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Abstract

Equivariant Graph neural Networks (EGNs) are powerful in characterizing the
dynamics of multi-body physical systems. Existing EGNs conduct flat message
passing, which, yet, is unable to capture the spatial/dynamical hierarchy for com-
plex systems particularly, limiting substructure discovery and global information
fusion. In this paper, we propose Equivariant Hierarchy-based Graph Networks
(EGHNs) which consist of the three key components: generalized Equivariant
Matrix Message Passing (EMMP) , E-Pool and E-UnPool. In particular, EMMP
is able to improve the expressivity of conventional equivariant message passing,
E-Pool assigns the quantities of the low-level nodes into high-level clusters, while
E-UnPool leverages the high-level information to update the dynamics of the low-
level nodes. As their names imply, both E-Pool and E-UnPool are guaranteed to
be E(n)-equivariant to meet the physical symmetry. Considerable experimental
evaluations verify the effectiveness of our EGHN on several applications including
multi-object dynamics simulation, motion capture, and protein dynamics modeling.

1 Introduction

Figure 1: The folding dynamics of proteins in the
cartoon format.

Understanding the multi-body physical systems
is vital to numerous scientific problems, from
microscopically how a protein with thousands
of atoms acts and folds in the human body to
macroscopically how celestial bodies influence
each other’s movement. While this is exactly
an important form of expert intelligence, re-
searchers have paid attention to teaching a ma-
chine to discover the physical rules from the
observational systems through end-to-end train-
able neural networks. Specifically, it is natural
to use Graph Neural Networks (GNNs), which
is able to model the relations between different
bodies into a graph and the inter-body interac-
tion as the message passing thereon [1, 16, 25, 26, 21].

More recently, Equivariant GNNs (EGNs) [29, 8, 7, 27, 12] have become a crucial kind of tool for
representing multi-body systems. One desirable property is that their outputs are equivariant with
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respect to any translation/orientation/reflection of the inputs. With this inductive bias encapsulated,
EGN permits the symmetry that the physical rules keep unchanged regardless of the reference
coordinate system, enabling more enhanced generalization ability. Nevertheless, current EGNs only
conduct flat message passing in the sense that each layer of message passing in EGN is formulated
in the same graph space, where the spatial and dynamical information can only be propagated
node-wisely and locally. By this design, it is difficult to discover the hierarchy of the patterns within
complex systems.

Hierarchy is common in various domains. Imagine a complex mechanical system, where the particles
are distributed on different rigid objects. In this case, for the particles on the same object, their states
can be explained as the relative states to the object (probably the center) plus the dynamics of the
object itself. We can easily track the behavior of the system if these “implicit” objects are detected
automatically by the model we use. Another example, as illustrated in Figure 1, is the dynamics of a
protein. Most proteins fold and change in the form of regularly repeating local structures, such as
α-helix, β-sheet and turns. By applying a hierarchical network, we are more capable of not only
characterizing the conformation of a protein, but also facilitating the propagation between thousands
of atoms in a protein by a more efficient means. There are earlier works proposed for hierarchical
graph modeling [13, 5, 33, 3, 18], but these studies focus mainly on generic graph classification, and
more importantly, they are not equivariant.

In this paper, we propose Equivariant Graph Hierarchy-based Network (EGHN), an end-to-end
trainable model to discover local substructures of the input systems, while still maintaining the
Euclidean equivariance. In a nutshell, EGHN is composed of an encoder and a decoder. The encoder
processes the input system from fine-scale to coarse-scale, where an Equivariant-Pooling (E-Pool)
layer is developed to group the low-level particles into each of a certain number of clusters that
are considered as the particles of the next layer. By contrast, the decoder recovers the information
from the coarse-scale system to the fine-scale one, by using the proposed Equivariant-Up-Pooling (E-
UnPool) layer. Both E-Pool and E-UnPool are equivariant with regard to Euclidean transformations
via our specific design. EGHN is built upon a generalized equivariant layer, which passes directional
matrices over edges other than passing vectors in EGNN [27].

To verify the effectiveness of EGHN, we have simulated a new task extended from the N-body
system [16], dubbed M -complex system, where each of the M complexes is a rigid object comprised
of a set of particles, and the dynamics of all complexes are driven by the electromagnetic force
between particles. In addition to M-complex, we also carry out evaluations on two real applications:
human motion caption [4] and the Molecular Dynamics (MD) of proteins [28]. For all tasks, our
EGHN outperforms state-of-the-art EGN methods, indicating the efficacy and necessity of the
proposed hierarchical modeling idea.3

