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Abstract

We propose ComGAN, a simple unsupervised generative model, which simultane-
ously generates realistic images and high semantic masks under an adversarial loss
and a binary regularization. In this paper, we first investigate two kinds of trivial
solutions in the compositional generation process, and demonstrate their source
is vanishing gradients on the mask. Then, we solve trivial solutions from the per-
spective of architecture. Furthermore, we redesign two fully unsupervised modules
based on ComGAN (DS-ComGAN), where the disentanglement module associates
the foreground, background and mask with three independent variables, and the
segmentation module learns object segmentation. Experimental results show that
(i) ComGAN’s network architecture effectively avoids trivial solutions without any
supervised information and regularization; (ii) DS-ComGAN achieves remarkable
results and outperforms existing semi-supervised and weakly supervised methods
by a large margin in both the image disentanglement and unsupervised segmen-
tation tasks. It implies that the redesign of ComGAN is a possible direction for
future unsupervised work.1

1 Introduction

Generative adversarial networks (GANs) [1] have been successful in realistic image generation [2, 3],
and recent work on GAN-based image composition [4, 5, 6, 7, 8, 9] has shown that GANs identify
and disentangle a class of objects from the background. To direct that GANs learn the distinction
between foreground and background, this kind of work commonly requires the following assumption:
Assumption 1 (Image composition [10] ) An image x taken from the world is typically composed
of foreground xf and background xb, which can be decomposed by the following equation:

x = xf ⊙ xm + xb ⊙ (1− xm), (1)

where xm is the mask, and the ⊙ denotes element wise multiplication operator.

It is notable that the Assumption 1 is mild and achieves significant outcomes in many areas. For
example, the models [11, 12] capture meaningful foreground segmentation masks via exactly coupling
different foregrounds and backgrounds. C3-GAN [13] proposes a scene decomposition-based method
to enforce the model to learn the features of foreground objects. Yang et al. [14, 15] detect moving
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objects in video by minimizing the mutual information of foreground-background and training in an
adversarial manner. A class of methods [16, 17] explores and perturbs the latent space of pre-trained
GANs to find foreground masks. However, it is observed that under the Assumption 1, the generation
process is always accompanied by trivial solutions [10, 18, 11, 19, 20, 21, 22, 12]. Trivial solutions
[11] can be considered as meaningless masks generated by models. To our knowledge, existing
works do not indicate that the source of the trivial solutions and they alleviate this issue in two ways.
One way is to add supervised information [23, 21, 19, 18], such as CGN [19] avoids trivial solutions
by adding pre-trained U2-Net [24]. Another is to design clever regularization and fine-tune the
parameters [10, 11, 20, 22, 12]. For example, PerturbGAN [11] proposes a regularization based on
image recombination with arbitrarily small relative shifts. Yang et al. [20] propose a regularization
based on mutual information maximization. These methods are sensitive to object scale, object
category and datasets, and therefore consume computational resources and time costs to perform
hyperparameters fine-tuning. For our solution, we propose an unsupervised generative model called
ComGAN, which simultaneously generates realistic images and high semantic masks. In addition,
our model effectively avoids trivial solutions from the perspective of architecture, which implies that
the model does not require any supervised information and explicit regularization. More specifically,
ComGAN is a generic way to generalize two typical image compositional generation methods and
alleviate the shortcomings coming from the above two methods. Furthermore, we place unique
restrictions on each module, which help the model avoid trivial solutions.

