
A Formal Descriptions of Problem Formulation and Assumptions

Note that, learning policies for sequential decision making in Dec-POMDP [35] is known to be undecidable in the standard
computation model [38]. i.e., deciding whether there is a policy achieving a constant performance lower bound cannot be
computed in finite time. To bypass these impossibility results, we adopt some common assumptions to make the analysis
accessible and rigorous. A formal description of our assumptions is included in Appendix A.1, which are widely assumed in prior
work on analyzing single-agent PAC reinforcement learning [24, 33, 34]. The main purpose of introducing these assumptions is
to avoid discussing trajectories with infinite length, which is not well-defined in the context of data-driven learning paradigm.

A.1 Decentralized Rich-Observation Markov Decision Process

The first step to exclude the discussion of infinitely long trajectories is to ensure that the belief states can always be constructed
using finite recent observations. A widely-used formulation of such assumptions is Rich-Observation MDPs [33, 34], in which
the observation would be noisy but guarantee to contain full information. Formally, we extend the formulation Rich-Observation
MDPs (ROMDP) to a decentralized multi-agent setting as the following definition:
Definition 3 (Dec-ROMDP). An instance of Decentralized Rich-Observation Markov Decision Process (Dec-ROMDP) is defined
as a tupleM = 〈N ,S,X ,A, P,Λ, r, γ〉, in which

• N ≡ {1, . . . , n} denotes a finite set of agents.

• S denotes a finite set of global latent states.

• X denotes the observation space (a.k.a. context space) which is larger than the latent state space.

• A denotes the individual action space. The joint action a ∈ A ≡ An is a collection of individual actions [ai]
n
i=1.

• P (s′ | s,a) denotes the transition function on latent states.

• Λ(xi | i, s) denotes the observation emission distribution, which may defer in different agents.

• r(s,a) denotes the global reward function.

• γ denotes the discount factor.

The concept of rich-observation assumes that the observation emission distributions Λ are disjoint across states. Formally,

• ∀s1 6= s2 ∈ S, ∀i ∈ N , ∀x ∈ X , (Λ(x | i, s1) > 0)⇒ (Λ(x | i, s2) = 0).

Note that, in rich-observation models [33, 34], the size of observation space X can be much larger than the latent state space
S. This rich-observation model is a formulation of real-world scenarios where sensors suffer from systematical errors, and it
is usually used to study how function approximators can help to decode the state information from observations [39, 40]. The
formulation of Dec-ROMDP stated as Definition 3 considers an extension of ROMDP upon Dec-POMDP, where different agents
would observe the global information under different noises. This decentralized observation emission distribution Λ(x | i, s) is
an important characteristic and also a critical subtlety for analyzing a multi-agent system.

The definition of Dec-ROMDP enables the agent extract the belief state information without storing the whole infinite-length
trajectory. Formally, we adopt the definition of reactive function classes [33, 36, 37] to simplify the notation for analyses.
Definition 4 (Reactive Function Class). Reactive function classes consider a set of memoryless functions that only takes the
most recent observations as inputs to compute the output values.

The same function class structure is widely-used in prior work studying single-agent ROMDP [24, 33, 65]. Note that, in
Dec-ROMDPs, decoding information from last-step observations guarantees to retain full information of the latent states. In
addition, this simplification is equivalent to storing recent observations in a constant-size time window, since we can convert such
multi-step model to last-step model by encoding recent steps into the latent state representation and overwriting the observation
emission to a window of observations. Regarding this equivalence, we adopt the most simplified notations as related work to
make the underlying insights more accessible.

A.2 Connection to Practical Scenarios

The main purpose to introduce the concept of rich observations is to bypassing the barrier of partial observability in theoretical
analyses, since general POMDP-based problem formulation can hardly support algorithms for strong performance guarantees.
In practice, although most scenarios suffer from some extend of partial observability, the formulation of richly observable
environments can approximate many application scenarios.

15

Micromanagement Tasks. In Micromanagement tasks such as SMAC benchmark tasks [20], agents are working in a bounded
region with a sufficiently large receptive field. In such tasks, the observations of agents may be high-dimensional and redundant
(e.g., visual observations with various camera directions), the global latent state space is bounded. For example, in StarCraft II
benchmark tasks, agents are assigned large receptive fields to provide sufficient information for decision making, i.e., every alive
agent can nearly observe all other agents. In this situation, the observation history of each agent can nearly decode the global
latent state, which can be approximated by the problem formulation of Dec-ROMDPs.

Coordination with Communication. In practice, partial observability is not a hard constraint. When agents can only access
their local observations, learning communication is a common approach to reducing partial observability issues. e.g., NDQ [15]
aims to learn an efficient communication protocol that transmits useful and necessary information to address partial observability.
When such communication channels are available, every agent can collect redundant message information from other agents to
transform Dec-POMDPs to Dec-ROMDPs.

A.3 Omitted Proofs for the Equivalence Mentioned in Section 4

Lemma 1. The empirical Bellman operator T FMA
D defined in Eq. (3) and Eq. (6) are equivalent. Formally,

T FMA
D Q(t) ≡ arg min

Q∈QFMA
E

(x,a,r,x′)∼D

(
ŷ(t)(x,a,x′)−Qtot(x,a)

)2

= arg min
Q∈QFMA

E
(x,a,r)∼D

(
y(t)(x,a)−Qtot(x,a)

)2

,

(11)

where

ŷ(t)(x,a,x′) = r + γmax
a′

Q
(t)
tot (x′,a′) ,

y(t)(x,a) = r + γEx′
[
max
a′

Q
(t)
tot (x′,a′)

]
.

(12)

Proof. Consider

T FMA
D Q(t) ≡ arg min

Q∈QFMA
E

(x,a,x′)∼D

[(
ŷ(t)(x,a,x′)−Qtot(x,a)

)2
]

= arg min
Q∈QFMA

E
(x,a,x′)∼D

[(
ŷ(t)(x,a,x′)− y(t)(x,a) + y(t)(x,a)−Qtot(x,a)

)2
]

= arg min
Q∈QFMA

E
(x,a,x′)∼D

[(
ŷ(t)(x,a,x′)− y(t)(x,a)

)2
]

+ E
(x,a,x′)∼D

[
2
(
ŷ(t)(x,a, s′)− y(t)(x,a)

)(
y(t)(x,a)−Qtot(x,a)

)]
+ E

(x,a,x′)∼D

[(
y(t)(x,a)−Qtot(x,a)

)2
]
. (13)

The first term is a constant since y(t) and ŷ(t) are fixed targets.

The second term is equal to zero since

E
(x,a,x′)∼D

[
2
(
ŷ(t)(x,a,x′)− y(t)(x,a)

)(
y(t)(x,a)−Qtot(x,a)

)]
= 2 E

(x,a)∼D

[
E

x′∼P (·|x,a)

[
ŷ(t)(x,a,x′)− y(t)(x,a)

]
︸ ︷︷ ︸

=0

(
y(t)(x,a)−Qtot(x,a)

)]

= 0. (14)

The third term exactly corresponds to Eq. (11).

16

B Omitted Proofs in Section 5.2

B.1 The Closed-Form Solution to A Special Weighted Linear Regression

Lemma 2. Considering following weighted linear regression problem

min
x
‖
√
p> · (Ax− b) ‖22 (15)

where A ∈ Rmn×mn,x ∈ Rmn,b,p ∈ Rmn , m,n ∈ Z+. Besides, A is m-ary encoding matrix namely ∀i ∈ [mn], j ∈ [mn]

Ai,j =

{
1, if ∃u ∈ [n], j = m× u+ (bi/muc mod m),

0, otherwise.
(16)

For simplicity, jth row of A corresponds to a m-ary number ~aj = (j)m where ~a = a0a1 . . . an−1, with au ∈ [m],∀u ∈ [n].
Assume p is a positive vector which follows that

pj = p(~aj) =
∏
u∈[n]

pu(au,j), where pu : [m]→ (0, 1) and
∑

au∈[m]

pu(au) = 1,∀u ∈ [n] (17)

The optimal solution of this problem is the following. Denote i = u×m+ v, v ∈ [m], u ∈ [n] and an arbitrary vector w ∈ Rmn

x∗i =
∑
~a

p(~a)

pu(au)
b~a · 1(au = v)− n− 1

n
p(~a)b~a −

1

mn

∑
i′∈[mn]

wi′ +
1

m

∑
v′∈[m]

wum+v′ (18)

Proof. For brevity, denote

Ap =
√

p> ·A, bp =
√

p> · b (19)

Then the weighted linear regression becomes a standard Linear regression problem w.r.t Ap,bp. To compute the optimal
solutions, we need to calculate the Moore-Penrose inverse of Ap . The sufficient and necessary condition of this inverse matrix
Ap,† ∈ Rmn×mn is the following three statements [42]:

(1) ApAp,† and Ap,†Ap are self-adjoint (20)

(2) Ap = ApAp,†Ap (21)

(3) Ap,† = Ap,†ApAp,† (22)

We consider the following matrix as Ap,† and we prove that it satisfies all three statements. For ∀i ∈ [mn], i = u×m+ v, u ∈
[n], v ∈ [m], j ∈ [mn]

Ap,†
i,j = Ap,†

i,~aj

=

√
p(~a−u,j)

pu(au,j)
· 1(au,j = v)− n− 1

n

√
p(~aj)−

1

m

√
p(~a−u,j)

pu(au,j)
+

1

mn

n−1∑
u′=0

√
p(~a−u′,j)

pu′(au′,j)
(23)

where p(~a−u) =
∏
u′ 6=u pu′(au′).

First, we verify that ApAp,† is a mn ×mn self-adjoint matrix in statement (1). For simplicity, O(~ai,~aj) = {u|au,i = au,j , u ∈
[n]}.

