covariance such that the signal strength, E ∥𝑊 ∥2=𝜔2, is independent of 𝑃.

1.2 Information optimal algorithm

The data generating process above results in training data 𝑌 and true parameters 𝑊 that are Gaussian
correlated (under the fixed design setting). In this case the IB optimization—minimizing residual in-
formation 𝐼 (𝑇 ;𝑌 |𝑊) while maximizing relevant information 𝐼 (𝑇 ;𝑊)—admits an exact solution [36],
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characterized by the eigenmodes of the normalized regression matrix,

Σ𝑌 |𝑊Σ−1
𝑌 =

(
𝐼𝑁 + 1

𝜆∗
𝑋T𝑋
𝑁

)−1
with 𝜆∗ ≡ 𝑃

𝑁
𝜎2

𝜔2 , (5)

where 𝜆∗ denotes the scaled noise-to-signal ratio. The relevant and residual informations of an optimal
representation 𝑇 read [36]

𝐼 (𝑇 ;𝑊) = 1
2
∑︁𝑁

𝑖=1 max(0, ln((1 − 𝛾−1)/𝜈𝑖)) (6)

𝐼 (𝑇 ;𝑌 | 𝑊) = 1
2
∑︁𝑁

𝑖=1 max(0, ln(𝛾(1 − 𝜈𝑖))), (7)

where 𝜈𝑖 denote the eigenvalues of Σ𝑌 |𝑊Σ−1
𝑌 and 𝛾 parametrizes the IB trade-off2 [see Eq (1)]. In our

setting it is convenient to recast the summations above as integrals (see Appendix A for derivation),

𝐼 (𝑇 ;𝑊) = 𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln
(
1 + 𝜓 − 𝜓𝑐

𝜓𝑐 + 𝜆∗

)
(8)

𝐼 (𝑇 ;𝑌 | 𝑊) = 𝑃

2

∫
𝜓>𝜓𝑐

𝑑𝐹Ψ (𝜓) ln(𝜓/𝜓𝑐) − 𝐼 (𝑇 ;𝑊), (9)

where Ψ≡𝑋𝑋T/𝑁 and 𝐹Ψ denote the empirical covariance and its cumulative spectral distribution,
respectively.3 In addition we introduce the parameter 𝜓𝑐 =𝜆∗/(𝛾 − 1) which controls the number and
the weights of eigenmodes used in constructing the optimal representation 𝑇 . In the limit 𝜓𝑐→0+,
the residual information diverges logarithmically (Fig 1d) and the relevant information converges to
the available relevant information in the data (Fig 1c),

𝐼 (𝑇 ;𝑊) 𝜓𝑐→0+→ 𝐼 (𝑌 ;𝑊) = 𝑃
2

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) ln(1 + 𝜓/𝜆∗). (10)

Increasing 𝜓𝑐 from zero decreases both residual and relevant informations, tracing out the optimal
frontier until the lower spectral cutoff 𝜓𝑐 reaches the upper spectral edge at which both informations
vanish (Fig 1b) and beyond which no informative solution exists [36–38].

1.3 Information efficiency

The exact characterization of the IB frontier provides a useful benchmark for information-theoretic
analyses of learning algorithms, not least because it allows a precise definition of information
efficiency. That is, we can now ask how many more residual bits a given algorithm needs to encode,
compared to the IB optimal algorithm, in order to achieve the same level of relevant information.
Here we define the information efficiency 𝜂𝜇 as the ratio between the residual bits encoded in the
outputs of the IB optimal algorithm and the algorithm of interest—𝑇 and 𝑇 , respectively—at some
fixed relevance level 𝜇, i.e.,

𝜂𝜇 ≡ 𝐼 (𝑇 ;𝑌 | 𝑊)
𝐼 (𝑇 ;𝑌 | 𝑊) subject to 𝜇 =

𝐼 (𝑇 ;𝑊)
𝐼 (𝑌 ;𝑊) =

𝐼 (𝑇 ;𝑊)
𝐼 (𝑌 ;𝑊) . (11)

Since the optimal representation minimizes residual bits at fixed 𝜇 (Fig 1a), the information efficiency
ranges from zero to one, 0≤𝜂𝜇 ≤1. In addition we have 0< 𝜇≤1, resulting from the data processing
inequality 𝐼 (𝑇 ;𝑊) ≤ 𝐼 (𝑌 ;𝑊) for the Markov constraint 𝑇↔𝑌↔𝑊 (see, e.g., Ref [39]).

