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Abstract

Synchronizing decisions across multiple agents in realistic settings is problematic
since it requires agents to wait for other agents to terminate and communicate
about termination reliably. Ideally, agents should learn and execute asynchronously
instead. Such asynchronous methods also allow temporally extended actions that
can take different amounts of time based on the situation and action executed.
Unfortunately, current policy gradient methods are not applicable in asynchronous
settings, as they assume that agents synchronously reason about action selection
at every time step. To allow asynchronous learning and decision-making, we
formulate a set of asynchronous multi-agent actor-critic methods that allow agents
to directly optimize asynchronous policies in three standard training paradigms:
decentralized learning, centralized learning, and centralized training for decen-
tralized execution. Empirical results (in simulation and hardware) in a variety of
realistic domains demonstrate the superiority of our approaches in large multi-agent
problems and validate the effectiveness of our algorithms for learning high-quality
and asynchronous solutions.

1 Introduction

In recent years, multi-agent policy gradient methods using the actor-critic framework have achieved
impressive success in solving a variety of cooperative and competitive domains [Baker et al., 2020,
Du et al., 2019, Foerster et al., 2018, Du et al., 2021, Iqbal and Sha, 2019, Li et al., 2019, Lowe et al.,
2017, Su et al., 2021, Vinyals et al., 2019, Wang et al., 2020a, 2021a, Yang et al., 2020a, Zhou et al.,
2020]. However, as these methods assume synchronized primitive-action execution over agents, they
struggle to solve large-scale real-world multi-agent problems that involve long-term reasoning and
asynchronous behavior.

Temporally-extended actions have been widely used in both learning and planning to improve scala-
bility and reduce complexity. For example, they have come in the form of motion primitives [Dalal
et al., 2021, Stulp and Schaal, 2011], skills [Konidaris et al., 2011, 2018], spatial action maps [Wu
et al., 2020] or macro-actions [He et al., 2010, Hsiao et al., 2010, Lee et al., 2021, Theocharous and
Kaelbling, 2004]. The idea of temporally-extended actions has also been incorporated into multi-
agent approaches. In particular, we consider the Macro-Action Decentralized Partially Observable

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Markov Decision Process (MacDec-POMDP) [Amato et al., 2014, 2019]. The MacDec-POMDP
is a general model for cooperative multi-agent problems with partial observability and (potentially)
different action durations. As a result, agents can start and end macro-actions at different time steps
so decision-making can be asynchronous.

The MacDec-POMDP framework has shown strong scalability with planning-based methods (where
the model is given) [Amato et al., 2015a,b, Hoang et al., 2018, Omidshafiei et al., 2016, 2017a]. In
terms of multi-agent reinforcement learning (MARL), there have been many hierarchical approaches,
they don’t typically address asynchronicity since they assume agents’ have high-level decisions
with the same duration [de Witt et al., 2019, Han et al., 2019, Nachum et al., 2019, Wang et al.,
2020b, 2021b, Xu et al., 2021, Yang et al., 2020b]. Only limited studies have considered asynchronic-
ity [Chakravorty et al., 2019, Menda et al., 2019, Xiao et al., 2019], yet, none of them provides a
general formulation for multi-agent policy gradients that allows agents to asynchronously learn and
execute.

In this paper, we assume a set of macro-actions has been predefined for each domain. This is well-
motivated by the fact that, in real-world multi-robot systems, each robot is already equipped with
certain controllers (e.g., a navigation controller, and a manipulation controller) that can be modeled
as macro-actions [Amato et al., 2015a, Omidshafiei et al., 2017a, Wu et al., 2021a, Xiao et al., 2019].
Similarly, as it is common to assume primitive actions are given in a typical RL domain, we assume
the macro-actions are given in our case. The focus of the policy gradient methods is then on learning
high-level policies over macro-actions.1

Our contributions include a set of macro-action-based multi-agent actor-critic methods that generalize
their primitive-action counterparts. First, we formulate a macro-action-based independent actor-critic
(Mac-IAC) method. Although independent learning suffers from a theoretical curse of environmental
non-stationarity, it allows fully online learning and may still work well in certain domains. Second,
we introduce a macro-action-based centralized actor-critic (Mac-CAC) method, for the case where
full communication is available during execution. We also formulate a centralized training for
decentralized execution (CTDE) paradigm [Kraemer and Banerjee, 2016, Oliehoek et al., 2008]
variant of our method. CTDE has gained popularity since such methods can learn better decentralized
policies by using centralized information during training. Current primitive-action-based multi-agent
actor-critic methods typically use a centralized critic to optimize each decentralized actor. However,
the asynchronous joint macro-action execution from the centralized perspective could be very different
with the completion time being very different from each agent’s decentralized perspective. To this end,
we first present a Naive Independent Actor with Centralized Critic (Naive IACC) method that naively
uses a joint macro-action-value function as the critic for each actor’s policy gradient estimation; and
then propose a novel Independent Actor with Individual Centralized Critic (Mac-IAICC) method that
learns individual critics using centralized information to address the above challenge.

