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1 Proofs

The proof of Theorem 4.2 in the main paper uses the following technical lemma:

Lemma 1.1 (Lemmas 4.5 and 4.6 in [1]). Let S be a bounded subset of Rn, and let G0, G1, . . . , Gt

be Lipschitz maps from S to Rm. For each integer r ≥ 0, let Sr be the subset of z ∈ S such that the
rank of the m× t matrix

Φz = [G1(z), . . . , Gt(z)] (1)

is r, and let boxdim(Sr) = kr. For each α ∈ Rt define Gα(z) = G0 +Φzα. If for all integers r ≥ 0
we have that r > kr, then G−1

α (0) is empty for almost every α ∈ Rt.

Proof. The proof of Lemma 1.1 follows standard covering arguments and may be sketched as follows.
From the dimensionality assumption, the set Sr can be essentially covered by O(ϵ−kr ) ϵ-balls.
Furthermore, for any z ∈ Sr, the probability (measured with respect to α ∈ Rt) that Gα(z) maps to
the neighborhood of 0 scales as ϵr. Hence the probability of this happening for any of the points in
the cover scales as ϵr−kr . If we take r > kr then the probability of such an event tends to zero as we
shrink ϵ. Full details can be found in the proofs in [1].

We can now present the proof of Theorem 4.2:

Proof. In order to have model uniqueness, we require that the inferred signal set X̂ defined as

X̂ = {v ∈ Rn| Ag(xg − v) = 0, g = 1, . . . , G, x1, . . . , xG ∈ X} (2)

equals the true set X , or equivalently that their difference

X̂ \ X = {v ∈ Rn \ X | A1(x1 − v) = · · · = AG(xG − v) = 0, x1, . . . , xG ∈ X} (3)

is empty, where \ denotes set difference. Let S ⊂ Rn(G+1) be the set of all vectors z =
[v, x1, . . . , xG]

⊤ with v ∈ Rn \ X and x1, . . . , xG ∈ X . The difference set defined in (3) is
empty if and only if for any z ∈ S we have−A1 A1

...
. . .

−AG AG


︸ ︷︷ ︸

Gα∈RmG×n(G+1)


v
x1

...
xG


︸ ︷︷ ︸
z∈S

̸= 0 (4)

Gα(z) ̸= 0 (5)
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where Gα maps z ∈ S to RmG. Let α = [vec(A1)
⊤, . . . , vec(AG)

⊤]⊤ ∈ RmnG, then as a function
of α we can also write (4) as(x1 − v)⊤ ⊗ Im

. . .
(xG − v)⊤ ⊗ Im

α ̸= 0 (6)

where ⊗ is the Kronecker product and we used the fact that A(xg − v) = (xg − v)⊤ ⊗ Imvec(A).
As v does not belong to the signal set, the matrix on the left hand side of (6) has rank mG for all
z ∈ S. We treat the cases of bounded and conic signal sets separately, showing in both cases that, for
almost every α ∈ RmnG, the condition in (6) holds for all z ∈ S if m > k + n/G:

Bounded signal set Let Sρ be a subset of S defined as

Sρ = {z ∈ Rn(G+1) |z = [v⊤, x⊤
1 , . . . , x

⊤
G]

⊤, x1, . . . , xG ∈ X , ∥v∥2 ≤ ρ}. (7)

As Sρ is bounded, we have boxdim(Sρ) ≤ kG+ n. Thus, if mG > kG+ n, Lemma 1.1
states that for almost every α, (6) holds for all z ∈ Sρ. As S can be decomposed as a
countable union of Sρ of increasing radius, i.e., S =

⋃
ρ∈N Sρ, and a countable union of

events of measure zero has measure zero, then for almost every α all z ∈ S verifies (6) if
m > k + n/G.

Conic signal set If the signal set is conic, then S is also conic. Hence, due to the linearity of (4) with
respect to z, there exists z ∈ S which does not verify (4) if and only if for any bounded set
B containing an open neighbourhood of 0, there exists a z ∈ S ∩B which does not verify
(4). As boxdim(S ∩ B) ≤ Gk + n, Lemma 1.1 states that for almost every α, all z ∈ S
verifies (6) as long as m > k + nG.

We end this section with the proof of Proposition 4.3 in the main paper:

Proof. Consider the noisy measurements associated to the gth operator Ag , as z = y+ ϵ, where z are
the observed noisy measurements, y are the clean measurements and ϵ is additive noise (independent
of y). The characteristic function of the sum of two independent random variables is given by the
multiplication of their characteristic functions, i.e.,

φz(w) = φy(w)φϵ(w) (8)

where φz , φy and φϵ are the characteristic functions the noisy measurement, clean measurements
and noise distributions, respectively. If the characteristic function of the noise distribution is nowhere
zero, we can uniquely identify the characteristic function of the clean measurement distribution as

φy(w) = φz(w)/φϵ(w) (9)

The clean measurement distribution is fully characterized by its characteristic function φy(w). We
end the proof by noting that the same reasoning applies to the measurements of every operator Ag

with g ∈ {1, . . . , G}.