2 Gibbs-posterior least squares regression

We consider one of the best-known learning algorithms: least squares linear regression. Not only
is this algorithm widely used in practice, it has also proved a particularly well-suited setting for
analyzing learning in the overparametrized regime [40–47]. Indeed it exhibits some of the most
intriguing features of overparametrized learning, including benign overfitting and double descent

2The arguments of the logarithms in Eqs (6-7) are always nonnegative since the data processing inequality
means that the IB problem is well-defined only for 𝛾 >1, and the eigenvalues of a normalized regression matrix
always range from zero to one [36].

3Note that the eigenvalues of 𝑋𝑋T and 𝑋T𝑋 are identical except for the number of zero modes.
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Figure 1: Information optimal algorithm—a A learning algorithm 𝑄𝑇 |𝑌 is a mapping from training
data 𝑌 to fitted models 𝑇 . Information optimal algorithms minimize residual bits 𝐼 (𝑇 ;𝑌 |𝑊)—which
are uninformative of the unknown generative model 𝑊—at fixed relevance level 𝜇, defined as the ratio
between the encoded and available relevant bits, 𝐼 (𝑇 ;𝑊) and 𝐼 (𝑌 ;𝑊). b-d The information content
of optimal algorithms for learning a linear map (Sec 1.1) at various measurement densities 𝑁/𝑃 (see
color bar). b Optimal algorithms cannot increase the relevance level without encoding more residual
bits. Increasing 𝑁/𝑃 reduces the residual bits per sample but only when 𝑁 ≲ 𝑃. This results from
the change in sample size dependence of relevant bits in the data from linear to logarithmic around
𝑁 ≈ 𝑃 (inset). That is, available relevant bits in each sample become redundant around 𝑁 ≈ 𝑃 and
increasingly so as 𝑁 increases further. Learning algorithms use this redundancy to better distinguish
signals from noise, thereby requiring fewer residual bits per sample. c-d The IB frontiers in (b) are
parametrized by a spectral cutoff 𝜓𝑐 [see Eqs (8-9)]. Here we set 𝜔2/𝜎2=1 and let 𝑃, 𝑁→∞ at the
same rate such that the ratio 𝑁/𝑃 remains fixed and finite. The empirical spectral distribution 𝐹Ψ

follows the standard Marchenko-Pastur law (see Sec 4).

which describe the surprisingly good generalization performance of overparametrized models and its
nonmonotonic dependence on model complexity and sample size [31, 42, 48].

Inferring a model from data generally requires an assumption on a class of models, which defines
the hypothesis space, as well as a learning algorithm, which outputs a hypothesis according to some
criteria that rank how well each hypothesis explains the data. Linear regression restricts the model
class to a linear map, parametrized by 𝑇 ∈R𝑃 , between an input 𝑥𝑖 and a predicted response �̂�𝑖 ,

�̂�𝑖 = 𝑇 · 𝑥𝑖 . (12)

Minimizing the mean squared error 1
𝑁

∑𝑁
𝑖=1 ( �̂�𝑖 − 𝑦𝑖)2 yields a closed form solution for the estimated

regressor, 𝑇∗= (𝑋𝑋T)−1𝑋𝑌 . However, this requires 𝑋𝑋T to be invertible and thus does not work in
the overparametrized regime in which the sample covariance is not full rank and infinitely many
models have vanishing mean squared error.