Trivial solutions also have a negative role in related tasks. For example, in the image disentanglement,
low semantic masks cause foreground and background conflicts [25, 26], which reduce the synthesis
quality. In unsupervised segmentation, the regularization to alleviate trivial solutions may induce over-
fitting of the segmentation masks [14, 15, 12]. To highlight the flexibility and robustness of ComGAN,
we extend it to the above two tasks. The ComGAN-based variant is called DS-ComGAN, which
contains both disentanglement and segmentation modules. For multi-factor disentanglement, existing
methods [26, 21, 27] rely on additional supervised information to learn the distinction of image
regions. Notice that ComGAN achieves foreground-background disentanglement in an unsupervised
way. As a result, the disentanglement module is designed as follows: we add more global information
to the shared features in ComGAN and maximize the mutual information between variables and
images. This module simplifies the previous hierarchical generative network and outperforms the
state-of-the-art (SOTA) semi-supervised and weakly supervised image disentanglement methods.
For unsupervised segmentation, existing methods [14, 15, 11, 12] rely on strong assumptions, such
as that the foreground and background are largely independent, which limits their applicability.
Different from these methods, we train a segmentation network using the images and semantic masks
synthesized by the disentanglement module. By adversarial training strategy, the image distribution
and the mask distribution are aligned. Furthermore, a consistency regularization is introduced to
ensure that the predicted masks are consistent with the inputs. This segmentation module relies only
on mild Assumption 1 and outperforms the SOTA unsupervised segmentation methods.

The main contributions are highlighted as follows:

1. To the best of our knowledge, we are the first to find that the source of trivial solutions is vanishing
gradients on the mask. Furthermore, we propose ComGAN, a simple unsupervised generative
model, which is the first to solve trivial solutions from the perspective of architecture and achieve
foreground-background disentanglement with only an adversarial loss and a binary regularization.

2. We propose DS-ComGAN, a variant network based on ComGAN, which achieves image dis-
entanglement and object segmentation in a fully unsupervised manner. Experiments show that
DS-ComGAN is robust to various datasets and outperforms SOTAs in both tasks.

2 Related Work

GAN-based Image Composition. Image composition can be regarded as combining multiple visual
areas to construct a realistic image [28]. A series of typical methods built on GANs [1] perform
image composition by utilizing Assumption 1 to achieve various functions. LR-GAN [10] composites
realistic images by learning to generate the backgrounds and foregrounds separately and recursively.
FineGAN [25] hierarchically composites images, which disentangles the background, object shape,
and object appearance. PerturbGAN [11] learns segmentation masks by training a generative model
of a layered scene and composing foregrounds and backgrounds. Similarly, SEIGAN [18] performs
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the cut, paste and inpaint operations consistent with semantic information to obtain segmentation
masks. Although the compositional image generation performs excellently in several tasks under
Assumption 1, these methods require additional regularization and hyperparameters tuning to avoid
trivial solutions.

Controllable Image Disentanglement. The goal of controllable image disentanglement is to disen-
tangle factors of variation (e.g., object shape and object appearance) towards controllable generation.
InfoGAN [29] proposes semantic image generation control by imposing regularization of mutual
information. A series of works [25, 30, 31, 26] hierarchically generates images and disentangles
the background, the object’s shape and its appearance by bounding box annotation. MixNMatch
[31] extends the FineGAN [25], which disentangles and encodes four variable factors (background,
object pose, shape, and texture) from real images. Along this direction, PartGAN [30] achieves
part-level decomposition by learning a part generator. Benny and Wolf [21] further propose a complex
GAN-based generative model, which requires a set of clean background images to simultaneously
solve several tasks including image disentanglement and unsupervised segmentation. These methods
[32, 33] learn the independent latent characteristics of an object, especially its appearance and pose.
CGN [19] decomposes the image generation process into independent causal mechanisms, and allows
for generating counterfactual images. SSC-GAN [27] is a semi-supervised single-stage generative
model considers three factors of variation via class labels, namely independent variables, cross-class
variables, and class variables. Although these methods exhibit strong performance, they all rely on
additional supervised information to achieve multi-factor disentanglement.
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Figure 1: Overview of ComGAN. The generator of ComGAN
is composed of the feature generator Φ and three independent
subnetworks. Three subnetworks synthesize the foreground,
background and mask with features ϕ as a shared input. The
’compose’ indicates the utilization of Assumption 1 to com-
pose the image. The discriminator D distinguishes real images
from fake ones.