(ApAp,†)i,j =
∑
u∈[n]

√
p(~ai)[

√
p(~a−u,j)

pu(au,j)
· 1(au,j = au,i)−

n− 1

n

√
p(~aj)−

1

m

√
p(~a−u,j)

pu(au,j)

+
1

mn

n−1∑
u′=0

√
p(~a−u′,j)

pu′(au′,j)
]

=
∑

u∈O(~ai,~aj)

√
p(~aj)p(~ai)

pu(au,j)
− n− 1

n

∑
u∈[n]

√
p(~ai)p(~aj)−

1

m

∑
u∈[n]

√
p(~aj)p(~ai)

pu(au,j)

17

+
∑
u∈[n]

1

mn

n−1∑
u′=0

√
p(~aj)p(~ai)

pu′(au′,j)

=
∑

u∈O(~ai,~aj)

√
p(~aj′)p(~ai)

pu(au,j)
− (n− 1)

√
p(~ai)p(~aj)−

1

m

∑
u∈[n]

√
p(~aj)p(~ai)

pu(au,j)

+
1

m

∑
u∈[n]

√
p(~aj)p(~ai)

pu(au,j)

=
∑

u∈O(~ai,~aj)

√
p(~aj)p(~ai)

pu(au,j)
− (n− 1)

√
p(~ai)p(~aj) (24)

Observe that pu(au,j) = pu(au,i) if au,i = au,j , thus (ApAp,†)i,j = (ApAp,†)j,i for any i, j ∈ [mn]. This proves that ApAp,†

is self-adjoint.

Second, we prove that Ap,†Ap is a mn×mn self-adjoint matrix and has surprisingly succinct form. Let i = u×m+ v, u ∈
[n], v ∈ [m].

1. i = i′. Besides, O(i) = {~a ∈ [mn]|au = v}

(Ap,†Ap)i,i =
∑

~a∈O(i)

√
p(~a)[

√
p(~a−u)

pu(au)
· 1(au = v)− n− 1

n

√
p(~a)− 1

m

√
p(~a−u)

pu(au)

+
1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

=
∑

~a∈O(i)

p(~a)

pu(au)
− n− 1

n
p(~a)− 1

m

p(~a)

pu(au)
+

1

mn

n−1∑
u′=0

p(~a)

pu′(au′)

=
∑

~a∈O(i)

(
p(~a−u)− 1

m
p(~a−u) +

1

mn

n−1∑
u′=0

p(~a−u′)

)
− n− 1

n
pu(au = v)

= 1− 1

m
− n− 1

n
pu(au = v) +

1

mn

∑
u′∈[n]

u′ 6=u

∑
~a∈O(i)

p(~a−u′)

+
1

mn

∑
~a∈O(i)

p(~a−u)

= 1− 1

m
− n− 1

n
pu(au = v) +

1

mn
+
n− 1

mn
mpu(au = v)

= 1− 1

m
+

1

mn
(25)

2. i = u×m+ v, i′ = u×m+ v′, v 6= v′. This implies that Q(i) ∩O(i′) = ∅

(Ap,†Ap)i,i′ =
∑

~a∈O(i′)

√
p(~a)[

√
p(~a−u)

pu(au)
· 1(au = v)− n− 1

n

√
p(~a)

− 1

m

√
p(~a−u)

pu(au)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

=
∑

~a∈O(i)∩O(i′)

p(~a)

pu(au)
− n− 1

n

∑
~a∈O(i′)

p(~a)− 1

m

∑
~a∈O(i′)

p(~a)

pu(au)

+
1

mn

∑
u′∈[n]

u′ 6=u

∑
~a∈O(i′)

p(~a)

pu′(au′)
+

1

mn

∑
~a∈O(i′)

p(~a)

pu(au)

18

= − n− 1

n
pu(au = v′)− 1

m
+
n− 1

mn

∑
~a∈O(i′)

p(~a−u′) +
1

mn

= − 1

m
+

1

mn
(26)

3. i = u1 ×m+ v1, i
′ = u2 ×m+ v2, u1 6= u2.

(Ap,†Ap)i,i′ =
∑

~a∈O(i′)

√
p(~a)[

√
p(~a−u1

)

pu1(au1)
· 1(au1 = v)− n− 1

n

√
p(~a)

− 1

m

√
p(~a−u1

)

pu1(au1)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

=
∑

~a∈O(i)∩O(i′)

p(~a)

pu1(au1)
− n− 1

n

∑
~a∈O(i′)

p(~a)− 1

m

∑
~a∈O(i′)

p(~a)

pu1(au1)

+
1

mn

∑
u′∈[n]

u′ 6=u2

∑
~a∈O(i′)

p(~a)

pu′(au′)
+

1

mn

∑
~a∈O(i′)

p(~a)

pu2(au2)

= pu2(au2)− n− 1

n
pu2(au2)− pu2(au2) +

n− 1

mn
mpu2(au2) +

1

mn

=
1

mn
(27)

Observe that Ap,†Ap is self-adjoint by equation (2,3,4) and the expression is succinct.

Third, we verify statement (2). Since we have computed Ap,†Ap, the verification is straightforward. For brevity, denote Ap,†Ap

as Ap
0

(ApAp
0)~a,i =

√
p(~a)

∑
u∈[n]

(Ap
0)um+au,i

=
√
p(~a)

(
1(∃u ∈ [n], i = um+ au)− 1

m
+

1

mn
+ (n− 1)

1

mn

)
=
√
p(~a) · 1(∃u ∈ [n], i = um+ au) (28)

Thus, ApAp,†Ap = Ap.

Similarly, we can verify statement (3). Suppose i0 = u0 ×m+ v0, we have

(Ap
0A

p,†)i0,~a =
1

mn

∑
u6=u0
u∈[n]

∑
v∈[m]

[

√
p(~a−u)

pu(au)
· 1(au = v)

− n− 1

n

√
p(~a)− 1

m

√
p(~a−u)

pu(au)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

+
∑
v∈[m]

(1(v = v0)− 1

m
+

1

mn
)[

√
p(~a−u0

)

pu0
(au0

)
· 1(au0

= v)

− n− 1

n

√
p(~a)− 1

m

√
p(~a−u0

)

pu0
(au0

)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

=
1

mn

∑
u∈[n]

∑
v∈[m]

[

√
p(~a−u)

pu(au)
· 1(au = v)

19

− n− 1

n

√
p(~a)− 1

m

√
p(~a−u)

pu(au)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

+
∑
v∈[m]

(1(v = v0)− 1

m
)[−n− 1

n

√
p(~a)− 1

m

√
p(~a−u0

)

pu0(au0)

+
1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
] +

∑
v∈[m]

(1(v = v0)− 1

m
)

√
p(~a−u0

)

pu0(au0)
· 1(au0

= v)

=
1

mn

∑
u∈[n]

√
p(~a−u)

pu(au)
− n− 1

n

√
p(~a)

+
1

n

∑
u∈[n]

[− 1

m

√
p(~a−u)

pu(au)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]

+

∑
v∈[m]

(1(v = v0)− 1

m
)

 [−n− 1

n

√
p(~a)− 1

m

√
p(~a−u0)

pu0
(au0

)

+
1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
] + (1(au0 = v0)− 1

m
)

√
p(~a−u0

)

pu0(au0)
(29)

Clearly, we have the following relations∑
u∈[n]

[− 1

m

√
p(~a−u)

pu(au)
+

1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
] =0 (30)

∑
v∈[m]

(1(v = v0)− 1

m
) = 0 (31)

Thus

(Ap
0A

p,†)i0,~a =
1

mn

∑
u∈[n]

√
p(~a−u)

pu(au)
− n− 1

n

√
p(~a) + (1(au0

= v0)− 1

m
)

√
p(~a−u0

)

pu0(au0)
(32)

= Ap,†
i0,~a

(33)

This proves Ap,† = Ap,†ApAp,† in statement (3) and Ap,† is the Moore-Penrose inverse of Ap. Since the optimal solution
x∗ = Ap,†bp + (Imn×mn −Ap,†Ap)w where w ∈ Rmn is any vector [42].

Denote xp = Ap,†bp. We have ∀i = u×m+ v

xpi =
∑
~a

Ap,†
i,~a

√
p(~a)b~a

=
∑
~a

[

√
p(~a−u)

pu(au)
· 1(au = v)− n− 1

n

√
p(~a)− 1

m

√
p(~a−u)

pu(au)

+
1

mn

n−1∑
u′=0

√
p(~a−u′)

pu′(au′)
]
√

p(~a)b~a

=
∑
~a

[
p(~a)

pu(au)
· 1(au = v)− n− 1

n
p(~a)− 1

m

p(~a)

pu(au)
+

1

mn

n−1∑
u′=0

p(~a)

pu′(au′)

]
b~a (34)

From equation (2, 3, 4), we have i = u×m+ v, i′ = u′ ×m+ v′

(I−Ap,†Ap)i,i′ =

{
1
m −

1
mn if u = u′

− 1
mn if u 6= u′

(35)

20

If we consider w as the following i0 = u0 ×m+ v0

wi0 =
∑

~a∈O(i0)

p(~a)

pu0(au0)
b~a (36)

Then for i = u×m+ v

((I−Ap,†Ap)w)i =
∑

i0∈[mn]

u 6=u0

− 1

mn
wi0 +

∑
i0:u0=u

(
1

m
− 1

mn
)wi0 (37)

=
∑
~a

− 1

mn

∑
u′∈[n]

p(~a)

pu′(au′)
b~a +

1

m

∑
~a

p(~a)

pu(au)
b~a (38)

Notice that this is exactly the last two terms in equation (5). Therefore, the optimal solutions of this weighted linear regression
problem can be written as: i = u×m+ v, v ∈ [m], u ∈ [n] and an arbitrary vector w ∈ Rmn.

x∗i =
∑
~a

p(~a)

pu(au)
b~a · 1(au = v)− n− 1

n
p(~a)b~a −

1

mn

∑
i′∈[mn]

wi′ +
1

m

∑
v′∈[m]

wum+v′ (39)

This completes the proof.