There are several approaches to break this degeneracy but perhaps the simplest and most studied is
the ridge regularization which adds to the mean squared error the preference for model parameters
with small 𝐿2 norm, resulting in the regularized loss function

𝐿 (𝑇, 𝑋,𝑌 ) = 1
𝑁 ∥𝑌 − 𝑋T𝑇 ∥2

2 + 𝜆∥𝑇 ∥2
2, (13)

where 𝜆 > 0 controls the regularization strength. Minimizing this loss function leads to a unique
solution 𝑇∗

𝜆 = (𝑋𝑋T + 𝜆𝑁𝐼𝑃)−1𝑋𝑌 even when 𝑁 <𝑃.

Gibbs posterior—While ridge regression works in the overparametrized regime, it is a deterministic
algorithm which does not readily lend itself to information-theoretic analyses because the mutual
information between two deterministically related continuous random variables diverges. Instead we
consider the Gibbs posterior (or Gibbs algorithm) which becomes a Gaussian channel when defined
with the ridge regularized loss in Eq (13),

𝑄𝑇 |𝑋,𝑌 ∝ 𝑒−𝛽𝐿 (𝑇,𝑌 ,𝑋) { 𝑇 | 𝑋,𝑌 ∼ 𝑁
(

1
𝑁

1
Ψ+𝜆𝐼𝑃 𝑋𝑌 , 1

2𝛽
1

Ψ+𝜆𝐼𝑃

)
. (14)

Here 𝛽 denotes the inverse temperature. In the zero temperature limit 𝛽→∞, this algorithm returns
the usual ridge regression estimate 𝑇∗

𝜆 (the mean of the above normal distribution) with probability
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approaching one. Whilst randomized ridge regression needs not take the form above, Gibbs posteriors
are attractive, not least because they naturally emerge, for example, from information-regularized risk
minimization [5] (see also Ref [27] for a recent discussion).

Markov constraint—The generative model 𝑃𝑌 |𝑊 , true parameter distribution 𝑃𝑊 and learning
algorithm 𝑄𝑇 |𝑌 [Eqs (3-4) & (14)] completely describe the relationship between all random variables
of interest through the Markov factorization of their joint distribution (Fig 1a),

𝑃𝑇,𝑌 ,𝑊 = 𝑃𝑊 ⊗ 𝑃𝑌 |𝑊 ⊗ 𝑄𝑇 |𝑌 . (15)

Note that 𝑃𝑌 |𝑊 =𝑃𝑌 |𝑋,𝑊 and 𝑄𝑇 |𝑌 =𝑄𝑇 |𝑋,𝑌 in the fixed design setting (see Sec 1.1).

3 Information content of Gibbs regression

We now turn to the relevant and residual informations of the models that result from the Gibbs
regression algorithm [Eq (14)]. Since all distributions appearing on the rhs of Eq (15) are Gaussian,
the relevant and residual informations are given by

𝐼 (𝑇 ;𝑊) = 1
2 ln detΣ𝑇Σ

−1
𝑇 |𝑊 and 𝐼 (𝑇 ;𝑌 | 𝑊) = 1

2 ln detΣ𝑇 |𝑊Σ−1
𝑇 |𝑌 . (16)

Here we use the fact that Σ𝑇 |𝑊,𝑌 =Σ𝑇 |𝑌 due to the Markov constraint [Eq (15)]. The covariance Σ𝑇 |𝑌
is defined by the learning algorithm in Eq (14). To obtain Σ𝑇 |𝑊 and Σ𝑇 , we marginalize out 𝑌 and 𝑊
in order from 𝑃𝑇,𝑌 ,𝑊 [Eqs (3-4) & (14-15)] and obtain

𝑇 | 𝑊 ∼ 𝑁
(

Ψ
Ψ+𝜆𝐼𝑃𝑊, 1

2𝛽
1

Ψ+𝜆𝐼𝑃 + 𝜎2

𝑁
Ψ

(Ψ+𝜆𝐼𝑃)2

)
(17)