2 Related Work

GNNs for modeling physical interaction. Graph Neural Networks (GNNs) have been widely
investigated for modeling physical systems with multiple interacting objects. As pioneer attempts,
Interaction Networks [1], NRI [16], and HRN [20] have been introduced to reason about the physical
interactions. With the development of neural networks enforced by physical priors, many works
resort to injecting physical knowledge into the design of GNNs. As an example, inspired by
HNN [11], HOGN [25] models the evolution of interacting systems by Hamiltonian equations
to obtain energy conservation. Another interesting feature of physical systems lies in Euclidean
equivariance, i.e., translation, rotation, and reflection. Several works first approach translation
equivariance [30, 26, 21, 31]. Yet, dealing with rotation equivariance is non-trivial. TFN [29] and
SE(3)-Transformer [8] leverages the irreducible representation of the SO(3) group, while LieConv [7]
and LieTransformer [15] extend the realization of equivariance to Lie group. Apart from these works
that resort to group representation theory, a succinct equivariant message passing scheme on E(n)
group is depicted in EGNN [27]. GMN [14] further involves equivariant forward kinematics modeling
particularly for constrained systems. [2] generalizes EGNN to involve covariant information with
steerable vectors. [22] leverages frame averaging for general equivariance. [19] mainly studies
sign and basis invariance. Despite the rich literature, these models either violate the equivariance,

3Code is available at https://github.com/hanjq17/EGHN.
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Figure 2: Illustration of the proposed EGHN. It consists of an encoder and a decoder, which are
equipped with E-Pool and E-UnPool, respectively. E-UnPool takes as the input the previous output
and the score matrixS from E-Pool and output the low-level systemG.

or inspect the system at a single granularity, both of which are vital aspects when tackling highly
complicated systems like proteins.

Hierarchical GNNs. There are also works that explore the representation learning of GNNs in
hierarchies. Several GNNs [13, 5, 32] adopt graph coarsening algorithms to view the graph in
multiple granularities. [9] leverages a U-net architecture with top-k pooling. Another line of work
injects learnable pooling modules into the model. A differentiable pooling scheme DiffPool [33] has
been introduced to learn a permutation-invariant pooling in an end-to-end manner. [3] replaces the
aggregation in DiffPool by node dropping for saving the computational cost. [18] further incorporates
self-attention mechanism into the pooling network. [6] leverages junction tree to model molecular
graph in multiple hierarchies. Nevertheless, these techniques, although permutation equivariant, lack
the guarantee of geometric equivariance, limiting their generalization on real-world 3D physical data.

3 The Proposed EGHN

This section �rst introduces the notations of our task, and then presents the design of the EMMP
layer, which is the basic function in EGHN. Upon EMMP, the details of how the proposed E-Pool
and E-UnPool work are provided. Finally, the instantiation of the entire architecture is described.

Notations. Each input multi-body system is modeled as a graphGconsisting ofN particles (nodes)
V and the interactions (edges)E among them. For each nodei , it is assigned with a feature tuple
(Z (0)

i ; h (0)
i ), where the directional matrixZ (0)

i 2 Rn � m is composed ofm n-dimension vectors, such
as the concatenation of positionx i 2 R3 and velocityv i 2 R3, leading toZ (0)

i = [ x i ; v i ] 2 R3� 2;
h i 2 Rc is the non-directional feature, such as the category of the atom in molecules. The edges are
represented by an adjacency matrixA 2 RN � N , which can either be constructed according to the
geometric distance or physical connectivity. We henceforth abbreviate the entire information of a
system,i.e., (f Z (0)

i ; h (0)
i gN

i =1 ; A ) as the notationGin if necessary.

We are mainly interested in investigating the dynamics of the input systemGin. To be formal,
given the initial state(Z (0)

i ; h (0)
i ) of each particle, our task is to �nd out a function� to predict its

future stateZ (T )
i given the interactions between particles. As explored before [29, 8, 7, 27], � is

implemented as a GNN to encode the inter-particle relation. In addition, it should be equivariant to
any translation/re�ection/rotation of the input states, so as to obey the physics symmetry about the
coordinates. It means,8g 2 E(n) that de�nes the Euclidean group [27],

� (f g � Z (0)
i gN

i =1 ; � � � ) = g � � (f Z (0)
i gN

i =1 ; � � � ); (1)

whereg � Z (0)
i conducts the orthogonal transformation asRZ (0)

i for both the position and velocity
vectors and is additionally implemented as the translationx i + b for the position vector; the ellipsis
denotes the input variables unin�uenced byg, includingh (0)

i andA .

As discussed in Introduction, existing equivariant models [29, 8, 7, 27] are unable to mine the
hierarchy within the dynamics of the input system by �at message passing. To address this pitfall,
EGHN is formulated in the encoder-decoder form:

Ghigh = Encode(Gin); Gout = Decode(Ghigh; Gin): (2)
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