(a) Model Π1 (b) Model Π2 (c) ComGAN

Figure 2: Comparison results of the synthesized mask.
ComGAN synthesizes high semantic masks, while the masks
synthesized by models Π1 and Π2 both converge to trivial so-
lutions. Note that Π1 has the same structure as [25, 30, 31, 26],
and Π2 has a similar structure to [11, 19]. All models include
identical adversarial loss and binary regularization βLbinary

from [19]. For each model: (left) β = 0.1, (right) β= 1.

Unsupervised Object Segmentation. Un-
supervised object segmentation aims to
extract a useful interpretation from an
image in an unsupervised way. W-net
[34] extracts foreground objects through
an encoder-decoder framework and min-
imizes reconstruction errors. ReDO [35]
captures the mask of the object, relying
on the assumption that changing the fore-
ground objects does not affect the overall
data distribution. Assuming that the fore-
ground and background are largely inde-
pendent, these methods [14, 15, 11, 12]
obtain segmentation masks by reconstruct-
ing the realistic images, that is, precisely
combining the different foregrounds and
backgrounds. Labels4Free [12] performs
unsupervised object segmentation based
on the idea that exact coupling between
foreground and background is highly non-
trivial. A similar assumption is imple-
mented In method [36], where IEM learns
image segmentation from an information
information-theoretic by maximizing in-
painting error. Similarly, Yang et al. [20]
synthesize paired realistic images and seg-
mentation masks by maximizing mutual
information between generated images and
latent variables. These methods frequently
require stringent assumptions and are not
necessarily applicable to complex real-
world data.
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3 Proposed Approach

3.1 Trivial Solutions and ComGAN

Source of trivial solutions. Two kinds of trivial solutions were introduced in [11]. The first trivial
solution degrades the whole scene into foreground or background, and the mask is always full or
empty. The second trivial solution makes the foreground and background identical, and the mask is
meaningless for the composite scene. Then, we state the source of two kinds of trivial solutions.
Lemma 1 (Vanishing gradients on the mask). Let Lall be the overall loss and x̄m be the synthesized
mask. Consider a model that composes images utilizing Assumption 1. There exist vanishing gradients
on the mask, i.e. ∂Lall/∂x̄m = 0 if and only if the model converges to two kinds of trivial solutions.

Proof: See Appendix B.1. □

Network architecture of ComGAN. An overview of our proposed ComGAN is illustrated in Fig. 1.
The generator of ComGAN consists of two parts. The feature generator denoted as Φ synthesizes
features conditioned on the variable z, i.e. ϕ = Φ(z) where z is sampled from a prior distribution p0.
The three subnetworks are defined as F , B and M. They synthesize the foreground, background and
mask, that is, x̄f = F(ϕ), x̄b = B(ϕ) and x̄m = M(ϕ). Driven by Assumption 1, the composite
image x̄ is defined as:

x̄ = F(Φ(z))⊙M(Φ(z)) + B(Φ(z))⊙ (1−M(Φ(z))) (2)

Remark 1 This form generalizes two typical image compositional generation methods:

• If only Φ(·) in B is an identity map, i.e. B(Φ(z)) = B(z), then this form is equivalent to the
model Π1, that is, two independent generators synthesize a composite image where shared features
exist in the foreground and mask generation. For example, FineGAN [25], C3-GAN [13] and
Labels4Free [12], etc. can be formulated as the model Π1.

• If Φ(·) is an identity map, i.e. Φ(z) = z, then this form is equivalent to the model Π2, that is, three
independent generators synthesize a composite image where foreground, background and mask are
generated by three generators respectively. For example, PerturbGAN [11] and CGN [19], etc. can
be formulated as the model Π2.