We evaluate our proposed methods on diverse macro-action-based multi-agent problems: a benchmark
Box Pushing domain [Xiao et al., 2019], a variant of the Overcooked domain [Wu et al., 2021b]
and a larger warehouse service domain [Xiao et al., 2019]. Experimental results show that our
methods are able to learn high-quality solutions while primitive-action-based methods cannot, and
show the strength of Mac-IAICC for learning decentralized policies over Naive IAICC and Mac-IAC.
Decentralized policies learned by using Mac-IAICC are successfully deployed on real robots to
solve a warehouse tool delivery task in an efficient way. To our knowledge, this is the first general
formalization of macro-action-based multi-agent actor-critic frameworks for the three state-of-the-art
multi-agent training paradigms.

2 Background

2.1 MacDec-POMDPs

The macro-action decentralized partially observable Markov decision process (MacDec-
POMDP) [Amato et al., 2014, 2019] incorporates the option framework [Sutton et al., 1999] into
the Dec-POMDP by defining a set of macro-actions for each agent. Formally, a MacDec-POMDP is
defined by a tuple hI, S,A,M,⌦, ⇣, T, R,O, Z,H, �i, where I is a set of agents; S is the environ-

1Our approach could potentially also be applied to other models with temporally-extended actions [Omid-
shafiei et al., 2017a].
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mental state space; A = ⇥i2IAi is the joint primitive-action space over each agent’s primitive-action
set Ai; M = ⇥i2IMi is the joint macro-action space over each agent’s macro-action space Mi;
⌦ = ⇥i2I⌦i is the joint primitive-observation space over each agent’s primitive-observation set
⌦i; ⇣ = ⇥i2I⇣i is the joint macro-observation space over each agent’s macro-observation space
⇣i; T (s,~a, s0) = P (s0|s,~a) is the environmental transition dynamics; and R(s,~a) is a global re-
ward function. During execution, each agent independently selects a macro-action mi using a
high-level policy  i : HM

i
⇥Mi ! [0, 1] and captures a macro-observation zi 2 ⇣i according to

the macro-observation probability function Zi(zi,mi, s0) = P (zi | mi, s0) when the macro-action
terminates in a state s0. Each macro-action is represented as mi = hImi ,⇡mi ,�mii, where the
initiation set Imi ⇢ HM

i
defines how to initiate a macro-action based on macro-observation-action

history HM

i
at the high-level; ⇡mi : HA

i
⇥ Ai ! [0, 1] is the low-level policy for achieving a

macro-action, and during the running, the agent receives a primitive-observation oi 2 ⌦i based
on the observation function Oi(oi, ai, s) = P (oi|ai, s) at every time step; �mi : HA

i
! [0, 1]

is a stochastic termination function that determines how to terminate a macro-action based on
primitive-observation-action history HA

i
at the low-level. The objective of solving MacDec-POMDPs

with finite horizon is to find a joint high-level policy ~ = ⇥i2I i that maximizes the value,
V

~ (s(0)) = E

hP
H�1
t=0 �tr

�
s(t),~a(t)

�
| s(0),~⇡, ~ 

i
, where � 2 [0, 1] is a discount factor, and H is

the number of (primitive) time steps until the problem terminates (the horizon).

2.2 Single-Agent Actor-Critic

In single-agent reinforcement learning, the policy gradient theorem [Sutton et al., 2000] formulates a
principled way to optimize a parameterized policy ⇡✓ via gradient ascent on the policy’s performance
defined as J(✓) = E⇡✓

⇥P1
t=0 �

tr
�
s(t), a(t)

�⇤
. In POMDPs, the gradient w.r.t. parameters of a

history-based policy ⇡✓(a | h) is expressed as: r✓J(✓) = E⇡✓

h
r✓ log ⇡✓(a | h)Q⇡✓ (h, a)

i
, where

h is maintained by a recurrent neural network (RNN) [Hausknecht and Stone, 2015]. The actor-critic
framework [Konda and Tsitsiklis, 2000] learns an on-policy action-value function Q⇡✓

�
(h, a) (critic)

via temporal-difference (TD) learning [Sutton, 1988] to approximate the action-value for the policy
(actor) updates. Variance reduction is commonly achieved by training a history-value function V ⇡✓

w (h)
and using it as a baseline [Weaver and Tao, 2001] as well as bootstrapping to estimate the action-value.
Accordingly, the policy gradient can be written as:

r✓J(✓) = E⇡✓

h
r✓ log ⇡✓(a | h)

�
r + �V ⇡✓

w (h0)� V ⇡✓
w (h)

�i
(1)

where, r is the immediate reward received by the agent at the corresponding time step.