B.2 Omitted Proofs for Theorem 1

Definition 1 (FQI-LVF). FQI-LVF is an instance of FMA-FQI stated in Algorithm 1, which specifies the action-value function
class with linear value factorization:

QLVF =

{
Q
∣∣∣ Qtot(x,a) =

n∑
i=1

Qi(xi, ai), [Qi]
n
i=1 ∈ R|X×A|

n

}
. (7)

Theorem 1. Let Q(t+1) = T LVF
D Q(t) denote a single iteration of the empirical Bellman operator. ∀i ∈ N ,∀(x,a) ∈ X ×A,

the individual action-value function Q(t+1)
i (xi, ai) is updated to

E
(x′−i,a

′
−i)∼pD(·|xi)

[
y(t) (xi ⊕ x′−i, ai ⊕ a′−i

)]
︸ ︷︷ ︸

evaluation of the individual action ai

−n− 1

n
E

x′,a′∼pD(·|Λ−1(xi))

[
y(t) (x′,a′)]︸ ︷︷ ︸

counterfactual baseline

+ wi(xi), (8)

where zi ⊕ z′−i denotes 〈z′1, · · · , z′i−1, zi, z
′
i+1, · · · , z′n〉, and z′−i denotes the elements of all agents except for agent i. Λ−1(xi)

denotes the inverse of observation emission, which decodes the current latent state from xi. The residue term w ≡ [wi]
n
i=1 is an

arbitrary function satisfying ∀x ∈ X ,
∑n
i=1 wi(xi) = 0.

Proof. In the formulation of FQI-LVF stated in Definition 1, the empirical Bellman error minimization in FQI-LVF can be
regarded as a set of weighted linear least squares problems as the following form:

min
x
‖
√
p> · (Ax− b) ‖22 . (40)

To construct such a linear regression problem, we first fix a latent state s.

• n denotes the number of agents;

• m denotes the number of individual observation-action pairs (xi, ai) such that xi encodes the same latent state as s. We
assume this amount is symmetric among agents to simplify the notations;

• A ∈ Rmn×mn denotes the multi-agent credit assignment coefficient matrix of action-value functions with linear value
decomposition;

• x ∈ Rmn denotes individual action-value functions
[
Q

(t)
i (xi, ai) ∈ Rm

]n
i=1

under the empirical Bellman error
minimization;

21

• According to Lemma 1,b ∈ Rmn denotes the regression target y(t)(x,a) derived by the Bellman optimality operator;

• p ∈ Rmn denotes the empirical probability of joint action a executed on observation x, pD(a|x), which can be
factorized to the production of individual components illustrated in Assumption 1.

Besides, A is m-ary encoding matrix namely ∀i ∈ [mn], j ∈ [mn]

Ai,j =

{
1, if ∃u ∈ [n], j = m× u+ (bi/muc mod m),

0, otherwise.
(41)

For simplicity, jth row of A corresponds to a m-ary number ~aj = (j)m where ~a = a0a1 . . . an−1, with au ∈ [m],∀u ∈ [n].
According to the factorizable empirical probability pD shown in Assumption 1, p is a corresponding positive vector which
follows that

pj = p(~aj) =
∏
u∈[n]

pu(au,j), where pu : [m]→ (0, 1) and
∑

au∈[m]

pu(au) = 1,∀u ∈ [n] (42)

According to Lemma 2, we derive the optimal solution of this problem is the following. Denote i = u×m+ v, v ∈ [m], u ∈ [n]
and an arbitrary vector w ∈ Rmn

x∗i =
∑
~a

p(~a)

pu(au)
b~a · 1(au = v)− n− 1

n
p(~a)b~a −

1

mn

∑
i′∈[mn]

wi′ +
1

m

∑
v′∈[m]

wum+v′ (43)

which means ∀i ∈ N ,∀(x,a) ∈ X ×A, the individual action-value function Q(t+1)
i (xi, ai) =

E
(x′−i,a

′
−i)∼pD(·|xi)

[
y(t)

(
xi ⊕ x′−i, ai ⊕ a′−i

)]
− n− 1

n
E

x′,a′∼pD(·|Λ−1(xi))

[
y(t) (x′,a′)

]
+ wi(xi), (44)

where zi ⊕ z′−i denotes 〈z′1, · · · , z′i−1, zi, z
′
i+1, · · · , z′n〉, and z′−i denotes the elements of all agents except for agent i. Λ−1(xi)

denotes the inverse of observation emission, which decodes the current latent state from xi. The residue term w ≡ [wi]
n
i=1 is an

arbitrary function satisfying ∀x ∈ X ,
∑n
i=1 wi(xi) = 0.

B.3 Equivalent between Least-Squares Problem and FQI-LVF in Dec-POMDPs

Recall that the closed-form solution derived in Theorem 1 relies on two assumptions, decentralized data collection and rich-
observation problem formulation. In this section, we argue that, without either of these assumptions, an intuitive closed-form
solution unlikely exists. Formally, we show that the problem complexity of solving one iteration of FQI-LVF is equivalent
to solving general least-squares problems with binary weight matrices, which does not have existing analytical solutions.
Proposition 3 characterizes the hardness of solving the closed-form solution of FQI-LVF without the rich-observation assumption.
Proposition 4 characterizes the hardness without the decentralized data collection assumption.
Proposition 3. Computing linear least-squares problems with binary weight matrices can be reduced to computing one iteration
of FQI-LVF with some dataset collected in a Dec-POMDP with a decentralized policy.

Proof. Consider the following linear least-squares problem:

(x∗, b∗) = arg min
x,b

m∑
j=1

wj ·
(
c>j x + b− yj

)2
, (45)

where {cj}mj=1 are a set of given binary vectors, {yj}mj=1 are given labels, and {wj}mj=1 denote the weights of each data point.

Using linear least-squares to solve one-iteration of FQI-LVF is directed. We only need to consider how to solve the above
least-squares problem using an oracle that can compute one-iteration of FQI-LVF without the assumption of rich observability.

We construct the dataset by executing a decentralized policy in the following Dec-POMDP:

• This Dec-POMDP contains 2n latent state. Each latent state is represented by a binary string with length n. Recall that
n denotes the number of agents.

• Agent i can observe the ith dimension of the latent state.

22

• At state s = cj , no matter executing what action, the transition would lead to a termination signal and the reward is
equal to yj . i.e., the transition function does not depend on the action. For brevity, we consider the individual action
space |A| = 1.

• The initial state distribution of state s = cj is proportional to wj .

Note that all actions are equivalent in this Dec-POMDP. Let Qi(0) and Qi(1) denote the individual value function of agent i
w.r.t. two local observations computed by FQI-LVF, i.e.,

{
〈Qi(0), Qi(1)〉

}n
i=1

= arg min
Q

m∑
j=1

wj ·

(
n∑
i=1

Qi(cj,i)− yj

)2

.

The solution of the given least-squares problem can be computed as follows:

x∗ = 〈Qi(1)−Qi(0)〉ni=1 ,

b∗ =

n∑
i=1

Qi(0).

Thus computing linear least-squares problems with binary weight matrices is equivalent to computing one iteration of FQI-LVF
with some dataset collected in a Dec-POMDP with a decentralized policy.

Proposition 4. Computing linear least-squares problems with binary matrices can be reduced to computing one iteration of
FQI-LVF with some dataset collected in an MMDP with a centralized policy.

Proof. Consider the following linear least-squares problem:

(x∗, b∗) = arg min
x,b

m∑
j=1

wj ·
(
a>j x + b− yj

)2
, (46)

where {aj}mj=1 are a set of given binary vectors, {yj}mj=1 are given labels, and {wj}mj=1 denote the weights of each data point.

Using linear least-squares to solve one-iteration of FQI-LVF is directed. We only need to consider how to solve the above
least-squares problem using an oracle that can compute one-iteration of FQI-LVF without the assumption of decentralized data
collection.

We construct the dataset by executing a centralized policy in the following MMDP:

• This MMDP contains only one latent state. Each agent have two individual actions, i.e., |A| = 2.

• All actions lead to a termination signal. The joint action aj produces a reward yj .

• The probability to executing joint action aj is proportional to wj , which is a centralized policy.

Note that all actions are states in this MMDP. Let Qi(0) and Qi(1) denote the individual value function of agent i w.r.t. two
actions computed by FQI-LVF, i.e.,

{
〈Qi(0), Qi(1)〉

}n
i=1

= arg min
Q

m∑
j=1

wj ·

(
n∑
i=1

Qi(aj,i)− yj

)2

.

The solution of the given least-squares problem can be computed as follows:

x∗ = 〈Qi(1)−Qi(0)〉ni=1 ,

b∗ =

n∑
i=1

Qi(0).

Thus computing linear least-squares problems with binary matrices is equivalent to computing one iteration of FQI-LVF with
some dataset collected in an MMDP with a centralized policy.

23

C Omitted Proofs in Section 5.3

C.1 Omitted Proofs in Section 5.3.1

Note that, since we adopt the reactive function classes for analyses (see Appendix A.1), the infinite-norm of value functions is
defined over a finite set.
Proposition 1. The empirical Bellman operator T LVF

D is not a γ-contraction, i.e., the following important property of the
standard Bellman optimality operator T does not hold for T LVF

D anymore.

(γ-contraction) ∀Qtot, Q
′
tot ∈ Q, ‖T Qtot − T Q′tot‖∞ ≤ γ‖Qtot −Q′tot‖∞

Proof. Suppose the empirical Bellman operator T LVF
D is a γ-contraction. For any Dec-ROMDPs, when using a uniform data

distribution, the value function of FQI-LVF will converge [27] because of the contraction of the distance (infinity norm) between
any pair of Q. However, one counterexample is indicated in Proposition 2, which shows that there exists Dec-ROMDPs such
that, when using a uniform data distribution, the value function of FQI-LVF diverges to infinity from an arbitrary initialization
Q(0). The assumption of γ-contraction is not hold and the empirical Bellman operator T LVF

D is not a γ-contraction.

Proposition 2. There exist an MMDP such that, when using uniform data distribution, the value function of FQI-LVF diverges
to infinity from an arbitrary initialization Q(0).