From the above observations, the two typical methods have a common shortcoming, that is, models
Π1 and Π2 both contain an independent background generation process. The term ignores the
association of foreground, background and mask on the features. Moreover, if the model converges to
trivial solutions, then the model degrades to an original GAN that suffers from known shortcomings,
such as mode collapse. As a result, our proposed method is a generic way and mitigates the above
shortcoming. Then, the adversarial training loss Ladv

D is defined as follows:

min
Φ,F,B,M

max
D

Ladv
D = Ex∼pdata [log (D(x)))] + Ez∼p0

[1− logD(x̄)] . (3)

Obviously, Lemma 1 points us to the limitation of the compositional generation under Assumption 1.
Then, we illustrate how to address the issue from the perspective of architecture.
Theorem 1 Given a generation Gθ composed of a decoder Φθϕ : Z → ϕ and three subnets Fθf , Bθb

and Mθm : ϕ → X . Let D be a discriminator and D∗(G∗(·)) be Nash equilibrium. If the composite
images satisfy x̄ = F(Φ(z))⊙M(Φ(z))+B(Φ(z))⊙(1−M(Φ(z))), ∥D(G(·))−D∗(G∗(·))∥ < ϵ,

max{Eϕ∼p(Φ(z))

[∥∥JθfF(ϕ)
∥∥2
2

]
, Eϕ∼p(Φ(z))

[
∥JθbB(ϕ)∥

2
2

]
} ≤ δ2 and ∥∇θL

adv
D ∥2 ≥ σ, then∥∥∇(θϕ,θm)Ez∼p(z) [log (1−D (F(Φ(z))))]

∥∥2
2
> σ2 − δ2ϵ2

(1/2− ϵ)2
. (4)

Proof: See Appendix B.1. □

We denote that ρ = σ2 − δ2ϵ2

(1/2−ϵ)2 and trivial masks as x̄∗
m. If ρ > 0, then the updated masks are

x̄+
m = Mθ+

m
(Φθ+

ϕ
(z)), which means the model escape from the first trivial solution, i.e. x̄+

m ̸= x̄∗
m.

Corollary 1 The following modules restrictions help the model avoid trivial solutions: the F and B
are lightweight and differential, the M is a shallow network and the capacity of Φ is enough.

Proof: See Appendix B.1. □

4



Upsample

Shared Feature

Composef

b

f

b

Back-Subnet

Mask-Subnet

Fore-Subnet

z~p

Generator G

Discsriminator

Syn.mask

Real/Fake

Discsriminator

Segmentation
Networks S

Df

Db

Dm

Dz
x

mx

ResBlock

33 Conv

33 Conv + Sigmoid

33 Conv + Tanh

LD
adv

Linfo

No gradient flow 

Syn.image Real image

Real/Fake

Syn.image

Real 
image

x
_

z

x
_

m x^m

x

x
_

x
_

Figure 3: Overview of DS-ComGAN. DS-ComGAN consists of two modules: (i) the disentanglement module
(blue); (ii) the segmentation model (yellow). The feature generator G synthesizes x̄z to perform adversarial
training with the discriminator Dz to contain more global features. Shared features are extracted from G
and fed to three subnetworks F , B and M. Driven by Assumption 1, foreground, background, and mask are
synthesized and composited into an image x̄. The module implements image disentanglement by the adversarial
loss Ladv

D and the mutual information regularization Linfo. Since the model synthesize high semantic masks,
the segmentation module performs unsupervised segmentation with image distribution alignment and mask
distribution alignment via adversarial training.

3.2 The Disentanglement Module of DS-ComGAN

Image generation is controlled by the mask variable z, foreground variable f and background variable
b, where f and b are both N dimensional random one-hot vectors. The generator consists of two
parts, namely a feature generator denoted as G and three subnetworks defined as F , B and M.

Global information for shared features. The features should contain global information so that the
model captures a wide range of distinctions between foreground and background, rather than focusing
on abrupt regions. To add global information to the shared features of G, we synthesize realistic
images for adversarial training, that is, x̄z is synthesized by G (z) and fed to the discriminator Dz .
Then, we extract the activation map from the last three layers inside G, denoted as a1, a2 and a3. The
shared features with global information can be written as follows:

ϕ = U (a1)⊕ U (a2)⊕ U (a3) , (5)

where U is a spatially upsample to maintain the same size for all activation maps and ⊕ is a
concatenation along the channel dimension. In order to control image disentanglement, F , B and
M synthesize foreground, background, and mask conditioned on f , b and z, that is, x̄f = F(ϕ, f),
x̄b = B(ϕ, b) and x̄m = M(ϕ). Driven by Assumption 1, the composite image x̄ are defined as:

x̄ = F(ϕ, f)⊙M(ϕ) + B(ϕ, b)⊙ (1−M(ϕ)). (6)