𝑇 ∼ 𝑁
(
0, 1

2𝛽
1

Ψ+𝜆𝐼𝑃 + 𝜎2

𝑁
Ψ

(Ψ+𝜆𝐼𝑃)2 + 𝜔2

𝑃
Ψ2

(Ψ+𝜆𝐼𝑃)2

)
. (18)

Substituting the covariance matrices above into Eq (16) yields (see Appendix B for derivation)

𝐼 (𝑇 ;𝑊) = 𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln

(
1 + 𝜓2/𝜆∗

𝜓 + 𝑁
2𝛽𝜎2 (𝜓 + 𝜆)

)
(19)

𝐼 (𝑇 ;𝑌 | 𝑊) = 𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
(
1 + 2𝛽𝜎2

𝑁

𝜓

𝜓 + 𝜆

)
. (20)

The integration domains are restricted to positive real numbers since the eigenvalues of a covariance
matrix are non-negative and the integrands vanish at 𝜓=0.

In the zero temperature limit 𝛽→∞, the residual information diverges (as expected from a determin-
istic algorithm [23, 24]; see also Fig 2c) whereas the relevant information approaches the mutual
information between the data 𝑌 and the true parameter 𝑊 ,

𝐼 (𝑇 ;𝑊) 𝛽→∞→ 𝐼 (𝑌 ;𝑊) = 𝑃
2

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) ln(1 + 𝜓/𝜆∗). (21)

Relevant and residual informations decrease with 𝛽 until they vanish as 𝛽 → 0+ at which Gibbs
posteriors become completely random (Fig 2a-c).

3.1 Zero temperature limit

At first sight it appears that our analyses are not applicable in the high-information limit since the
residual information diverges for both the optimal algorithm and Gibbs regression (see Figs 1d & 2c).
However the rates of divergence differ. Here we use this difference to characterize the efficiency of
Gibbs regression in the zero temperature limit 𝛽→∞.

We first analyze the limiting behaviors of relevant information. From Eq (10), we see that the relevant
information ratio of the IB solution approaches one at 𝜓𝑐 =0. Perturbing 𝜓𝑐 in Eq (8) away from zero
results in a linear correction to the relevant information,

𝐼 (𝑇 ;𝑊) = 𝐼 (𝑌 ;𝑊) − 𝜓𝑐

𝜆∗
𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) +𝑂 (𝜓2
𝑐). (22)
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Figure 2: Gibbs regression—a-c The information content of Gibbs regression [Eq (14)] at 𝑁/𝑃=1
and various regularization strengths 𝜆 (see color bar). a The information curves of Gibbs regression
are bounded by the IB frontier (dotted curve). b-c The inverse temperature 𝛽 controls the stochasticity
of Gibbs posteriors [Eqs (19-20)]. Both relevant and residual bits decrease with temperature and
vanish in the limit 𝛽 → 0 where Gibbs posteriors become completely random. d-e Information
efficiency [Eq (11)] and residual information of Gibbs regression with 𝜆=10−6 vs measurement ratio
at various relevance levels 𝜇 (see legend). d Gibbs regression approaches optimality in the limits,
𝑁≫𝑃 and 𝑁≪𝑃, and becomes least efficient at 𝑁/𝑃=1. e Residual bits of Gibbs regression and
optimal algorithm (dotted) grow linearly with 𝑁 when 𝑁 ≲ 𝑃. This growth is similar to that of the
available relevant bits (Fig 1b inset). But while the available relevant bits always increase with 𝑁 ,
the residual bits decrease as 𝑁 exceeds 𝑃. Here we set 𝜔2/𝜎2=1 and let 𝑃, 𝑁→∞ at the same rate
such that the ratio 𝑁/𝑃 remains fixed and finite. The eigenvalues of the sample covariance follow the
standard Marchenko-Pastur law (see Sec 4).