Proof. We consider the following environment with 2 agents, 2 states (s1, s2) and each agent (i = 1, 2) has 2 actions
A ≡

{
A(1),A(2)

}
. Both agents can directly observe full state information without noises. The reward function is listed below

where r(sj ,a) denotes the reward of (sj ,a), and a = 〈a1, a2〉.

r(s1) =

(
0 0
0 0

)
r(s2) =

(
1 0
0 0

)
(47)

Besides, the transition is deterministic.

T (s1) =

(
s1 s1

s1 s1

)
T (s2) =

(
s2 s2

s2 s1

)
(48)

Furthermore, γ ∈ (4
5 , 1). (In practice, γ is usually chosen as 0.99 or 0.95.) The following proves that this example will diverge

for any initialization.

To make the notations more accessible, we let the value function explicitly depend on the global state within this example.
Denote Qti(sj , ai) as the decomposed Q-value of agent i after tth value-iteration at state sj with action ai. Then, the total Q-value
can be described as Qttot(sj ,a) = Qt1(sj , a1) +Qt2(sj , a2). For brevity, 0th Q-value is its initialization.

First, we clarify the process of each iteration. Since the value-iteration for linear decomposed function class is solving the MSE
problem in Lemma 2. b is target one-step TD-value w.r.t the Q-value of the last iteration. Through described in Lemma 2, the
optimal solution of this MSE problem is not unique. We can ignore the term of an arbitrary vector w when considering the joint
action-value functions because w does not affect the local action selection of each agent and will be eliminated in the summation
operator of linear value decomposition. In addition, under uniformed sampling, we observe that pu(au) = 1

2 for any ~a, u. Then,
in equation 34

− 1

m

p(~a)

pu(au)
+

1

mn

n−1∑
u′=0

p(~a)

pu′(au′)
= 0 (49)

Second, we denote V ttot(sj) = maxaQ
t
tot(sj ,a) and observe that ∀t ≥ 1, sj

Qt1(sj , a1) =
1

2

∑
a2∈A

(
r(sj ,a) + γV t−1

tot (T (sj ,a)
)
− 1

2

∑
a∈A

1

4

(
r(sj ,a) + γV t−1

tot (T (sj ,a))
)

(50)

= Qt2(sj , a2) (51)

The second equation holds because the transition T and the reward R are symmetric for both agents. Thus, we omit the subscript
of local Q-values as Qt(sj , a) when t ≥ 1.

Third, we analyze the Q-values on state s1. Clearly, its iteration is irrelevant to s2. According to equation 50, ∀a ∈ A, t ≥ 1

Qt(s1, a) =
γ

2
V t−1

tot (s1) (52)

24

=
γ

2
max

a1,a2∈A

(
Qt−1(s1, a1) +Qt−1(s1, a2)

)
(53)

Clearly, when t ≥ 1, Qt
(
s1,A(1)

)
= Qt

(
s1,A(2)

)
. Therefore, we observe that Qt(s1, ·) = γtq1,∀t ≥ 1 where q1 is

determined by the initialization Q0
tot(s1,a),∀a ∈ A.

Last, we consider state s2. It is straightforward to observe the following recursion for t ≥ 2 from equation 50

Qt
(
s2,A(1)

)
=

1

2
(1 + 2γV t−1

tot (s2))− 1

8
[1 + γ(3V t−1

tot (s2) + V t−1
tot (s1))]

=
5γ

8
V t−1

tot (s2) +
3

8
− 1

4
γtq1

=
5γ

4
max
a∈A

Qt−1(s2, a) +
3

8
− 1

4
γtq1 (54)

Qt
(
s2,A(2)

)
=

1

2
(γV t−1

tot (s2) + γV t−1
tot (s1))− 1

8
[1 + γ(3V t−1

tot (s2) + V t−1
tot (s1))]

=
γ

8
V t−1

tot (s2)− 1

8
+

3

4
γtq1

=
γ

4
max
a∈A

Qt−1(s2, a)− 1

8
+

3

4
γtq1 (55)

We consider some δ > 0 and tδ =
⌈
logγ

δ
6|q1|

⌉
. Then, t > tδ

Qt
(
s2,A(2)

)
≥ γ

4
max
a∈A

Qt−1(s2, a)− 1 + δ

8
≥ γ

4
Qt−1

(
s2,A(2)

)
− 1 + δ

8
(56)

Denote Q̂t
(
s2,A(2)

)
= γ

4 Q̂
t−1
(
s2,A(2)

)
− 1+δ

8 ,∀t > tδ and Q̂tδ
(
s2,A(2)

)
= Qtδ

(
s2,A(2)

)
. Consequently, Qt(s2, a2) ≥

Q̂tδ
(
s2,A(2)

)
,∀t ≥ tδ by equation 56. Since t ≥ tδ

Q̂t
(
s2,A(2)

)
=
(γ

4

)t−tδ (
Qtδ

(
s2,A(2)

)
− 1 + δ

2γ − 8

)
+

1 + δ

2γ − 8
(57)

Furthermore, γ ∈ (4
5 , 1). There exists some Tδ ≥ tδ which

QTδ
(
s2,A(2)

)
≥ Q̂Tδ

(
s2,A(2)

)
≥ 1 + 2δ

2γ − 8
> −1 + 2δ

6
(58)

According to equation 54 and let δ < 1
11 .

QTδ+1
(
s2,A(1)

)
≥ 5γ

4
QTδ

(
s2,A(2)

)
+

3

8
− 1

4
γtq1 (59)

> −5 + 10δ

24
+

3

8
− 1

24
δ (60)

>
1

8
(61)

Similar to equation 56, we observer from equation 54 that ∀t > Tδ= 1
11

+ 1

Qt
(
s2,A(1)

)
≥ 5γ

4
Qt−1

(
s2,A(1)

)
+

1

4
(62)

and

V ttot (s2) = 2Qt
(
s2,A(1)

)
(63)

≥ 2

(
5γ

4
Qt−1

(
s2,A(1)

)
+

1

4

)
(64)

=
5γ

4
V t−1

tot (s2) +
1

4
(65)

Since 5γ
4 > 1 and the initial point at Tδ= 1

11
+ 1 is larger than 1

8 , this suggests that V ttot (s2) will eventually diverge.

Noticing that our proof holds with respect to any
{
Q0

tot(sj , a)|∀j ∈ S, a ∈ A
}

. Thus, value-iteration on linear decomposed
function class w.r.t this MDP will diverge evnetually under any circumstances.

25

C.2 Omitted Statements in Section 5.3.2

Algorithm 2 On-Policy Fitted Q-Iteration with ε-greedy Exploration

1: Initialize Q(0).
2: for t = 0 . . . T − 1 do . T denotes the computation budget
3: Construct an exploratory policy π̃t based on Q(t). . i.e., ε-greedy exploration

π̃t(a|x) =

n∏
i=1

(
ε

|A|
+ (1− ε)I

[
ai = arg max

a′i∈A
Q

(t)
i (xi, a

′
i)

])
(66)

4: Collect a new dataset Dt by running π̃t.
5: Operate an on-policy Bellman operator Q(t+1) ← T LVF

ε Q(t) ≡ T LVF
Dt

Q(t).

Algorithm 2 is a variant of fitted Q-iteration which adopts an on-policy sample distribution. At line 3, an exploratory noise is
integrated into the greedy policy, since the function approximator generally requires an extensive set of samples to regularize
extrapolation values. Particularly, we investigate a standard exploration module called ε-greedy, in which every agent takes a
small probability to explore actions with non-maximum values. To make the underlying insights more accessible, we assume the
data collection procedure at line 4 can obtain infinite samples, which makes the dataset Dt become a sufficient coverage over the
state-action space (see Assumption 1). This algorithmic framework serves as a foundation for discussions on local stability.

We consider an additional assumption stated as follows.
Assumption 3 (Unique Optimal Policy). The optimal policy π∗ is unique.

The intuitive motivation of this assumption is to have the optimal policy π∗ be a potential stable solution. In situations where the
optimal policy is not unique, most Q-learning algorithms will oscillate around multiple optimal policies [66], and Assumption 3
helps us to rule out these non-interesting cases. Based on this setting, the local stability of FQI-LVF can be characterized by the
following lemma.
Lemma 3. There exists a threshold δ > 0 such that the on-policy Bellman operator T LVF

ε is closed in the following subspace
B ⊂ QLVF, when the hyper-parameter ε is sufficiently small.

B =

{
Q ∈ QLVF

∣∣∣∣ πQ = π∗, max
x∈X
|Qtot(x,π

∗(x))− V ∗(x)| ≤ δ
}

Formally, ∃δ > 0, ∃ε > 0, ∀Q ∈ B, there must be T LVF
ε Q ∈ B.

Lemma 3 indicates that once the value function Q steps into the subspace B, the induced policy πQ will converge to the optimal
policy π∗. By combining this local stability with Brouwer’s fixed-point theorem [47], we can further verify the existence of a
fixed-point solution for the on-policy Bellman operator T LVF

ε (see Theorem 4).
Theorem 4 (Formal version of Theorem 2). Besides Lemma 3, Algorithm 2 will have a fixed point value function expressing the
optimal policy if the hyper-parameter ε is sufficiently small.

Theorem 4 indicates that, multi-agent Q-learning with linear value decomposition has a convergent region, where the value
function induces optimal actions. Note that QLVF is a limited function class, which even cannot guarantee to contain the one-step
TD target T LVF

D Q. From this perspective, on-policy data distribution becomes necessary to make the one-step TD target projected
to a small set of critical observation-action pairs, which help construct the stable subspace B stated in Lemma 3.

C.3 Omitted Proofs in Section 5.3.2

In this section, we only consider the data distribution generated by the optimal joint policy π∗.

To simplify the notations, we use ε = ε
|A| to reformulate the exploratory policy generated by ε-greedy exploration as follows

π̃(a|x) =

n∏
i=1

(
ε+ (1− ε̂)I

[
ai = arg max

a′i∈A
Q∗i (xi, a

′
i)

])
(67)

where ε̂ = (|A| − 1)ε.