Then, the discriminator Dz is trained to classify images as real or fake and the adversarial training
loss Ladv

Dz
is defined as follows:

min
G,F,B,M

max
Dz

Ladv
Dz

=Ex [logDz(x)] + Ez [log(1−Dz(x̄z))] + Ez,f,b [log(1−Dz(x̄))] . (7)

Controllable regularization for foreground-background subnetworks. A mutual information
regularization is incorporated into the F and B to associate the variables f and b with the synthesized
x̄f and x̄b. Similar to InfoGAN [29], we obtain similar results by maximizing the lower bound on the
variance of the mutual information.

max
Df ,Db

Linfo = I(x̄f , f) + I(x̄b, b) ≥ Ez,f,b[logDf (f | x̄f ) + logDb(b | x̄b)], (8)

where I(·) is the mutual information, two discriminators Df and Db approximate posterior distribu-
tion of p(f |x̄f ) and p(b|x̄b). As implemented in [37, 20, 25], the I(·) is regarded as a regularization
of a class of unsupervised clusters. In other words, Df guides F to focus on generating foreground
regions and learning the features of objects. The similar analysis applies to Db. According to [10, 38],
it is difficult for GANs to learn a set of disconnected manifolds. Intuitively, F and B learn simpler
and continuous distributions, and thereby Linfo improves the quality of image generation.
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3.3 The Segmentation Module of DS-ComGAN

The following two networks are defined: a segmentation network S predicts segmentation masks
conditioned on the input images; a discriminator Dm classifies masks as real or fake. Our key idea
is to exploit the high semantic masks synthesized by disentanglement module to align the image
distribution and the mask distribution via adversarial training.

Image distribution alignment. In the disentanglement module, Dz is trained to identify x sampled
from pdata and x̄ composited by our model. When the model achieve Nash equilibrium, x̄ has the
identical distribution as x, i.e. pdata(x) = p(x̄). Hence, image distribution alignment is accomplished.

Mask distribution alignment. In the first step, we input the real image x and the synthetic image
x̄ into the segmentation network to obtain the corresponding prediction masks, that is, xm = S(x)
and x̂m = S(x̄). Then, a mask triplet (x̄m, x̂m, xm) is fed into the discriminator Dm where the
synthesized mask xm is regarded as real and both the predicted masks x̂ and xm are regarded as fake.
Mask distributions of xm, x̂m and x̄m are aligned via adversarial training,

min
S

max
Dm

Ladv
Dm

= Ex̄m,x̂m,xm [logDm(x̄m) + log(1−Dm(x̂m)) + log(1−Dm(xm))]. (9)

The mask distribution alignment makes the predicted masks clearer, but this adversarial training
strategy causes the issue that predicted masks are inconsistent with the input images. Hence, the
corresponding consistency loss Lcons is introduced to ensure that the predicted masks are consistent
with the inputs, rather than merely learning the mask distribution.

min
S

Lcons = Ex̄,x̄m
[∥x̄m − S(x̄)∥] . (10)

We transform the unsupervised segmentation task into two adversarial tasks and acquire segmentation
masks by enhancing image and mask distribution consistency.

3.4 Model Training

The whole training process of ComGAN is simple, with only an adversarial loss and a binary
regularization. The learning objective is as follows:

Lall = min
Φ,F,B,M

max
D

Ladv
D + min

Φ,M
βLbinary , (11)

where Lbinary is the pixel-wise binary entropy of mask from [19]. An explicit formulation of Lbinary
is shown in Appendix B.2. The sharpness of the semantic mask is modified by fine-tuning β. The
results of the visualization on fine-tuning β are available in Appendix C.1. All the constituent
networks of DS-ComGAN perform two kinds of unsupervised tasks: image disentanglement and
object segmentation. Overall, we optimize the following loss:

Lall =

objective for image disentanglement task︷ ︸︸ ︷
max
Df ,Db

Linfo + min
G,F,B,M

max
Dz

Ladv
Dz

+min
S

max
Dm

Ladv
Dm

+min
S

λLcons︸ ︷︷ ︸
objective for object segmentation task

. (12)

For the image disentanglement task, the model is performed in one stage. Then, the synthesized
images and semantic masks are fed into the segmentation network. Hence, the objective segmentation
process is composed of two stages.