Keeping only the leading correction and recalling that 𝜇= 𝐼 (𝑇 ;𝑊)/𝐼 (𝑌 ;𝑊) [Eq (11)], we obtain

lim
𝜇→1

𝜓𝑐

𝜆∗
=

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) ln(1 + 𝜓/𝜆∗)∫
𝜓>0 𝑑𝐹

Ψ (𝜓) (1 − 𝜇). (23)

Similarly expanding the relevant information of Gibbs regression [Eq (19)] around 𝛽→∞ yields

𝐼 (𝑇 ;𝑊) = 𝐼 (𝑌 ;𝑊) − 𝑁

2𝛽𝜎2
𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) 𝜓 + 𝜆

𝜓 + 𝜆∗
+𝑂 (𝛽−2). (24)

As a result, the correspondence between the low-temperature and high-information limits reads

lim
𝜇→1

𝑁

2𝛽𝜎2 =

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) ln(1 + 𝜓/𝜆∗)∫
𝜓>0 𝑑𝐹

Ψ (𝜓) 𝜓+𝜆
𝜓+𝜆∗

(1 − 𝜇). (25)

We turn to the residual bits. Expanding Eq (9) around 𝜓𝑐 =0 and Eq (20) around 𝛽−1=0 leads to

𝐼 (𝑇 ;𝑌 | 𝑊) = −𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
𝜓𝑐

𝜆∗
+ 𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
𝜓

𝜓 + 𝜆∗
+𝑂 (𝜓𝑐) (26)

𝐼 (𝑇 ;𝑌 | 𝑊) = −𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
𝑁

2𝛽𝜎2 + 𝑃

2

∫
𝜓>0

𝑑𝐹Ψ (𝜓) ln
𝜓

𝜓 + 𝜆
+𝑂 (𝛽−1) (27)

From Eqs (23) & (25), we see that the residual informations above have the same logarithmic sin-
gularity, ln(1 − 𝜇), at 𝜇 = 1. Therefore their difference remains finite even as 𝜇→ 1. Combining
Eqs (23) & (25-27) and recalling our definition of information efficiency 𝜂𝜇 = 𝐼 (𝑇 ;𝑌 |𝑊)/𝐼 (𝑇 ;𝑌 |𝑊)
[Eq (11)] gives

lim
𝜇→1

𝜂𝜇 = 1 − −1
ln(1 − 𝜇)

©«ln

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) 𝜓+𝜆
𝜓+𝜆∗∫

𝜓>0 𝑑𝐹
Ψ (𝜓) −

∫
𝜓>0 𝑑𝐹

Ψ (𝜓) ln 𝜓+𝜆
𝜓+𝜆∗∫

𝜓>0 𝑑𝐹
Ψ (𝜓)

ª®¬ . (28)

Note that Jensen’s inequality guarantees that the terms in the parentheses sum to a non-negative value.

It is worth pointing out that, at 𝜆=𝜆∗, the correction term in Eq (28) vanishes and the efficiency of
deterministic Gibbs regression becomes minimally sensitive to algorithmic noise. Incidentally, this
value of 𝜆 also minimizes the 𝐿2 prediction error of ridge regression in the asymptotic limit [40].
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4 High dimensional limit

To place our results in the context of high dimensional learning, we specialize to the thermodynamic
limit in which sample size and input dimension tend to infinity at a fixed ratio—that is, 𝑁, 𝑃→∞ at
𝑁/𝑃=𝑛∈ (0,∞). While it is easy to grow the dimension of the true parameter 𝑊 (Sec 1.1), we have
so far not specified how the design matrix 𝑋 , and thus the training data 𝑌 , should scale in this limit.

To this end, we consider a setting in which the design matrix is generated from 𝑋 = Σ1/2𝑍 where
𝑍 ∈R𝑃×𝑁 is a matrix with iid entries drawn from a distribution with zero mean and unit variance,
and Σ ∈ R𝑃×𝑃 is a covariance matrix.4 If Σ admits a limiting spectral density as 𝑃→∞, then the
empirical spectral distribution 𝐹Ψ becomes deterministic [49, 50].