In addition, we use f(x, ·, ·) to denote the corresponding coefficient in the closed-form updating

(T LVF
D Q)tot(x,a) =

∑
a′∈An

f(x,a,a′)(T Q)tot(x,a
′) (68)

26

where (T Q)tot = r(s,a′) + γE[Vtot(x
′)] denote the precise target values derived by Bellman optimality equation.

Formally, according to Eq. (8),

f(x,a,a′) =

(
h(1)(x,a,a′)

1− ε̂
+
h(0)(x,a,a′)

ε
− (n− 1)

)
(1− ε̂)h

π∗ (x,a′)εn−h
π∗ (x,a′), (69)

in which

hπ
∗
(x,a) =

n∑
i=1

I[ai = π∗i (xi)] (70)

h(1)(x,a,a′) =

n∑
i=1

I[ai = π∗i (xi)]I[ai = a′i] (71)

h(0)(x,a,a′) =

n∑
i=1

I[ai 6= π∗i (xi)]I[ai = a′i] (72)

As a reference indicating whether the learned value function produces the optimal policy, we denote

E(Q) = max
s∈S

[
max

a∈(An\{π∗(x)})
(Qtot(x,π

∗(x))−Qtot(x,a))

]
(73)

Notice that π∗ denotes the optimal policy of the given MDP, so E(Q) might be negative for a non-optimal or inaccurate value
function Q.
Lemma 4. Given a dataset D generated by the optimal policy π∗ with ε-greedy exploration, for any target value function Q,

∀δ > 0, ∀0 < ε ≤ δ

n2|A|n2n+1(Rmax + γ‖Vtot‖∞)
, (74)

we have

∀s ∈ S,
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣ ≤ δ, (75)

where (T Q)tot(x,a) = r(s,a) + γE[Vtot(x
′)] denotes the regression target generated by Q.

Proof. ∀x ∈ X ,∣∣(T LVF
D Q)tot(x,π

∗(x))− (T Q)tot(x,π
∗(x))

∣∣
≤ |(f(x,π∗(x),π∗(x))− 1)(T Q)tot(x,π

∗(x))|+

∣∣∣∣∣∣
∑

a′∈An\{π∗(x)}

f(x,π∗(x),a′)(T Q)tot(x,a
′)

∣∣∣∣∣∣
≤

|f(x,π∗(x),π∗(x))− 1|+
∑

a′∈An\{π∗(x)}

|f(x,π∗(x),a′)|

 ‖(T Q)tot‖∞. (76)

In the first term, ∀x ∈ X ,

|f(x,π∗(x),π∗(x))− 1| =
∣∣∣∣(n

1− ε̂
− (n− 1)

)
(1− ε̂)n − 1

∣∣∣∣
=
∣∣(n− (n− 1)(1− ε̂))(1− ε̂)n−1 − 1

∣∣
=
∣∣(1 + (n− 1)ε̂)(1− ε̂)n−1 − 1

∣∣
=

∣∣∣∣∣(1 + (n− 1)ε̂)

(
n−1∑
`=0

(
n− 1

`

)
(−1)`ε̂`

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣(1 + (n− 1)ε̂)

(
1− (n− 1)ε̂+

n−1∑
`=2

(
n− 1

`

)
(−1)`ε̂`

)
− 1

∣∣∣∣∣
=

∣∣∣∣∣1− (n− 1)2ε̂2 + (1 + (n− 1)ε̂)

(
n−1∑
`=2

(
n− 1

`

)
(−1)`ε̂`

)
− 1

∣∣∣∣∣
27

=

∣∣∣∣∣ε̂2

(
(n− 1)2 − (1 + (n− 1)ε̂)

n−1∑
`=2

(
n− 1

`

)
(−1)`ε̂`−2

)∣∣∣∣∣
≤ |A|2ε2

(
n2 + 2

n−1∑
`=2

(
n− 1

`

))
≤ |A|2ε2

(
n2 + 2n

)
≤ ε2n2|A|22n. (77)

In the second term, ∀x ∈ X , ∑
a′∈An\{π∗(x)}

|f(x,π∗(x),a′)|

≤
∑

a′∈An\{π∗(x)}

∣∣∣∣(hπ∗(x,a′)1− ε̂
− (n− 1)

)
(1− ε̂)h

π∗ (x,a′)εn−h
π∗ (x,a′)

∣∣∣∣
=

∑
a′∈An\{π∗(x)}

∣∣∣(hπ∗(x,a′)− (n− 1)(1− ε̂)
)

(1− ε̂)h
π∗ (x,a′)−1εn−h

π∗ (x,a′)
∣∣∣

≤
∑

a′∈An\{π∗(x)}

∣∣∣2n(1− ε̂)h
π∗ (x,a′)−1εn−h

π∗ (x,a′)
∣∣∣

≤
∑

a′∈An\{π∗(x)}

2nε

≤ 2nε|A|n. (78)

Thus ∀x ∈ X , ∣∣(T LVF
D Q)tot(x,π

∗(x))− (T Q)tot(x,π
∗(x))

∣∣
≤

|f(x,π∗(x),π∗(x))− 1|+
∑

a′∈An\{π∗(x)}

|f(x,π∗(x),a′)|

 ‖(T Q)tot‖∞

≤ (ε2n2|A|22n + 2nε|A|n)‖(T Q)tot‖∞
≤ εn2|A|n2n+1‖(T Q)tot‖∞
≤ εn2|A|n2n+1(Rmax + γ‖Vtot‖∞)

≤ δ. (79)

Lemma 5. Given a dataset D generated by the optimal policy π∗ with ε-greedy exploration, for any target value function Q,

∀0 < ε ≤ (1− γ)E(Q∗)

γn3|A|n2n+4(Rmax/(1− γ) + γ‖V π∗tot − V ∗‖∞)
, (80)

we have

∀x ∈ X ,
∣∣(T LVF

D Q)tot(x,π
∗(x))− V ∗(x)

∣∣ ≤ γ‖V π∗tot − V ∗‖∞ +
1− γ
8nγ

E(Q∗), (81)

where V π
∗

tot (x) = Qtot(x,π
∗(x)).

Proof. ∀x ∈ X , ∣∣(T LVF
D Q)tot(x,π

∗(x))− V ∗(x)
∣∣

≤
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ |(T Q)tot(x,π

∗(x))− V ∗(x)|
=
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ |(T Q)tot(x,π

∗(x))−Q∗(x,π∗(x))|
=
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ |(T Q)tot(x,π

∗(x))− (T Q∗)(x,π∗(x))|

28

≤
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ γ|Vtot(x

′)− V ∗(x′)|
≤
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ γ|Qtot(x

′,π∗(x′))− V ∗(x′)|
≤
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ γ‖V π

∗

tot − V ∗‖∞ (82)

Let δ = 1−γ
8nγ E(Q∗). According to Lemma 4, with the condition

0 < ε ≤ δ

n2|A|n2n+1(Rmax + γ‖Vtot‖∞)
=

(1− γ)E(Q∗)/(8nγ)

n2|A|n2n+1(Rmax + γ‖Vtot‖∞)
, (83)

we have ∣∣(T LVF
D Q)tot(x,π

∗(x))− (T Q)tot(x,π
∗(x))

∣∣ ≤ δ =
1− γ
8nγ

E(Q∗). (84)

Notice that

‖Vtot‖∞ ≤ ‖V ∗‖∞ + ‖Vtot − V ∗‖∞ (85)

≤ Rmax

1− γ
+ ‖V π

∗

tot − V ∗‖∞. (86)

The overall statement is

∀0 < ε ≤ (1− γ)E(Q∗)

γn3|A|n2n+4(Rmax/(1− γ) + γ‖V π∗tot − V ∗‖∞)
≤ (1− γ)E(Q∗)/(8nγ)

n2|A|n2n+1(Rmax + γ‖Vtot‖∞)
(87)

we have ∀x ∈ X , ∣∣(T LVF
D Q)tot(x,π

∗(x))− V ∗(x)
∣∣

≤
∣∣(T LVF

D Q)tot(x,π
∗(x))− (T Q)tot(x,π

∗(x))
∣∣+ γ‖V π

∗

tot − V ∗‖∞

≤ γ‖V π
∗

tot − V ∗‖∞ +
1− γ
8nγ

E(Q∗). (88)

Lemma 6. For any value function Q, the corresponding sub-optimality gap satisfies

E(T Q) ≥ E(Q∗)− 2γ‖Vtot − V ∗‖∞ (89)

Proof. With a slight abuse of notation, let x1 and x2 denote the observations at the next timestep while taking actions π∗(x)
and a upon the current state, respectively. According to the definition,

E(T Q) = max
(x,a)∈X×(An\{π∗(x)})

((T Q)tot(x,π
∗(x))− (T Q)tot(x,a))

≥ max
(x,a)∈X×(An\{π∗(x)})

((T Q∗)(x,π∗(x))− (T Q∗)(x,a)− γE [|Vtot(x1)− V ∗(x1)|+ |Vtot(x2)− V ∗(x2)|])

≥ max
(x,a)∈X×(An\{π∗(x)})

((T Q∗)(x,π∗(x))− (T Q∗)(x,a)− 2γ‖Vtot − V ∗‖∞)

= max
(x,a)∈X×(An\{π∗(x)})

(Q∗(x,π∗(x))−Q∗(x,a)− 2γ‖Vtot − V ∗‖∞)

= E(Q∗)− 2γ‖Vtot − V ∗‖∞ (90)

Lemma 7. Given a dataset D generated by the optimal policy π∗ with ε-greedy exploration, for any target value function Q,

∀δ > 0, ∀0 < ε ≤ δ

n2|A|n2n(Rmax/(1− γ) + γ‖Vtot − V ∗‖∞)
, (91)

we have ∀x ∈ X , ∀a ∈ An \ {π∗(x)},

(T LVF
D Q)tot(x,a) ≤ (T Q)tot(x,π

∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + δ (92)

where (T Q)tot(x,a) = r(s,a) + γE[Vtot(x
′)] denotes the regression target generated by Q.