4 Experiments

4.1 Experimental Setup

Datasets and implementation details. The experiments are conducted on five fine-grained image
datasets and a multi-object dataset: CUB [39], FS-100 [40], Stanford-Cars [41]. Stanford-Dogs
[41], Flowers [42], CLEVR6 [43]. The ground truth segmentation masks of Stanford-Cars and
Stanford-Dogs are approximated by following the practice in [21, 44, 20]. More details about datasets
and the implementation are available in the supplementary material.
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(c) ComGAN

Figure 4: Comparison results of gradient 2-norm during the training.

(a) CUB (b) FS100∗ (c) Stanford-Cars(d) Stanford-Dogs (e) Flowers (f) CLEVR6

Figure 5: Qualitative generation results for each dataset. Zoom in for better visibility. From top to bottom:
(i) final images; (ii) masks; (iii) foregrounds; (iv) backgrounds. * indicates that we incorporate a binary
regularization to obtain a high semantic mask, since the foreground almost covers the entire image.

Baseline and evaluation protocol. In order to analyze the effectiveness of the adopted components,
we established a baseline model, i.e. SimpleGAN [25]. SimpleGAN aims to generate a realistic
image, and its network contains a generator and a discriminator. For a fair comparison, we use
SimpleGAN as the feature generator of ComGAN and DS-ComGAN. We assess synthesis quality in
terms of Inception Score (IS) [45] and Fréchet Inception Distance (FID) [46], which are computed
on 20K randomly synthesized images. To quantitatively evaluate the quality of the predicted masks,
both the Intersecion of Union (IoU) and Dice score (Dice) [47] are used as the evaluation metrics.

4.2 Trivial Solutions Avoidance based on ComGAN

Avoidance of trivial solutions. To show that ComGAN solves trivial solutions, we select two typical
networks represent model Π1 and Π2 for comparison. All models only include identical adversarial
loss and binary regularization. As a typical network for model Π1, FineGAN has two generator
where a generates foreground and mask and another generates background. PerturbGAN is selected
as the typical network for model Π2, which consists of three generators that generates foreground,
background and mask, respectively. For a fair comparison, we make the following two things: (i) we
use the code provided by the authors in FineGAN and retrain it with the identical training parameters;
(ii) we simplify StyleGAN [48] with SimpleGAN in PerturbGAN and retrain it. As shown in Fig.
2, the mask synthesized by ComGAN avoids convergence to trivial solutions and has non-trivial
semantic information. In addition, we track the gradient 2-norm of the three models. It is clear from
Fig. 4 that the gradient norms of mask networks in the model Π1 and Π2 converge to zero and both
models degrade to an original GAN, while our method effectively avoids vanishing gradients.

4.3 Image Disentanglement based on DS-ComGAN

Quantitative evaluation of image generation. We compare DS-ComGAN with the competing
GAN-based generative models without any advanced GAN training strategy. As illustrated in Table
1, the results show that DS-ComGAN significantly outperforms all the SOTA weakly supervised and
semi-supervised methods. FineGAN and MixNMatch may be limited by the foreground-background
conflict, such as trivial masks. SSC-GAN might have trouble in learning a set of disconnected
manifolds. To emphasize that DS-ComGAN is fully unsupervised and adapts to complex multi-object
scenarios, we further perform our model on diverse datasets. Stanford-Dogs and Flowers typically
include a single foreground object, whereas CLEVR6 contains a variety of occluded and truncated
objects. Table 3 shows that our model is robust on various datasets and outperforms the SOTA image
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Figure 6: The controllable image generation via varying variables f , b and z. Zoom in for better visibility.