2.3 Independent Actor-Critic

The single-agent actor-critic algorithm can be adapted to multi-agent problems in a simple way such
that each agent independently learns its own actor and critic while treating other agents as part of the
world [Foerster et al., 2018]. We consider a variance reduction version of independent actor-critic
(IAC) with the policy gradient as follows:

r✓iJ(✓i) = E~⇡~✓

h
r✓i log ⇡✓i(ai|hi)

�
r + �V

⇡✓i
wi (h0

i
)� V

⇡✓i
wi (hi)

�i
(2)

where, r is a shared reward over agents at every time step. Due to other agents’ policy updating and
exploring, from any agent’s local perspective, the environment appears non-stationary which can lead
to unstable learning of the critic without convergence guarantees [Lowe et al., 2017]. This instability
often prevents IAC from learning high-quality cooperative policies.

2.4 Independent Actor with Centralized Critic

To address the above difficulties in independent learning approaches, centralized training for decentral-
ized execution (CTDE) provides agents with access to global information during offline training while
allowing agents to rely on only local information during online decentralized execution. Typically,
the key idea of exploiting CTDE with actor-critic is to train a joint action-value function, Q~⇡~✓

�
(x,~a),

as the centralized critic and use it to compute gradients w.r.t. the parameters of each decentralized
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policy [Foerster et al., 2018, Lowe et al., 2017]. Although the centralized critic can facilitate the
update of decentralized policies to optimize global collaborative performance, it also introduces extra
variance over other agents’ actions [Lyu et al., 2021, Wang et al., 2021a]. Therefore, we consider
the version of independent actor with centralized critic (IACC) with a general variance reduction
trick [Foerster et al., 2018, Su et al., 2021], the policy gradient of which is:

r✓iJ(✓i) = E~⇡~✓

h
r✓i log ⇡✓i(ai | hi)

�
r + �V

~⇡~✓
w (x0)� V

~⇡~✓
w (x)

�i
(3)

where, x represents the available centralized information (e.g., joint observation, joint observation-
action history, or the true state).

2.5 Learning Macro-Action-Based Deep Q-Nets

Previous MARL methods for Dec-POMDPs cannot work with the asynchronicity of macro-action-
based agents, where agents may start and complete their macro-actions at different time steps.
Recently, macro-action-based multi-agent DQNs have been proposed for MacDec-POMDPs [Xiao
et al., 2019].

For decentralized learning, a new buffer, Macro-Action Concurrent Experience Replay Trajectories
(Mac-CERTs), is designed for collecting each agent’s macro-observation, macro-action, and reward
information. In this buffer, the transition experience of each agent i is represented as a tuple
hzi,mi, z0i, r

c

i
i, where rc

i
=

Ptmi+⌧mi�1
t=tmi

�t�tmi r(t) is a cumulative reward of the macro-action
taking ⌧mi time steps to be completed from its beginning time step tmi . During training, a mini-
batch of concurrent sequential experiences is sampled from Mac-CERTs. Each agent independently
accesses its own sampled experiences and obtains ‘squeezed’ trajectories by removing the transitions
in the middle of each macro-action execution, which produces a mini-batch of transitions when
the corresponding macro-action terminates (i.e., removing time information). Updates for each
macro-action-value function Q�i(hi,mi) take place only when the agent’s macro-action is complete
by minimizing a TD loss over the ‘squeezed’ data. In the centralized learning case, the objective
is to learn a joint macro-action-value function Q�(~h, ~m). To this end, another special buffer called
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs) is developed for collecting agents’
joint transition experience at every time step and each is represented as a tuple h~z, ~m, ~z 0, ~r ci, where
~r c =

P
t~m+~⌧~m�1
t=t~m

�t�t~mr(t) is a shared joint cumulative reward from the beginning time step t~m of
the joint macro-action ~m to its termination, defined as when any agent finishes its own macro-action,
after ~⌧~m time steps. In each training iteration, the joint macro-action-value function is optimized
over a mini-batch of ‘squeezed’ (depending on each joint macro-action termination) sequential joint
experiences via TD learning. Other choices for what information to retain are also possible (e.g., the
whole sequence of macro-actions or including time to complete) but this squeezing procedure was
found to work well. In our macro-action-based actor-critic methods, we extend the above approaches
to train critics on-policy, and the trajectory squeezing is changed variously for each method in order
to achieve improved asynchronous macro-action-based policy updates via policy gradient.