To aid interpretation of our results, we frame all of the following discussions from the perspective
that the input dimension 𝑃 is held fixed and a change in measurement density 𝑛=𝑁/𝑃 results only
from a change in sample size 𝑁 .

4.1 Isotropic covariates

For Σ= 𝐼𝑃 , the empirical spectral distribution converges to to the standard Marchenko-Pastur law [49]

𝑑𝐹Ψ (𝜓) = 𝑛

√︁
(𝜓+ − 𝜓) (𝜓 − 𝜓−)

2𝜋𝜓
𝑑𝜓 for 𝜓− < 𝜓 < 𝜓+, (29)

where 𝜓±= (1 ± 1/√𝑛)2 and 𝐹Ψ (0)=max(0, 1 − 𝑛). We use this spectral distribution in Figs 1-2.

Optimal algorithm—In Fig 1b, the IB optimal frontiers illustrate the fundamental trade-off; optimal
algorithms cannot encode fewer residual bits without becoming less relevant. Figure 1c-d shows that
encoded relevant and residual bits go down as 𝜓𝑐 increases and fewer eigenmodes contribute to the
IB optimal representation [Eqs (8-9)]. However relevant and residual informations exhibit different
behaviors at high information; as 𝜓𝑐→0, relevant information plateaus whereas residual information
diverges logarithmically [see also Eq (26)].

Gibbs regression—Figure 2a depicts the information content of Gibbs regression at different regular-
ization strengths [Eqs (19-20)] and illustrates the fundamental trade-off, similarly to the IB frontier
(dotted) but at a lower relevance level. Here the information curves are parametrized by the inverse
temperature 𝛽 which controls the algorithmic stochasticity; Gibbs posteriors become deterministic as
𝛽→∞ and completely random at 𝛽=0 [Eq (14)]. In Fig 2b-c, we see that Gibbs regression encodes
fewer relevant and residual bits as temperature goes up. Decreasing Gibbs temperature results in an
increase in encoded information. In the zero-temperature limit, the relevant bits saturate while the
residual bits grow logarithmically (cf. Fig 1c-d; see Sec 3.1 for a detailed analysis of this limit). The
amount of encoded information depends also on the regularization strength 𝜆. Figure 2b-c shows
that, at a fixed temperature, an increase in 𝜆 leads to less information extracted. However this does
not necessarily mean that a larger 𝜆 hurts information efficiency. Indeed a lower temperature can
compensate for the decrease in information. In Fig 2a, we see that the information curves can be closer
to the optimal frontier as 𝜆 increases. In general the maximum efficiency occurs at an intermediate
regularization strength that depends on data structure and measurement density (see also Sec 4.2).

Efficiency—Figure 2d displays the information efficiency of Gibbs regression at different relevant
information levels (see Sec 1.3). We see that the efficiency approaches optimality (𝜂𝜇 = 1) in the
limits 𝑛→0 and 𝑛→∞. Away from these limits, Gibbs regression requires more residual bits than
the optimal algorithm to achieve the same level of relevance with an efficiency minimum around
𝑛 = 1. We also see that the efficiency of Gibbs regression decreases with relevance level (see also
Supplementary Figure in Appendix D).

Extensivity—Learning is qualitatively different in the over- and underparametrized regimes. In Fig 2e
we see that both optimal algorithms and Gibbs regression exhibit nonmonotonic dependence on
sample size. In the overparametrized regime 𝑛< 1, the residual information is extensive in sample
size, i.e., it grows linearly with 𝑁 . This scaling behavior mirrors that of the relevant bits in the data
(Fig 1b inset). But unlike the available relevant bits which continue to grow in the data-abundant
regime, albeit sublinearly—the encoded residual bits decrease with sample size in this limit (see also