29

Proof. ∀x ∈ X , ∀a ∈ An \ {π∗(x)},

(T LVF
D Q)tot(x,a) =

∑
a′∈An

f(x,a,a′)(T Q)tot(x,a
′)

= f(x,a,π∗(x))(T Q)tot(x,π
∗(x))

+
∑

a′∈An:hπ∗ (x,a′)=n−1

f(x,a,a′)(T Q)tot(x,a
′)

+
∑

a′∈An:hπ∗ (x,a′)<n−1

f(x,a,a′)(T Q)tot(x,a
′) (93)

In the first term,

f(x,a,π∗(x))(T Q)tot(x,π
∗(x))

=

(
hπ
∗
(x,a)

1− ε̂ − (n− 1)

)
(1− ε̂)n(T Q)tot(x,π

∗(x))

=
(
hπ
∗
(x,a)− (n− 1)(1− ε̂)

)
(1− ε̂)n−1(T Q)tot(x,π

∗(x))

=
(
hπ
∗
(x,a)− (n− 1) + (n− 1)(|A| − 1)ε

)
(1− ε̂)n−1(T Q)tot(x,π

∗(x))

≤
(
hπ
∗
(x,a)− (n− 1)

)
(1− ε̂)n−1(T Q)tot(x,π

∗(x)) + εn|A|‖(T Q)tot‖∞

=
(
hπ
∗
(x,a)− (n− 1)

)
(1 + (1− ε̂)n−1 − 1)(T Q)tot(x,π

∗(x)) + εn|A|‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) +
∣∣∣hπ∗(x,a)− (n− 1)

∣∣∣ |(1− ε̂)n−1 − 1|‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + 2n

∣∣∣∣∣
n−1∑
`=1

(
n− 1

`

)
(−1)`ε̂`

∣∣∣∣∣ ‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + 2nε̂

(
n−1∑
`=1

(
n− 1

`

))
‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + ε̂n2n‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + εn2n|A|‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞ (94)

In the second term,∑
a′∈An:hπ∗ (x,a′)=n−1

f(x,a,a′)(T Q)tot(x,a
′)

=
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(1)(x,a,a′)

1− ε̂ +
h(0)(x,a,a′)

ε
− (n− 1)

)
(1− ε̂)n−1ε(T Q)tot(x,a

′)

=
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(1− ε̂)n−1(T Q)tot(x,a

′) +

(
h(1)(x,a,a′)

1− ε̂ − (n− 1)

)
(1− ε̂)n−1ε(T Q)tot(x,a

′)

)

≤
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(1− ε̂)n−1(T Q)tot(x,a

′) +

∣∣∣∣h(1)(x,a,a′)

1− ε̂ − (n− 1)

∣∣∣∣ (1− ε̂)n−1ε‖(T Q)tot‖∞
)

≤
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(1− ε̂)n−1(T Q)tot(x,a

′) + 2nε‖(T Q)tot‖∞
)

=
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)

(
n−1∑
`=0

(
n− 1

`

)
(−1)`ε̂`

)
(T Q)tot(x,a

′) + 2nε‖(T Q)tot‖∞

)

=
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)

(
1 +

n−1∑
`=1

(
n− 1

`

)
(−1)`ε̂`

)
(T Q)tot(x,a

′) + 2nε‖(T Q)tot‖∞

)

30

≤
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(T Q)tot(x,a

′) +

∣∣∣∣∣
n−1∑
`=1

(
n− 1

`

)
(−1)`ε̂`

∣∣∣∣∣ ‖(T Q)tot‖∞ + 2nε‖(T Q)tot‖∞

)

=
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(T Q)tot(x,a

′) + ε̂

∣∣∣∣∣
n−1∑
`=1

(
n− 1

`

)
(−1)`ε̂`−1

∣∣∣∣∣ ‖(T Q)tot‖∞ + 2nε‖(T Q)tot‖∞

)

≤
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(T Q)tot(x,a

′) + ε̂

(
n−1∑
`=1

(
n− 1

`

))
‖(T Q)tot‖∞ + 2nε‖(T Q)tot‖∞

)

≤
∑

a′∈An:hπ∗ (x,a′)=n−1

(
h(0)(x,a,a′)(T Q)tot(x,a

′) + ε|A|2n−1‖(T Q)tot‖∞ + 2nε‖(T Q)tot‖∞
)

=

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)

+ εn|A|2n−1‖(T Q)tot‖∞ + 2n2ε‖(T Q)tot‖∞

≤

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)

+ εn2|A|2n‖(T Q)tot‖∞ (95)

In the third term, ∑
a′∈An:hπ∗ (x,a′)<n−1

f(x,a,a′)(T Q)tot(x,a
′)

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

|f(x,a,a′)(T Q)tot(x,a
′)|

=
∑

a′∈An:hπ∗ (x,a′)<n−1

∣∣∣∣h(1)(x,a,a′)

1− ε̂
+
h(0)(x,a,a′)

ε
− (n− 1)

∣∣∣∣ (1− ε̂)hπ∗ (x,a′)εn−h
π∗ (x,a′) |(T Q)tot(x,a

′)|

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

∣∣∣∣h(1)(x,a,a′)

1− ε̂
+
h(0)(x,a,a′)

ε
+ (n− 1)

∣∣∣∣ (1− ε̂)hπ∗ (x,a′)εn−h
π∗ (x,a′) |(T Q)tot(x,a

′)|

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

n

(
1 +

1

1− ε̂
+

1

ε

)
(1− ε̂)h

π∗ (x,a′)εn−h
π∗ (x,a′) |(T Q)tot(x,a

′)|

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

n

(
1 +

2

ε

)
(1− ε̂)h

π∗ (x,a′)εn−h
π∗ (x,a′) |(T Q)tot(x,a

′)|

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

3nεn−h
π∗ (x,a′)−1 |(T Q)tot(x,a

′)|

≤
∑

a′∈An:hπ∗ (x,a′)<n−1

3nε‖(T Q)tot‖∞

≤ 3nε|A|n‖(T Q)tot‖∞ (96)

Combining the above terms, we can get
(T LVF
D Q)tot(x,a)

= f(x,a,π∗(x))(T Q)tot(x,π
∗(x)) +

∑
a′∈An:hπ∗ (x,a′)=n−1

f(x,a,a′)(T Q)tot(x,a
′)

+
∑

a′∈An:hπ∗ (x,a′)<n−1

f(x,a,a′)(T Q)tot(x,a
′)

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + εn2n|A|‖(T Q)tot‖∞ + εn|A|‖(T Q)tot‖∞

+

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)

+ εn2|A|2n‖(T Q)tot‖∞ + 3nε|A|n‖(T Q)tot‖∞

31

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) +

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)


+ εn2|A|n2n‖(T Q)tot‖∞ (97)

in which ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)

≤

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)

 max
a′∈An:hπ∗ (x,a′)=n−1

(T Q)tot(x,a
′)

= (n− hπ
∗
(x,a)) max

a′∈An:hπ∗ (x,a′)=n−1
(T Q)tot(x,a

′)

≤ (n− hπ
∗
(x,a)) max

a′∈An\{π∗(x)}
(T Q)tot(x,a

′)

= (n− hπ
∗
(x,a)) ((T Q)tot(x,π

∗)− E(T Q)) (98)

Thus ∀x ∈ X , ∀a ∈ An \ {π∗(x)},

(T LVF
D Q)tot(x,a)

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) +

 ∑
a′∈An:hπ∗ (x,a′)=n−1

h(0)(x,a,a′)(T Q)tot(x,a
′)


+ εn2|A|n2n‖(T Q)tot‖∞

≤
(
hπ
∗
(x,a)− (n− 1)

)
(T Q)tot(x,π

∗(x)) + (n− hπ
∗
(x,a)) ((T Q)tot(x,π

∗)− E(T Q)) + εn2|A|n2n‖(T Q)tot‖∞

= (T Q)tot(x,π
∗(x))− (n− hπ

∗
(x,a))E(T Q) + εn2|A|n2n‖(T Q)tot‖∞ (99)

According to Lemma 6, E(T Q) ≥ E(Q∗)− 2γ‖Vtot − V ∗‖∞. So ∀x ∈ X , ∀a ∈ An \ {π∗(x)},

(T LVF
D Q)tot(x,a)

≤ (T Q)tot(x,π
∗(x))− (n− hπ

∗
(x,a))E(T Q) + εn2|A|n2n‖(T Q)tot‖∞

≤ (T Q)tot(x,π
∗(x))− (n− hπ

∗
(x,a)) (E(Q∗)− 2γ‖Vtot − V ∗‖∞) + εn2|A|n2n‖(T Q)tot‖∞

≤ (T Q)tot(x,π
∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + εn2|A|n2n‖(T Q)tot‖∞

≤ (T Q)tot(x,π
∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + εn2|A|n2n(Rmax + γ‖Vtot‖∞)

≤ (T Q)tot(x,π
∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + εn2|A|n2n(Rmax + γ‖V ∗‖∞ + γ‖Vtot − V ∗‖∞)

≤ (T Q)tot(x,π
∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + εn2|A|n2n(Rmax/(1− γ) + γ‖Vtot − V ∗‖∞)

≤ (T Q)tot(x,π
∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ + δ (100)

Lemma 8. Let B denote a subspace of value functions

B =

{
Q ∈ QLVF

∣∣∣∣E(Q) ≥ 0, ‖Vtot − V ∗‖∞ ≤
1

8nγ
E(Q∗)

}
(101)

Given a dataset D generated by the optimal policy π∗ with ε-greedy exploration,

∀0 < ε ≤ (1− γ)E(Q∗)

n3|A|n2n+4(Rmax/(1− γ) + E(Q∗)/(8n))
(102)

we have ∀Q ∈ B, T LVF
D Q ∈ B̂ ⊂ B where

B̂ =

{
Q ∈ QLVF

∣∣∣∣E(Q) > 0, ‖Vtot − V ∗‖∞ ≤
1

8nγ
E(Q∗)