3 Approach

MARL with asynchronous macro-actions is more challenging as it is difficult to determine when
to update each agent’s policy and what information to use. Although the macro-action-based DQN
methods [Xiao et al., 2019] (in Section 2.5) give us the base to learn macro-action value functions,
they do not directly extend to the policy gradient case, particularly in the case of centralized training
for decentralized execution (CTDE). In this section, we propose principled formulations of on-
policy macro-action-based multi-agent actor-critic methods for decentralized learning (Section 3.1),
centralized learning (Section 3.2), and CTDE (Section 3.3). In each case, we first introduce the
version with a Q-value function as the critic and then present the variance reduction version 2.

3.1 Macro-Action-Based Independent Actor-Critic (Mac-IAC)

Similar to the idea of IAC with primitive-actions (Section 2.3), a straightforward extension is to
have each agent independently optimize its own macro-action-based policy (actor) using a local

2We use hi to represent an agent’s local macro-observation-action history, and ~h to represent the joint history.
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macro-action-value function (critic). Hence, we start with deriving a macro-action-based policy
gradient theorem in Appendix B by incorporating the general Bellman equation for the state values of
a macro-action-based policy [Sutton et al., 1999] into the policy gradient theorem in MDPs [Sutton
et al., 2000], and then extend it to MacDec-POMDPs so that each agent can have the following
policy gradient w.r.t. the parameters of its macro-action-based policy  ✓i(mi|hi) as: r✓iJ(✓i) =

E~ ~✓


r✓i log ✓i(mi | hi)Q

 ✓i
�i

(hi,mi)

�
. During training, each agent accesses its own trajectories

and squeezes them in the same way as the decentralized case mentioned in Section 2.5 to train the
critic Q ✓i

�i
(hi,mi) via on-policy TD learning and perform gradient ascent to update the policy when

the agent’s macro-action terminates. In our case, we train a local history value function V
 ✓i
wi (hi) as

each agent’s critic and use it as a baseline to achieve variance reduction. The corresponding policy
gradient is as follows:

r✓iJ(✓i) = E~ ~✓


r✓i log ✓i(mi | hi)

�
rc
i
+ �⌧miV

 ✓i
wi (h0

i
)� V

 ✓i
wi (hi)

��
(4)

where, the cumulative reward rc
i

is w.r.t. the execution of agent i’s macro-action mi.

3.2 Macro-Action-Based Centralized Actor-Critic (Mac-CAC)

In the fully centralized learning case, we treat all agents as a single joint agent to learn a centralized
actor  ✓(~m | ~h) with a centralized critic Q ✓

�
(~h, ~m), and the policy gradient can be expressed as:

r✓J(✓) = E ✓


r✓ log ✓(~m | ~h)Q ✓

�
(~h, ~m)

�
. Similarly, to achieve a lower variance optimization

for the actor, we learn a centralized history value function V  ✓
w (~h) by minimizing a TD-error loss

over joint trajectories that are squeezed w.r.t. each joint macro-action termination (when any agent
terminates its macro-action, defined in the centralized case in Section 2.5). Accordingly, the policy’s
updates are performed when each joint macro-action is completed by ascending the following
gradient:

r✓J(✓) = E ✓


r✓ log ✓(~m | ~h)

�
~r c + �~⌧~mV  ✓

w (~h0)� V  ✓
w (~h)

��
(5)

where the cumulative reward ~r c is w.r.t. the execution of the joint macro-action ~m.

3.3 Macro-Action-Based Independent Actor with Centralized Critic (Mac-IACC)

As mentioned earlier, fully centralized learning requires perfect online communication that is often
hard to guarantee, and fully decentralized learning suffers from environmental non-stationarity due
to agents’ changing policies. In order to learn better decentralized macro-action-based policies, in
this section, we propose two macro-action-based actor-critic algorithms using the CTDE paradigm.
The difference between a joint macro-action termination from the centralized perspective and a
macro-action termination from each agent’s local perspective gives rise to a new challenge: what kind
of centralized critic should be learned and how should it be used to optimize decentralized policies
where some have completed and some have not, which we investigate below.