2 Training Details

Algorithm 1 provides the pseudo-code of the proposed multi-operator imaging (MOI) method. The
training details for each task are as follows:

Compressed Sensing and Inpainting with MNIST. In both cases, we use the Adam optimizer
with a batch size of 128 and weight decay of 10−8. We use a fully connected network with 5 layers,
where the number neurons in each layer are 784, 1000, 32, 1000, 784 respectively. The nonlinearity
is relu and the network has a residual connection between the input and output. For the CS task, we
use an initial learning rate of 10−4 and train the networks for 1000 epochs, keeping the learning rate
constant for the first 800 epochs and then shrinking it by a factor of 0.1. For the inpainting task, we
use an initial learning rate of 5× 10−4 and train the networks for 500 epochs, keeping the learning
rate constant for the first 300 epochs and then shrinking it by a factor of 0.1.
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Algorithm 1: Pseudocode of MOI in a PyTorch-like style.
# G: forward operators G={1, . . . , G}
# f: reconstruction function (e.g., neural network)
for y, Ag in loader: # load a minibatch y with N samples and its corresponding operator Ag

# randomly select a operator from G/g
s = select(G/g)
x1 = f(y, Ag) # reconstruct x from y
x2 = f(As(x1), As) # reconstruct x1
# MOI training loss, Eqn.(18)
loss = MSELoss(Ag(x1), y) # measurement consistency

+ MSELoss(x2, x1) # cross-operator consistency
# update f network
loss.backward()
update(f.params)
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Figure 1: The residual U-Net used in the paper. The number of input and output channels is denoted
as C, such that C = 2 for MRI and C = 3 for inpainting.

Inpainting with CelebA. The CelebA dataset contains more than 200K celebrity images, each with
40 binary attributes. We pick the attribute smile to evaluate the proposed method. The center part of
the aligned images in the CelebA dataset are cropped to 128× 128. We divide the selected images
into two subsets for training and testing. There are 32557 images in each subset, which we split across
G = 40 operators. For the inpainting task, we use the U-Net architecture (see Figure 1) to implement
the reconstruction function f(y,A), and the DCGAN architecture for AmbientGAN. Using the U-Net
architecture for AmbientGAN’s generator obtains an average test PSNR of 27.5 ± 1.3 dB, which
is 2.1 dB below the performance obtained by the DCGAN generator reported in Section 6. We use
Adam with a batch size of 20, an initial learning rate of 5× 10−4 and a weight decay of 10−8. We
train the networks for 300 epochs, shrinking the learning rate by a factor of 0.1 after the first 200
epochs.

Accelerated MRI with fastMRI. For the denoiser network f(y,A) = f̃(A†y), we use the U-Net
in Figure 1 to implement f̃ . For the unrolled network, we unfold the proximal gradient descent (PGD)
algorithm (see Algorithm (10)) with T = 3 iterations. The step size is initialized as η(t) = 0.4 and
is then learned during training. We employ 3 U-Net networks using the architecture in Figure 1 to
implement f (t) for t = 1, 2, 3 (no weight sharing across PGD iterations).

Unrolled Proximal Gradient Descent (PGD)
input: y,A
x(0) ← A†y
for t = 0, 1, · · · , T − 1 :
x(t+1) ← f (t+1)(x(t) − η(t)A⊤(Ax(t) − y))
end for
return f(y,A) := x(T )

(10)

We train the networks for 500 epochs with the Adam optimizer (batch size of 4), with initial learning
rate 5× 10−4 for the first 300 epochs and then shrinking it by a factor of 0.1. In all experiments, we
use complex-valued data and treat real and imaginary parts of the images as separate channels. For
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the purpose of visualization, we display only the magnitude images. Reconstructed test images for
the denoiser architecture are shown in Figure 2.

Figure 2: Examples of reconstructed test images for the accelerated MRI task using the fastMRI
dataset using the denoiser architecture. From left to right: pseudo-inverseAyy, measurement splitting,
MOI, supervised and ground-truth.

Figure 3: Reconstruction probability of ak-dimensional subspace using incomplete measurements
arising fromG independent operators for differentk. The curve in red shows the bound of Theorem
4.2,m > k + n=G.

3 Additional Experiments

3.1 Subspace Learning

We consider the problem of learning ak-dimensional subspace model from partial observations, where
the signalsx i are generated from a standard Gaussian distribution on the low-dimensional subspace.
The observationsyi are obtained by randomly choosing one out ofG operatorsA1; : : : ; AG 2 Rm � n ,
each composed of iid Gaussian entries of mean 0 and variancen� 1. In order to recover the signal
matrix X = [ x1; : : : ; xN ], we solve the following low-rank matrix recovery problem

arg min
X

kX k� (11)

s.t. Agi x i = yi 8i = 1 ; : : : ; N

wherek � k� denotes the nuclear norm. A recovery is considered successful if
P

i kx̂ i � x i k2
P

i kx i k2 < 10� 1,
wherex̂ i is the estimated signal for thei th sample. We use a standard matrix completion algorithm [2]
to solve (11). The ambient dimension is �xed atn = 50, and the experiment is repeated for
k = 1 ; 10; 40. For each experiment we setN = 150k in order to have enough samples to estimate
the subspaces [3]. Figure 3 shows the probability of recovery over25 Monte Carlo trials for different
numbers of measurementsm and operatorsG. The reconstruction probability exhibits a sharp
transition which follows the bound presented in Theorem 4.2, i.e.,m > k + n=G.
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