}
(103)

32

Proof. According to Lemma 4, with the condition

0 < ε ≤ E(Q∗)/4

n2|A|n2n+1(Rmax/(1− γ) + E(Q∗)/(8n))
≤ E(Q∗)/4

n2|A|n2n+1(Rmax + γ‖Vtot‖∞)
(104)

we have ∀Q ∈ B, ∀x ∈ X , ∣∣(T LVF
D Q)tot(x,π

∗(x))− (T Q)tot(x,π
∗(x))

∣∣ ≤ 1

4
E(Q∗) (105)

which implies ∀Q ∈ B, ∀x ∈ X ,

(T LVF
D Q)tot(x,π

∗(x)) ≥ (T Q)tot(x,π
∗(x))− 1

4
E(Q∗). (106)

According to Lemma 7, with the condition

0 < ε ≤ E(Q∗)/4

n2|A|n2n(Rmax/(1− γ) + E(Q∗)/(8n))

≤ E(Q∗)/4

n2|A|n2n(Rmax/(1− γ) + γ‖Vtot − V ∗‖∞)
(107)

we have ∀Q ∈ B, ∀x ∈ X , ∀a ∈ An \ {π∗(x)},

(T LVF
D Q)tot(x,a) ≤ (T Q)tot(x,π

∗(x))− E(Q∗) + 2nγ‖Vtot − V ∗‖∞ +
1

4
E(Q∗)

≤ (T Q)tot(x,π
∗(x))− E(Q∗) +

1

4
E(Q∗) +

1

4
E(Q∗)

= (T Q)tot(x,π
∗(x))− 1

2
E(Q∗)

< (T LVF
D Q)tot(x,π

∗(x)) (108)

which implies E(T LVF
D Q) > 0.

According to Lemma 5, with the condition

0 < ε ≤ (1− γ)E(Q∗)

γn3|A|n2n+4(Rmax/(1− γ) + E(Q∗)/(8n))

≤ (1− γ)E(Q∗)

γn3|A|n2n+4(Rmax/(1− γ) + γ‖V π∗tot − V ∗‖∞)
, (109)

we have ∀Q ∈ B, ∀x ∈ X ,∣∣(T LVF
D V)(x)− V ∗(x)

∣∣ =
∣∣(T LVF

D Q)tot(x,π
∗(x))− V ∗(x)

∣∣
≤ γ‖V π

∗

tot − V ∗‖∞ +
1− γ
8nγ

E(Q∗) ≤ 1

8nγ
E(Q∗). (110)

Combing Eq. (104), (107), and (109), the overall condition is

0 < ε ≤ (1− γ)E(Q∗)

n3|A|n2n+4(Rmax/(1− γ) + E(Q∗)/(8n))
(111)

Lemma 3. There exists a threshold δ > 0 such that the on-policy Bellman operator T LVF
ε is closed in the following subspace

B ⊂ QLVF, when the hyper-parameter ε is sufficiently small.

B =

{
Q ∈ QLVF

∣∣∣∣ πQ = π∗, max
x∈X
|Qtot(x,π

∗(x))− V ∗(x)| ≤ δ
}

Formally, ∃δ > 0, ∃ε > 0, ∀Q ∈ B, there must be T LVF
ε Q ∈ B.

Proof. It is implied by Lemma 8.

33

Theorem 4 (Formal version of Theorem 2). Besides Lemma 3, Algorithm 2 will have a fixed point value function expressing the
optimal policy if the hyper-parameter ε is sufficiently small.

Proof. Notice that the observation-value function Vtot is sufficient to determine the target values, so the subspace B defined in
Lemma 8 is a compact and convex space in terms of Vtot. The operator T LVF

D is a continuous mapping because it only involves
elementary functions. According to Brouwer’s Fixed Point Theorem [47], there exist Q ∈ B satisfying T LVF

D Q ∈ B. In addition,
according to the definition stated in Eq. (103), the fixed point must represent the unique optimal policy since it cannot lie on the
boundary with E(Q) = 0.

D Omitted Proofs for Theorem 3

Lemma 9. The empirical Bellman operator T IGM
D stated in Definition 2 is a γ-contraction, i.e., the following important property

of the standard Bellman optimality operator T will hold for T IGM
D .

∀Qtot, Q
′
tot ∈ Q, ‖T Qtot − T Q′tot‖∞ ≤ γ‖Qtot −Q′tot‖∞ (112)

Proof. First, we want to prove
(
T IGM
D Q

)
tot = r(s,a) + γE[Vtot(x

′)] which indicates that the empirical Bellman error is zero:

errIGM
D ≡ min

Q∈QIGM

∑
(x,a)∈X×A

pD(a|x)
(
y(t)(x,a)−Qtot(x,a)

)2

= 0. (113)

Let a∗,(t) =
[
a
∗,(t)
i

]n
i=1

= arg maxa∈A y
(t)(x,a). We construct Qtot(x,a) = y(t)(x,a) and its corresponding local action-

value functions [Qi]
n
i=1 satisfying IGM principle:

Qi(xi, ai) =

{
1, when ai = a

∗,(t)
i ,

0, when ai 6= a
∗,(t)
i .

(114)

To avoid the multiple solutions of arg max operator in a∗,(t), we consider the lexicographic order of joint actions as the second
priority. Thus, we illustrate the completeness of IGM function class in our problem setting. According to Eq. (113) and Lemma
1.5 in RL textbook [67], we can prove that T IGM

D is a γ-contraction, T IGM
D is a γ-contraction in Dec-ROMDPs while using

reactive function classes.

Theorem 3. FQI-IGM globally converges to the optimal value function in arbitrary Dec-ROMDPs.

Proof. Let Q∗(x,a) = maxπ∈ΠQ
π(x,a) where Π is the space of all policies. According to Lemma 9 and Theorem 1.4 in RL

textbook [67], we have that

• There exists a stationary and deterministic policy π such that Qπtot = Q∗tot.

• A vector Qtot ∈ R|S|×|A|n is equal to Q∗tot if and only if it satisfies Qtot =
(
T IGM
D Q

)
tot.

• ∀Q′tot ∈ QIGM, ∥∥Q∗tot −
(
T IGM
D Q′

)
tot

∥∥
∞ =

∥∥(T IGM
D Q∗

)
tot −

(
T IGM
D Q′

)
tot

∥∥
∞

≤γ ‖Q∗tot −Q′tot‖∞ .
(115)

Thus, FQI-IGM will globally converge to optimal value function.

E Experiment Settings and Implementation Details

E.1 Implementation Details and Evaluation Setting

We adopt the PyMARL [20] implementation with default hyper-parameters to investigate state-of-the-art multi-agent Q-learning
algorithms: VDN [10], QMIX [12], QTRAN [13], and QPLEX [19]. The training time of these algorithms on an NVIDIA RTX
2080TI GPU is about 4 hours to 12 hours, which is depended on the number of agents and the episode length limit of each map.
The performance measure of StarCraft II tasks is the percentage of episodes in which RL agents defeat all enemy units within the
limited time constraints, called test win rate. The dataset providing off-policy exploration is constructed by training a behavior

34

Map Name Replay Buffer Size Behaviour Test Win Rate Behaviour Policy
2s3z 20k episodes 91.2% VDN
3s5z 20k episodes 77.5% VDN

2s_vs_1sc 20k episodes 99.6% VDN
3s_vs_5z 20k episodes 94.2% VDN
1c3s5z 30k episodes 92.1% VDN
3c7z 30k episodes 94.4% VDN

5m_vs_6m 50k episodes 61.7% VDN
10m_vs_11m 50k episodes 88.7% VDN

3h_vs_4z 50k episodes 83.1% VDN
Table 1: The dataset configurations of offline data collection setting.

Map Name Ally Units Enemy Units
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

2s_vs_1sc 2 Stalkers 1 Spine Crawler
3s_vs_5z 3 Stalkers 5 Zealots
1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
3c7z 3 Colossi & 7 Zealots 3 Colossi & 7 Zealots

5m_vs_6m 5 Marines 6 Marines
10m_vs_11m 10 Marines 11 Marines

3h_vs_4z 3 Hydralisks 4 Zealots
Table 2: SMAC challenges.

policy of VDN and collecting its 20k, 30k or 50k experienced episodes. The dataset configurations are shown in Table 1. We
investigate five multi-agent Q-learning algorithms over 6 random seeds, which includes 3 different datasets and evaluates two
seeds on each dataset. We train 300 epochs to evaluate the learning performance with a given static dataset, of which 32 episodes
are trained in each update, and 160k transitions are trained for each epoch totally. Moreover, the training process of behavior
policy is the same as that discussed in PyMARL [20], which has collected a total of 2 million timestep data and anneals the
hyper-parameter ε of ε-greedy exploration strategy linearly from 1.0 to 0.05 over 50k timesteps. The target network will be
updated periodically after training every 200 episodes. We call this period of 200 episodes an Iteration, which corresponds to an
iteration of FQI-LVF (see Definition 1).

E.2 Two-State Example

In the two-state example shown in Figure 1a, due to the GRU-based implementation of the finite-horizon paradigm in the above
five deep multi-agent Q-learning algorithms, we assume that two agents starting from state s2 have 100 environmental steps
executed by a uniform ε-greedy exploration strategy (i.e., ε = 1). We use this long-term horizon pattern and uniform ε-greedy
exploration methods to approximate an infinite-horizon learning paradigm with uniform data distribution. We adopt γ = 0.9
to implement FQI-LVF and deep MARL algorithms. In the FQI-LVF framework, Vmax = 1

1−γ = 100 as shown in Figure 1c.

Figure 1b demonstrates that Optimal line is approximately
∑99
i=0 γ

i = 63.4 in one episode of 100 timesteps.