Naive Mac-IACC. A naive way of incorporating macro-actions into a CTDE-based actor-critic
framework is to directly adapt the idea of the primitive-action-based IACC (Section 2.4) to have

a shared joint macro-action-value function Q
~ ~✓
�

(x, ~m) in each agent’s decentralized macro-action-

based policy gradient as: r✓iJ(✓i) = E~ ~✓


r✓i log ✓i(mi | hi)Q

~ ~✓
�

(x, ~m)

�
. To reduce variance,

with a value function V
~ ~✓
w (x) as the centralized critic, the policy gradient w.r.t. the parameters of

each agent’s high-level policy can be rewritten as:

r✓iJ(✓i) = E~ ~✓


r✓i log ✓i(mi | hi)

�
~r c + �~⌧~mV

~ ~✓
w (x0)� V

~ ~✓
w (x)

��
(6)

Here, the critic is trained in the fully centralized manner described in Section 3.2 while allowing it
to access additional global information (e.g., joint macro-observation-action history, ground truth
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state or both) represented by the symbol x. However, updates of each agent’s policy  ✓i(mi | hi)
only occur at the agent’s own macro-action termination time steps rather than depending on joint
macro-action terminations in the centralized critic training.

Independent Actor with Individual Centralized Critic (Mac-IAICC). Note that naive Mac-IACC
is technically incorrect. The cumulative reward ~r c in Eq. 6 is based on the corresponding joint
macro-action’s termination that is defined as when any agent finishes its own macro-action, which

produces two potential issues: a) ~r c + �~⌧~mV
~ ~✓
w (x0) may not estimate the value of the macro-action

mi well as the reward does not depend on mi’s termination; b) from agent i’s perspective, its policy
gradient estimation may involve higher variance associated with the asynchronous macro-action
terminations of other agents.

To tackle the aforementioned issues, we propose to learn a separate centralized critic V
~ ~✓
wi (x

0) for

each agent via TD-learning. In this case, the TD-error for updating V
~ ~✓
wi (x

0) is computed by using the
reward rc

i
that is accumulated purely based on the execution of the agent i’s macro-action mi. With

this TD-error estimation, each agent’s decentralized macro-action-based policy gradient becomes:

r✓iJ(✓i) = E~ ~✓


r✓i log ✓i(mi | hi)

�
rc
i
+ �⌧miV

~ ~✓
wi (x

0)� V
~ ~✓
wi (x)

��
(7)

Now, from agent i’s perspective, rc
i
+ �⌧miV

~ ~✓
wi (x

0) is able to offer a more accurate value prediction

for the macro-action mi, since both the reward, rc
i

and the value function V
~ ~✓
wi (x

0) depend on agent
i’s macro-action termination. Also, unlike the case in Naive Mac-IACC, other agents’ terminations
cannot lead to extra noisy estimated rewards w.r.t. mi anymore so that the variance on policy gradient
estimation gets reduced. Then, updates for both the critic and the actor occur when the corresponding
agent’s macro-action ends and take the advantage of information sharing. The pseudocode and
detailed trajectory squeezing process for each proposed method are presented in Appendix C.

4 Simulation Experiments

4.1 Domain Setup

(a) Box Pushing (b) Overcooked-A (c) Overcooked-B (d) Overcooked Salad Recipe

(e) Warehouse-A (f) Warehouse-B (g) Warehouse-C (h) Warehouse-D

Figure 1: Experimental environments.

We investigate the performance of our algorithms over a variety of multi-agent problems with macro-
actions (Fig. 1): Box Pushing [Xiao et al., 2019], Overcooked [Wu et al., 2021b], and a larger
Warehouse Tool Delivery [Xiao et al., 2019] domain. Macro-actions are defined by using prior
domain knowledge as they are straightforward in these tasks. Typically, we also include primitive-
actions into macro-action set (as one-step macro-actions), which gives agents the chance to learn
more complex policies that use both when it is necessary. We describe the domains’ key properties
here and have more details in Appendix D.