4This prescription includes the case where input vectors are drawn iid from 𝑥𝑖 ∼𝑁 (0, Σ) for 𝑖 ∈ {1, . . . , 𝑁}.
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Figure 3: Multiple descent under anisotropic covariates—a The relevant bits in the data decreases
slightly as the anisotropy ratio 𝑟 departs from one (see legend). When 𝑛≲ 0, the available relevant
information grow linearly with 𝑁 . Strong anisotropy sees this growth start becoming sublinear at
smaller 𝑁/𝑃. b The IB frontiers at 𝑁/𝑃=1. We see that while less relevant information is available
in the anisotropic case, it takes fewer residual bits to achieve the same relevance level as the isotropic
case (see legend in a). c The empirical spectral density of the sample covariance at different anisotropy
ratios (see labels). Each vertical line is normalized by its maximum. We see that anisotropy splits the
spectral continuum into two bands which merge into one as 𝑁/𝑃 decreases. The solid line depicts
the IB cutoff 𝜓𝑐 [Eqs (8-9)] for the relevance level 𝜇 = 0.8. e The residual information of optimal
algorithms (dotted) and Gibbs regression at various regularization strengths (see color bar) for 𝜇=0.8
and different anisotropy ratios (same labels as in c). Here we set 𝜔2/𝜎2=1 and let 𝑃, 𝑁→∞ at the
same rate such that the ratio 𝑁/𝑃 remains fixed and finite. The eigenvalues of the sample covariance
follows the general Marchenko-Pastur theorem (see Sec 4.2).

Supplementary Figure in Appendix D). The resulting maximum is an information-theoretic analog of
double descent—the decrease in overfitting level (test error) as the number of parameters exceeds
sample size (decreasing 𝑛) [31, 48].

Redundancy—Indeed we could have anticipated the extensive behavior of the residual bits in the
overparametrized regime (Fig 2e). In this limit, the extensivity of available relevant bits implies that
the data encode relevant information with no redundancy. In other words, the relevant bits in one
observation do not overlap with that in another. As a result, the dominant learning strategy is to treat
each sample separately and extract the same amount of information from each of them, thus resulting
in extensive residual information. In the data-abundant regime, on the other hand, the coding of
relevant bits in the data becomes increasingly redundant (Fig 1b inset). Learning algorithms exploit
this redundancy to better distinguish signals from noise, thereby encoding fewer residual bits.

4.2 Anisotropic covariates

To explore the effects of anisotropy, we consider a two-scale model in which the population spectral
distribution 𝐹Σ is an equal mixture of two point masses at 𝑠+ and 𝑠−. We normalize the trace of
the population covariance such that the signal variance, and thus the signal-to-noise ratio, does not
depend on 𝐹Σ—i.e., we set trΣ/𝑃= (𝑠+ + 𝑠−)/2=1 such that E[(𝑊 · 𝑥𝑖)2]=E ∥𝑊 ∥2=𝜔2. As a result
the anisotropy in our two-scale model is parametrized completely by the eigenvalue ratio 𝑟≡ 𝑠−/𝑠+.

Unlike the isotropic case, the limiting empirical spectral distribution does not admit a closed form
expression. We obtain 𝐹Ψ by solving the Silverstein equation and inverting the resulting Stieltjes
transform [51] (see Appendix C). Figure 3c depicts the spectral density at various anisotropy ratios
and measurement densities. At high measurement densities 𝑛≳ 1, anisotropy splits the continuum
part of the spectrum into two bands, corresponding to the two modes of the population covariance.
These bands broaden as 𝑛 decreases and eventually merge into one in the overparametrized limit.
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Available information—In Fig 3a, we see that anisotropy decreases the relevant information in the
data, but does not affect its qualitative behaviors: the available relevant bits are extensive in the
overparametrized regime and subextensive in the data-abundant regime. Although fewer relevant
bits are available, learning needs not be less information efficient. Indeed the IB frontiers in Fig 3b
illustrate that it takes fewer residual bits in the anisotropic case to reach the same level of relevance
as in the isotropic case. This behavior is also apparent in Fig 3d (dotted) as we increase anisotropy
levels (from right to left panels).