CUB FS-100 Stanford-Cars

Methods Sup. FID ↓ IS↑ FID ↓ IS↑ FID ↓ IS↑
Triple-GAN [49] Semi. 140.94 3.94±0.06 91.05 1.45±0.03 114.12 2.45±0.06
EnhancedTGAN [40] Semi. 133.57 4.17±0.06 57.58 1.57±0.02 105.20 2.43±0.05
Triangle-GAN [50] Semi. 96.42 4.36±0.05 35.49 1.71±0.04 61.44 2.77±0.10
R3-CGAN [51] Semi. 88.62 4.43±0.06 25.28 1.73±0.02 44.57 3.05±0.04
SSC-GAN§ [27] Semi. 20.03 4.68±0.04 20.65 1.82±0.03 39.02 3.10±0.03
FineGAN§ [25] Weak. 46.68 4.62±0.03 24.63 1.76±0.02 45.72 2.85±0.04
MixNMatch§ [31] Weak. 45.59 4.78±0.08 25.63 1.71±0.05 45.94 2.60±0.05
SN-GAN [52] Unsup. 160.09 4.21±0.05 41.26 1.66±0.05 53.20 2.80±0.05
DS-ComGAN§ Unsup. 16.26 4.79±0.47 20.15 1.83±0.32 34.17 2.84±0.12

Table 1: Image synthesis results for each dataset measured in FID and IS. DS-ComGAN is compared with
the state-of-the-art un(semi-)supervised GAN-based models. § indicates that the models have the ability to
achieve image disentanglement.

disentanglement methods. Fig 5 shows the qualitative generation results for each dataset, from which
it is evident that our model generates not only realistic images but also clear semantic masks.

(a) Varying b, fixed f and z (b) Varying f , fixed b and z

Figure 7: Disentanglement of foreground-background.

Method FID ↓ IS ↑
Baseline 89.87 4.45±0.46
+ Independent subnetworks. 21.35 4.75±0.08

+ Linfo-based Reg. 17.32 4.73±0.08
+ Extract global features. 16.26 4.79±0.47

Improvement 73.61 0.34
Table 2: The results of the baseline and variants on CUB.

Controllable image disentanglement. Fig.
6 illustrates that by varying three indepen-
dent variables, DS-ComGAN synthesizes re-
alistic and diverse images. This indicates
that the model achieves controlled image dis-
entanglement. We see that variable z is as-
sociated with the masks. The pose of the
object is altered with the varying variable
z. The colors and textures of the foreground
and background are associated with variables
f and b. To clarify the role of f and b in
image disentanglement, Fig 7 further ana-
lyzes the disentanglement of foreground and
background. In summary, DS-ComGAN as-
sociates three independent variables (f , b
and z) with the foreground, background and
mask, respectively.
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Single Object Multi-Object

Stanfor-Dogs Flowers CLEVR6

Methods FID ↓ IS↑ FID ↓ IS↑ FID ↓ IS↑
SSC-GAN§ [27] 64.26 8.97±0.12 29.09 3.41±0.03 \ \

FineGAN§ [25] 69.52 8.27±0.17 \ \ \ \

MixNMatch§ [31] 68.31 8.32±0.06 \ \ \ \

DS-ComGAN§ 60.84 9.17±0.23 27.19 3.42±0.04 77.08 2.75±0.05
Table 3: Performance of DS-ComGAN on datasets with various attributes. Noting that the Flowers dataset
lacks bounding box annotation, FineGAN and MixNMatch both are unsuitable for this dataset (marked as \ ).
CLEVR6 lacks bounding box annotation and labels. Consequently, only our model is suitable for CLEVR6.

(a) CUB (b) Stanford-Dogs (c) Stanford-Cars (d) Flowers (e) CLEVR6

Figure 8: Qualitative segmentation results for each dataset. From left to right: (i) observed images, (ii)
ground-truth masks, (iii) predicted masks. More samples can be found in the supplementary material.