Box Pushing (Fig. 1a). The optimal solution for the two agents is to cooperatively push the big box to
the yellow goal area for a terminal reward, but partial observability makes this difficult. Specifically,
robots have four primitive-actions: move forward, turn-left, turn-right and stay. In the macro-action
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case, each robot has three one-step macro-actions: Turn-left, Turn-right, and Stay, as well as three
multi-step macro-actions: Move-to-small-box(i) and Move-to-big-box(i) navigate the robot to the red
spot below the corresponding box and terminate with the robot facing the box; Push causes the robot
to keep moving forward until arriving at the world’s boundary (potentially pushing the small box or
trying to push the big one). The big box only moves if both agents push it together. Each robot can
only observe the status (empty, teammate, boundary, small or big box) of the cell in front of it. A
penalty is issued when any robot hits the boundary or pushes the big box alone.

Overcooked (Fig. 1b - 1c). Three agents must learn to cooperatively prepare a lettuce-tomato-onion
salad and deliver it to the ‘star’ cell. The challenge is that the salad’s recipe (Fig. 1d) is unknown to
agents. With primitive-actions (move up, down, left, right, and stay), agents can move around and
achieve picking, placing, chopping and delivering by standing next to the corresponding cell and
moving against it (e.g., in Fig. 1b, the pink agent can move right and then move up to pick up the
tomato). We describe the major function of macro-actions below and full details (e.g., termination
conditions) are included in Appendix D.2. Each agent’s macro-action set consists of: a) five one-step
macro-actions that are the same as the primitive ones; b) Chop, cuts a raw vegetable into pieces when
the agent stands next to a cutting board and an unchopped vegetable is on the board, otherwise it does
nothing; c) long-term navigation macro-actions: Get-Lettuce, Get-Tomato, Get-Onion, Get-Plate-1/2,
Go-Cut-Board-1/2 and Deliver, which navigate the agent to the location of the corresponding object
with various possible terminal effects (e.g., holding a vegetable in hand, placing a chopped vegetable
on a plate, arriving at the cell next to a cutting board, delivering an item to the star cell, or immediately
terminating when any property condition does not hold, e.g., no path is found or the vegetable/plate is
not found); d) Go-Counter (only available in Overcook-B, Fig. 1c), navigates an agent to the center
cell in the middle of the map when the cell is not occupied, otherwise, it moves to an adjacent cell. If
the agent is holding an object or one is at the cell, the object will be placed or picked up. Each agent
only observes the positions and status of the entities within a 5⇥ 5 square centered on the robot.

Warehouse Tool Delivery (Fig. 1e - 1h). In each workshop (e.g., W-0), a human is working on
an assembly task (involving 4 sub-tasks that each takes a number of time steps to complete) and
requires three different tools for future sub-tasks to continue. A robot arm (grey) must find tools for
each human on the table (brown) and pass them to mobile robots (green, blue and yellow) who are
responsible for delivering tools to humans. Note that, the correct tools needed by each human are
unknown to robots, which has to be learned during training in order to perform efficient delivery. A
delayed delivery leads to a penalty. We consider variants with two or three mobile robots and two to
four humans to examine the scalability of our methods (Fig. 1f - 1h). We also consider one faster
human (orange) to check if robots can prioritize him (Fig. 1g). Mobile robots have the following
macro-actions: Go-W(i), moves to the waypoint (red) at workshop i; Go-TR, goes to the waypoint at
the right side of the tool room (covered by the blue robot in Fig. 1g and 1h); and Get-Tool, navigates
to a pre-allocated waypoint (that is different for each robot to avoid collisions) next to the robot arm
and waits there until either receiving a tool or 10 time steps have passed. The robot arm’s applicable
macro-actions are: Search-Tool(i), finds tool i and places it in a staging area (containing at most
two tools) on the table, and otherwise, it freezes the robot for the amount of time the action would
take when the area is fully occupied; Pass-to-M(i), passes the first staged tool to mobile robot i; and
Wait-M, waits for 1 time step. The robot arm only observes the type of each tool in the staging area
and which mobile robot is waiting at the adjacent waypoints. Each mobile robot always knows its
position and the type of tool that it is carrying, and can observe the number of tools in the staging
area or the sub-task a human is working on only when at the tool room or the workshop respectively.

4.2 Results and Discussions

We evaluate performance of one training trial with a mean discounted return measured by periodically
(every 100 episodes) evaluating the learned policies over 10 testing episodes. We plot the average
performance of each method over 20 independent trials with one standard error and smooth the curves
over 10 neighbors. We also show the optimal expected return in Box Pushing domain as a dash-dot
line. More training details are in Appendix E.