E.3 StarCraft II

StarCraft II unit micromanagement tasks consider a combat game of two groups of agents, where StarCraft II takes built-in AI to
control enemy units, and MARL algorithms can control each ally unit to fight the enemies. Units in two groups can contain
different types of soldiers, but these soldiers in the same group should belong to the same race. The action space of each agent
includes no-op, move [direction], attack [enemy id], and stop. At each timestep, agents choose to move or attack in continuous
maps. MARL agents will get a global reward equal to the amount of damage done to enemy units. Moreover, killing one enemy
unit and winning the combat will bring additional bonuses of 10 and 200, respectively. The maps of SMAC challenges in this
paper are introduced in Table 2 in the episodes of 100 timesteps. To approximate the Dec-ROMDP setting, we concatenate the
global state with the local observations for each agent to handle partial observability.

All networks are trained using GeForce GTX 1080 Ti and Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz. Each single learning
curve can be completed within 36 hours.

35

F Experiments on a Two-Player Matrix Game

F.1 Value Estimation in Multi-Agent Q-Learning Algorithms

a2

a1 A(1) A(2) A(3)

A(1) 8 -12 -12
A(2) -12 0 0
A(3) -12 0 0

(a) Payoff matrix

a2

a1 A(1) A(2) A(3)

A(1) 7.98 -12.09 -12.10
A(2) -12.18 -0.02 -0.02
A(3) -12.11 -0.03 -0.03

(b) Qtot of QPLEX

a2

a1 A(1) A(2) A(3)

A(1) 8.00 -12.00 -12.00
A(2) -12.00 -0.00 0.00
A(3) -12.00 0.00 0.00

(c) Qtot of QTRAN

a2

a1 A(1) A(2) A(3)

A(1) -7.98 -7.98 -7.98
A(2) -7.98 -0.00 -0.00
A(3) -7.98 -0.00 -0.00

(d) Qtot of QMIX

a2

a1 A(1) A(2) A(3)

A(1) -6.23 -4.90 -4.90
A(2) -4.90 -3.57 -3.57
A(3) -4.90 -3.57 -3.57

(e) Qtot of VDN

a2

a1 A(1) A(2) A(3)

A(1) -6.22 -4.89 -4.89
A(2) -4.89 -3.56 -3.56
A(3) -4.89 -3.56 -3.56

(f) Qtot of FQI-LVF

Table 3: (a) Payoff matrix of the one-step game. Boldface means the optimal joint action selection from payoff matrix. (b-f)
Joint action-value functions Qtot estimated by a suite of algorithms. Boldface means the greedy joint action selection from Qtot.

Table 3 reveals the following observations regarding the representational capacity of these value factorization structures:

• QPLEX and QTRAN, two algorithms using IGM value factorization structure, can almost perfectly fit the payoff matrix.
• QMIX cannot find the ground truth best actions, since its monotonic value factorization structure cannot express the

given payoff matrix.
• The value estimation generated by tabular FQI-LVF matches its deep-learning-based implementation (i.e., VDN).

F.2 The Learning Curve of Table 3e

0 200 400 600 800 1000
Iteration t

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

R
el

at
iv

e
Er

ro
r

VDN

Figure 3: The learning curve of Table 3e. Every iteration contains 200 gradient steps. The relative error is defined as
‖QFQI-LVF

tot −QVDN
tot ‖∞/‖Q

FQI-LVF
tot ‖∞.

36

G Ablation Studies on Network Capacity

G.1 Ablation Studies in Matrix Game

a2

a1 A(1) A(2) A(3)

A(1) 8 -12 -12
A(2) -12 0 0
A(3) -12 0 0

(a) Payoff of matrix game

a2

a1 A(1) A(2) A(3)

A(1) 7.98 -12.09 -12.10
A(2) -12.18 -0.02 -0.02
A(3) -12.11 -0.03 -0.03

(b) Qtot of QPLEX

a2

a1 A(1) A(2) A(3)

A(1) 8.00 -12.00 -12.00
A(2) -12.00 -0.00 0.00
A(3) -12.00 0.00 0.00

(c) Qtot of QTRAN

a2

a1 A(1) A(2) A(3)

A(1) -6.24 -4.90 -4.90
A(2) -4.90 -3.57 -3.57
A(3) -4.90 -3.57 -3.57

(d) Qtot of Large-VDN

a2

a1 A(1) A(2) A(3)

A(1) -8.03 -8.03 -8.03
A(2) -8.03 -0.01 -0.01
A(3) -8.03 -0.01 -0.01

(e) Qtot of Large-QMIX

Table 4: (a-c) The ground-truth payoff matrix and the joint action-value functions of QPLEX and QTRAN. (d-e) The joint
action-value functions Qtot of Large-VDN and Large-QMIX. Boldface means the greedy joint action selection from Qtot.

To address the concern that QPLEX naturally uses more hidden parameters than VDN and QMIX, which may also improve its
representational capacity. To demonstrate that the performance gap between QPLEX and other methods does not come from the
difference in term of the number of parameters, we increase the number of neurons in VDN and QMIX so that they have the
comparable number of parameters as QPLEX. Formally, Large-VDN and Large-QMIX have the similar number of parameters as
QPLEX. The experiment results are presented in Table 4, both the “Large-” versions of VDN and QMIX cannot represent an
accurate value function in this matrix game. Increasing the number of parameters cannot address the limitations of VDN and
QMIX on representational capacity.

G.2 Ablation Studies in StarCraft II Benchmark Tasks

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

QPLEX
QTRAN
VDN
Large-VDN
Behavior

(a) 3s_vs_5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(b) 2s3z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(c) 2s_vs_1sc

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(d) 1c3s5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(e) 3s5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(f) 5m_vs_6m

Figure 4: Evaluating the performance of Large-VDN with a given static dataset.

In addition to the ablation study in the matrix game, Figure 4 and Figure 5 present the ablation studies in StarCraft II benchmark
tasks with offline data collection. In comparison to the standard versions of VDN and QMIX, we introduce Large-VDN and

37

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

QPLEX
QTRAN
QMIX
Large-QMIX
Behavior

(a) 3s_vs_5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(b) 2s3z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(c) 2s_vs_1sc

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(d) 1c3s5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(e) 3s5z

0 60 120 180 240 300
Epochs

0

20

40

60

80

100

M
ed

ia
n

Te
st

 W
in

 R
at

e
%

(f) 5m_vs_6m

Figure 5: Evaluating the performance of Large-QMIX with a given static dataset.

Large-QMIX, which have a similar number of parameters as QPLEX. As shown in Figure 4, increasing parameters can benefit
VDN in some easy maps such as 2s3z and 2s_vs_1sc, but it cannot provide fundamental improvement in harder tasks. As shown
in Figure 5, the effects of increasing parameters are rather weak for QMIX. These experiments demonstrate that increasing the
number of parameters cannot address the limitations of VDN and QMIX on representational capacity.

H Additional Experiments on Two-State Example

Remark. Assumption 1 assumes that the dataset D is collected by a decentrailized and exploratory policy πD. All algorithms
discussed in the paper, including VDN, QMIX, QTRAN, and QPLEX, learn decentralized policies, which are executed in a
decentralized manner. To investigate the dependency of our theoretical implications on Assumption 1, we provide an experiment
to evaluate the performance of deep multi-agent Q-learning algorithms on the general datasets. Figure 6 present the learning
curves of VDN, QMIX, QPLEX, and QTRAN in the example shown in Figure 1a with a specific dataset D constructed by a
parameter η as follows:

∀s ∈ S, pD(A(1),A(2) | s) =

(
0.5η + 0.25(1− η) 0.25(1− η)

0.25(1− η) 0.5η + 0.25(1− η)

)
.

As shown in Figure 6, the choice of parameter η has no impacts on the performance of QPLEX and QTRAN, which matches the
fact that Theorem 3 does not rely on the assumption of the decentralized data collection. As the extension of Proposition 2, VDN
and QMIX empirically suffer from unbounded divergence when the dataset is not collected by a decentrailized policy. The only
exception is the case of η = 1, in which the dataset only contains two kinds of joint actions. In this case, the given example
degenerates to a single-agent MDP because agents only perform the same actions in the dataset. As a result, VDN and QMIX
would not diverge in this special situation.

38

0 20 40 60 80 100
Iteration t

0

100

200

300

400

500

Q
to

t

= 1.0
= 0.8
= 0.5
= 0.2
= 0.1
= 0.

Optimal

(a) VDN

0 20 40 60 80 100
Iteration t

0

100

200

300

400

500

Q
to

t

= 1.0
= 0.8
= 0.5
= 0.2
= 0.1
= 0.

Optimal

(b) QMIX

0 20 40 60 80 100
Iteration t

0

100

200

300

400

500

Q
to

t

= 1.0
= 0.8
= 0.5
= 0.2
= 0.1
= 0.

Optimal

(c) QPLEX

0 20 40 60 80 100
Iteration t

0

100

200

300

400

500

Q
to

t

= 1.0
= 0.8
= 0.5
= 0.2
= 0.1
= 0.

Optimal

(d) QTRAN

Figure 6: The learning curves of ‖Qtot‖∞ while running several deep multi-agent Q-learning algorithms with a new dataset.

I Diagnosing the Divergence of QMIX

As shown in Figure 6, QMIX also suffers from unbounded divergence in this MMDP. To investigate this phenomenon, we
conduct an ablation study and find that the divergence is caused by choice of the activation function. The default implementation
of QMIX uses Elu as activation, which contains a linear component on the positive side. We hypothesize that the behavior of
this linear piece may resemble that of linear value factorization which leads to unbounded divergence. As shown in Figure 7,
using Tanh instead of Elu can prevent the divergence of QMIX in this example task.

0 100 200 300 400 500
Iteration t

0

60

120

180

240

300

Q
to

t

QMIX-Elu (Default)
QMIX-Tanh
QMIX-Relu
Optimal

Figure 7: The learning curves of ‖Qtot‖∞ while running QMIX with different activation functions.

39