Anisotropy effects—Anisotropy affects optimal algorithms via the different scales in the population
covariance. The signals along high-variance (easy) directions are stronger and, as a result, the coding
of relevant bits in these directions becomes subextensive and redundant around 𝑛≈1/2 (the proportion
of easy directions) instead of at one (Fig 3a). This earlier onset of redundancy allows for more effective
signal-noise discrimination in the anisotropic case (Fig 3b & d). In the data-abundant limit, however,
low-variance (hard) directions become important as learning algorithms already encode most of the
relevant bits along the easy directions. Indeed the hard directions are harder for more anisotropic
inputs and thus the required residual bits increase with anisotropy in the limit 𝑛→∞ (Fig 3d).

Triple descent—Perhaps the most striking effect of anisotropy is the emergence of an information-
theoretic analog of (sample-wise) multiple descent, which describes disjoint regions where more
data makes overfitting worse (larger test error) [32, 52]. In Fig 3d, we see that an additional residual
information maximum emerges at large 𝑛. This behavior is a consequence of the separation of scales.
The first maximum at 𝑛∼1 originates from easy directions and the other maximum at higher 𝑛 from
hard directions. In fact the IB cutoff 𝜓𝑐 in Fig 3c demonstrates that the residual information maxima
roughly coincide with the inclusion of all high-variance modes around 𝑛∼1 and low-variance modes
at higher 𝑛.5 In addition we note that for optimal algorithms the first maximum shifts to a lower 𝑛 as
the anisotropy level increases. This observation is consistent with the fact that the onset of redundancy
of relevant bits in the data occurs at smaller 𝑛 in the anisotropic case (Fig 3a).

Gibbs regression—Anisotropy makes Gibbs regression depend more strongly on regularization
strengths, see Fig 3. In particular the information efficiency decreases with 𝜆 near the first residual
information minimum around 𝑛∼1 but this dependence reverses near the second maximum and at
larger 𝑛. This behavior is expected. Inductive bias from strong regularization helps prevent noise from
poisoning the models at small 𝑛. But when the data become abundant, regularization is unnecessary.

5 Conclusion & Outlook

We use the information bottleneck theory to analyze linear regression problems and illustrate the
fundamental trade-off between relevant bits, which are informative of the unknown generative
processes, and residual bits, which measure overfitting. We derive the information content of optimal
algorithms and Gibbs posterior regression, thus enabling a quantitative investigation of information
efficiency. In addition our analytical results on the zero temperature limit of the Gibbs posterior offer a
glimpse of a connection between information efficiency and optimally tuned ridge regression. Finally,
using results from random matrix theory, we reveal the information complexity of learning a linear
map in high dimensions and unveil an information-theoretic analog of multiple descent phenomena.
Since residual information is an upper bound on the generalization gap [4, 5], we believe that this
information nonmonotonicity could be connected to the original double descent phenomena. But it
remains to be seen how deep this connection is.

Our work paves the way for a number of different avenues for future research. While we only focus
on isotropic regularization here, it would be interesting to understand how structured regularization
affects information extraction. Information-efficiency analyses of different algorithms, such as
Bayesian regression, and other classes of learning problems, e.g., classification and density estimation,
are also in order. An investigation of information efficiency based on other 𝑓 -divergence could
lead to new insights into generalization. In particular an exact relationship exists between residual
Jeffreys information and generalization error of Gibbs posteriors [27]. Finally exploring how coding
redundancy in training data quantitatively affects learning phenomena in general would make for an
exciting research direction (see, e.g., Refs [17, 19]).

5Note that Fig 3c does not show the zero modes which are present at 𝑛 < 1. The fact that the spectral
continuum appears to be above the IB cutoff at small 𝑛 does not mean all eigenmodes are used in the IB solution.
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