Advantages of learning with macro-actions. We first present a comparison of our macro-action-
based actor-critic methods against the primitive-action-based methods in fully decentralized and fully
centralized cases. We consider various grid world sizes of the Box Pushing domain (top row in Fig. 2
and two Overcooked scenarios (bottom row in Fig. 2). The results show significant performance
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Figure 2: Decentralized learning and centralized learning with macro-actions vs primitive-actions.

improvements of using macro-actions over primitive-actions. More concretely, in the Box Pushing
domain, reasoning about primitive movements at every time step makes the problem intractable so
the robots cannot learn any good behaviors in primitive-action-based approaches other than to keep
moving around. Conversely, Mac-CAC reaches near-optimal performance, enabling the robots to
push the big box together. Unlike the centralized critic which can access joint information, even
in the macro-action case, it is hard for each robot’s decentralized critic to correctly measure the
responsibility for a penalty caused by a teammate pushing the big box alone. Mac-IAC thus converges
to a local-optima of pushing two small boxes in order to avoid getting the penalty.

In the Overcooked domain, an efficient solution requires the robots to asynchronously work on
independent subtasks (e.g., in scenario A, one robot gets a plate while another two robots pick up and
chop vegetables; and in scenario B, the right robot transports items while the left two robots prepare
the salad). This large amount of independence explains why Mac-IAC can solve the task well. This
also indicates that using local information is enough for robots to achieve high-quality behaviors. As
a result, Mac-CAC learns slower because it must figure out the redundant part of joint information in
much larger joint macro-level history and action spaces than the spaces in the decentralized case. The
primitive-action-based methods begin to learn, but perform poorly in such long-horizon tasks.

Advantages of having individual centralized critics. Fig. 3 shows the evaluation of our methods
in all three domains. As each agent’s observation is extremely limited in Box Pushing, we allow
centralized critics in both Mac-IAICC and Naive Mac-IACC to access the state (agents’ poses and
boxes’ positions), but use the joint macro-observation-action history in the other two domains.

In the Box Pushing task (the left two in the top row in Fig. 3), Naive Mac-IACC (green) can learn
policies almost as good as the ones for Mac-IAICC (red) for the smaller domain, but as the grid world
size grows, Naive Mac-IACC performs poorly while Mac-IAICC keeps its performance near the
centralized approach. From each agent’s perspective, the bigger the world size is, the more time steps
a macro-action could take, and the less accurate the critic of Naive Mac-IACC becomes since it is
trained depending on any agent’s macro-action termination. Conversely, Mac-IAICC gives each agent
a separate centralized critic trained with the reward associated with its own macro-action execution.

In Overcooked-A (the third one at the top row in Fig. 3), as Mac-IAICC’s performance is determined
by the training of three agents’ critics, it learns slower than Naive Mac-IACC in the early stage but
converges to a slightly higher value and has better learning stability than Naive Mac-IACC in the end.
The result of scenario B (the last one at the top row in Fig. 3) shows that Mac-IAICC outperforms
other methods in terms of achieving better sample efficiency, a higher final return and a lower variance.
The middle wall in scenario B limits each agent’s moving space and leads to a higher frequency of
macro-action terminations. The shared centralized critic in Naive Mac-IACC thus provides more
noisy value estimations for each agent’s actions. Because of this, Naive Mac-IACC performs worse
with more variance. Mac-IAICC, however, does not get hurt by such environmental dynamics change.
Both Mac-CAC and Mac-IAC are not competitive with Mac-IAICC in this domain.

In the Warehouse scenarios (the bottom row in Fig. 3), Mac-IAC (blue) performs the worst due to its
natural limitations and the domain’s partial observability. In particular, it is difficult for the gray robot
(arm) to learn an efficient way to find the correct tools purely based on local information and very
delayed rewards that depend on the mobile robots’ behaviors. In contrast, in the fully centralized
Mac-CAC (orange), both the actor and the critic have global information so it can learn faster in the
early training stage. However, Mac-CAC eventually gets stuck at a local-optimum in all five scenarios
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Figure 3: Comparison of macro-action-based asynchronous actor-critic methods.

due to the exponential dimensionality of joint history and action spaces over robots. By leveraging
the CTDE paradigm, both Mac-IAICC and Naive Mac-IACC perform the best in warehouse A. Yet,
the weakness of Naive Mac-IACC is clearly exposed when the problem is scaled up in Warehouse
B, C and D. In these larger cases, the robots’ asynchronous macro-action executions (e.g., traveling
between rooms) become more complex and cause more mismatching between the termination from
each agent’s local perspective and the termination from the centralized perspective, and therefore,
Naive Mac-IACC’s performance significantly deteriorates, even getting worse than Mac-IAC in
Warehouse-D. In contrast, Mac-IAICC can maintain its outstanding performance, converging to a
higher value with much lower variance, compared to other methods. This outcome confirms not only
Mac-IAICC’s scalability but also the effectiveness of having an individual critic for each agent to
handle variable degrees of asynchronicity in agents’ high-level decision-making.
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Figure 4: Comparisons of macro-action-based actor-critic methods and value-based methods.