Effectiveness of model components To evaluate the contribution of each proposed component,
we analyze quantitatively the performance margin between the baseline model and ComGAN. As
demonstrated in Table 2, the incorporation of F , B and M significantly improves the performance of
the baseline model. It illustrates that ComGAN has an excellent image generation performance. As
analyzed in section 3.2, the Linfo causes a decrease in FID by about 4 points.

4.4 Unsupervised Segmentation based on DS-ComGAN

To demonstrate that our method applies to complex real-world domains and multi-object scenar-
ios with challenging spatial configurations, along the lines of [44], DS-ComGAN performs the
unsupervised segmentation task on the various datasets. Then, we perform a comparison between
DS-ComGAN and several state-of-the-art un(weakly-)supervised segmentation methods.

Qualitative analysis. In Fig. 8, qualitative segmentation results of DS-ComGAN are presented.
We observe that the predicted masks segment visual details more precisely than the ground-truth
masks, such as the legs of birds and the rearview mirrors of cars. Although the predicted masks
properly detect and segment foreground objects on the Flowers and Stanford-Cars datasets, the masks
are inconsistent with the foreground images, which is mitigated by increasing λ.

Quantitative comparisons to prior work. Table 4 demonstrates that DS-ComGAN exhibit robust-
ness to diverse datasets and achieve superior performance across all metrics and datasets. This implies
that the model pays more attention to the discrepancy between the objects and background rather
than the number of objects. In addition, the result benefits from the images and high semantic masks
synthesized by DS-ComGAN, which ensure two high-quality distribution alignments.
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Single Object Multi-Object

CUB Stanford-Dogs Stanford-Cars Flowers CLEVR6

Methods IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑ IoU↑ Dice↑
W-Net [34] 24.8 38.9 47.7 62.1 52.8 67.6 - - - -
GrabCut [53] 30.2 42.7 58.3 70.9 61.3 73.1 69.2 79.1 19.0 30.5
ReDO†⋇ [35] 46.5 60.2 55.7 70.3 52.5 68.6 76.4 - 18.6 31.0
OneGAN⋄⋇ [21] 55.5 69.2 71.0 81.7 71.2 82.6 - - -
IODINE† [54] 30.9 44.6 54.4 67.0 51.7 67.3 - - 19.9 32.4
PerturbGAN [11] 38.0 - - - - - - - - -
Slot-Attn.† [55] 35.6 51.5 38.6 55.3 41.3 58.3 - - 83.6 90.7
IEM+SegNet [36] 55.1 68.7 - - - - 76.8 84.6 - -
DRC [44] 56.4 70.9 71.7 83.2 72.4 83.7 - - 84.7 91.5
DS-ComGAN 60.7 71.3 74.5 84.6 76.7 86.6 76.9 83.1 90.0 94.6

Table 4: Segmentation results on training data measured in IoU and Dice. DS-ComGAN is compared
with the state-of-the-art un(weakly-)supervised segmentation methods. Following the [44], † indicates unfair
baseline results obtained using extra ground-truth information. ⋇ represents a GAN-based model. OneGAN⋄ is
a weakly supervised baseline, which requires clean backgrounds as additional inputs.

5 Conclusion

As the limitation of method, DS-ComGAN has struggled to achieve the desired performance when the
foreground object features are highly diverse (e.g., HKU-IS [56]). We conjecture that the limitation
might relate to the capacity of model. DS-ComGAN performs excellently in controlled image
synthesis tasks, which may cause the incidence of image falsification.

We first analyze that the source of trivial solutions is vanishing gradients on the mask. Subsequently,
we propose ComGAN, a simple unsupervised generative model, which simultaneously generates
realistic images and high semantic masks, and effectively avoids trivial solutions. Then, we design DS-
ComGAN based on ComGAN, which exhibits excellent performance in both image disentanglement
and unsupervised segmentation tasks. Notably, DS-ComGAN obtains these excellent performances
by relying on its architecture rather than complex and clever regularization. It implies that ComGAN
has the potential to shine in many tasks.
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