Comparative analysis between actor-critic and value-based approaches. We also compare
our actor-critic methods (Mac-IAC and Mac-CAC) with the current state-of-the-art asynchronous
decentralized and centralized MARL methods, the value-based approaches (Mac-Dec-Q and Mac-
Cen-Q) [Xiao et al., 2019], shown in Fig. 4. The Box Pushing task requires agents to simultaneously
reach the big box and push it together. This consensus is rarely achieved when agents independently
sample actions using stochastic policies in Mac-IAC and is hard to learn from pure on-policy data. By
having a replay-buffer, value-based approaches show much stronger sample efficiency than on-policy
actor-critic approaches in this domain with a small action space (left figure). Such an advantage
is sustained by the decentralized value-based method (Mac-Dec-Q) but gets lost in the centralized
one (Mac-Cen-Q) in the Overcooked domains due to a huge joint macro-action space (153). On the
contrary, our actor-critic methods can scale to large domains and learn high-quality solutions. This
is particularly noticeable on Warehouse-A, where the policy gradient methods quickly learn a high-
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quality policy while the centralized Mac-Cen-Q is slow to learn and the decentralized Mac-Dec-Q
is unable to learn. In addition, the stochastic policies in actor-critic methods potentially have better
exploration property so that, in Warehouse domains, Mac-IAC can bypass an obvious local-optima
that Mac-Dec-Q falls into, where the robot arm greedily chooses Wait-M to avoid more penalties.

5 Hardware Experiments

(a) (b) (c) (d)

Figure 5: Collaborative behaviors generated by running the decentralized policies learned by Mac-
IAICC where Turtlebot-0 (T-0) is bounded in red and Turtlebot-1 (T-1) is bounded in blue. (a) After
staging a tape measure at the left, Fetch looks for the 2nd one while Turtlebots approach the table; (b)
T-0 deliveries a tap measure to W-0 and T-1 waits for a clamp from Fetch; (c) T-1 deliveries a clamp
to W-1, while T-0 carries the other clamp and goes to W-0, and Fetch searches for an electric drill; (d)
T-0 deliveries an electric drill (the last tool) to W-0 and the entire delivery task is completed.

We also extend scenario A of the Warehouse Tool Delivery task to a hardware domain (details of
experimental setup are referred to Appendix F). Fig. 5 shows the sequential collaborative behaviors of
the robots in one hardware trial. Fetch was able to find tools in parallel such that two tape measures
(Fig. 5a), two clamps (Fig. 5b) and two electric drills, were found instead of finding all three types of
tool for one human and then moving on to the other which would result in one of the humans waiting.
Fetch’s efficiency is also reflected in the behaviors such that it passed a tool to the Turtelbot who
arrived first (Fig. 5b) and continued to find the next tool when there was no Turtlebot waiting beside
it (Fig. 5c). Meanwhile, Turtlebots were clever such that they successfully avoid delayed delivery by
sending tools one by one to the nearby workshop (e.g., T-0 focused on W-0 shown in Fig. 5b and 5d,
and T-1 focused on W-1 shown in Fig. 5c), rather than waiting for all tools before delivering, traveling
a longer distance to serve the human at the diagonal, or prioritizing one of the humans altogether.

6 Conclusion

This paper introduces a general formulation for asynchronous multi-agent macro-action-based policy
gradients under partial observability along with proposing a decentralized actor-critic method (Mac-
IAC), a centralized actor-critic method (Mac-CAC), and two CTDE-based actor-critic methods (Naive
Mac-IACC and Mac-IAICC). These are the first approaches to be able to incorporate controllers that
may require different amounts of time to complete (macro-actions) in a general asynchronous multi-
agent actor-critic framework. Empirically, our methods are able to learn high-quality macro-action-
based policies allowing agents to perform asynchronous collaborations in large and long-horizon
problems. Importantly, our most advanced method, Mac-IAICC, allows agents to have individual
centralized critics tailored to the agent’s own macro-action execution. Additionally, the practicality
of our approach is validated in a real-world multi-robot setup based on a warehouse domain. This
work provides a foundation for future macro-action-based MARL algorithm development, including
other policy gradient-based methods as well as methods which also learn the macro-actions.
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