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A Proofs

A.1 Proof of Theorem 1

Theorem 1 The changes of operation weights on after one step of gradient descent w.r.t. architecture
parameters depend on the score

∑
k[wkfn(xk)], where wk = σ(F (xk)) − yk. Specifically, if∑

k[wkf1(xk)] <
∑
k[wkf2(xk)], then o1 increases and o2 decreases, and vice versa.

Proof A.1 We firstly give Lemma 1:

Lemma 1 The operation weights are caculated by a softmax function. E.g. o1 = exp{α1}
exp{α1}+exp{α2} .

Let g1 and g2 are the gradients w.r.t. α1 and α2. The operation weights after a gradient descent step
are o′1 and o′2, e.g., o′1 = exp{α1−g1}

exp{α1−g1}+exp{α2−g2} . If g1 < g2, then o′1 > o1 and o′2 < o2, and vice
versa.

Proof of Lemma 1:

If g1 < g2, we should improve o′1 > o1, that is

exp{α1 − g1}
exp{α1 − g1}+ exp{α2 − g2}

>
exp{α1}

exp{α1}+ exp{α2}
exp{α1 − g1}(exp{α1}+ exp{α2}) > exp{α1}(exp{α1 − g1}+ exp{α2 − g2})
exp{2α1 − g1}+ exp{α1 + α2 − g1} > exp{2α1 − g1}+ exp{α1 + α2 − g2}

exp{α1 + α2 − g1} > exp{α1 + α2 − g2}
α1 + α2 − g1 > α1 + α2 − g2

g1 < g2

(1)

We already have g1 < g2, thus o′1 > o1. Since o1 + o2 = o′1 + o′2 = 1, we have o′2 < o2. Lemma 1 is
proved.

Then we prove Theorem 1 with Lemma 1:
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The binary cross entropy loss is

H(F ) = −
∑
k

[yk · lnσ(−F (xk)) + (1− yk) · ln(1− σ(−F (xk)))]

= −
∑
k

[yk · (−ln(1 + exp{−F (xk)})) + (1− yk) · (−F (xk)− ln(1 + exp{−F (xk)}))]

=
∑
k

[ln(1 + exp{−F (xk)}) + (1− yk) · F (xk)]

(2)

Then we have

∂H(F )

∂oi
=

∑
k

[
−exp{−F (xk)}

1 + exp{−F (xk)}
· fi(xk) + (1− yk) · fi(xk)]

=
∑
k

[σ(F (xk))− yk) · fi(xk)]

=
∑
k

[wkfi(xk)]

(3)

Besides, since o1 = exp{α1}
exp{α1}+exp{α2} , we have

∂o1
∂α1

=
exp{α1}(exp{α1}+ exp{α2})− exp{α1} · exp{α1}

(exp{α1}+ exp{α2})2
=

exp{α1 + α2}
(exp{α1}+ exp{α2})2

(4)

Similarly,
∂o2
∂α2

=
exp{α1 + α2}

(exp{α1}+ exp{α2})2
(5)

Thus ∂o1
∂α1

= ∂o2
∂α2

.

If we have the relationship between the two scores, e.g.,∑
k

[wkf1(xk)] <
∑
k

[wkf2(xk)]

∂H(F )

∂o1
<
∂H(F )

∂o2
∂H(F )

∂o1

∂o1
∂α1

<
∂H(F )

∂o2

∂o2
∂α2

∇α1
< ∇α2

(6)

By Lemma 1, o1 increases and o2 decreases. �

A.2 Proof of Theorem 2

Theorem 2 Under our synthetic graph setting, let n be the number of edges connected the target
node, the relative distance between the centers of two classes is |D|, which follows D ∼ N (0, β2).
Then, the probability of that linear operation gives more accurate prediction than GCN on the target
node is P = Φ[

√
2n|D|

(δ+1)
√

(n+1)(n+2)
].

Proof A.2 Firstly we have Property 1, the proof of Property 1 can be easily found in Probability
Theory textbook.

Property 1 If x1 ∼ N (µ1, σ
2
1), x2 ∼ N (µ2, σ

2
2), then x1 + x2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2)
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Since the centers of the two classes follows µ1, µ2 ∼ N (0, σ2
2), according to Property 1, the absolute

distance between these two centers is d ∼ N (0, 2σ2
2). Since D ∼ N (0, β2) and β = σ2

σ1
, we know

the relationship between D and d is d
D =

√
2σ1. We assume the center of the target node’s class is µ,

the center of the other class is µ+ |d|. Thus the target node’s feature follows xt ∼ N (µ, σ1). The
node feature of the other class follows x ∼ N (µ+ |d|, σ1).

GCN can be seen as a message passing process followed by a linear layer, where the message passing
process is average of all node neighbors. The number of target node’s intra-group neighbors is
δn
δ+1 + 1 (include self-loop), while the number of target node’s inter-group neighbors is n

δ+1 . Let the
probability of a target node’s neighbor is an inter-group neighbor is p, where

p =
n
δ+1

δn
δ+1 + 1 + n

δ+1

=
n

(δ + 1)(n+ 1)
. (7)

Let xG represent the node feature after message passing process. We have xG ∼ N (µ+ p|d|, σ2
1

n+1 )

Linear operation gives more accurate prediction than GCN on the target node is equivalent to
xt < xG. Let ∆ = xt − xG, we have ∆ ∼ N (−p|d|, n+2

n+1σ
2
1). Thus we have

P (xt < xG) = P (∆ < 0)

= Φ(
p · |d|√
n+2
n+1σ1

)

= Φ(

n
(δ+1)(n+1) ·

√
2σ1|D|√

n+2
n+1σ1

)

= Φ[

√
2n|D|

(δ + 1)
√

(n+ 1)(n+ 2)
]

(8)

�

B Algorithm and hyper-parameters

B.1 Algorithm

Algorithm 1: GASSO
Input: Graph features X , graph adjacent matrix A, learning rate ηW , ηAand ηG
Output: Prediction of labels Y ′

1 Initial the super network f with parameter W , A;
2 Adopt DropEdge to A and initial the structure parameter G;
3 while not converge do
4 W = W − ηW∇WL(W,A, G);
5 if is warming up then
6 Continue;
7 end
8 G = G− ηG∇GLs(W,A, G);
9 A = A− ηA∇AL(W,A, G);

10 end
11 H = fW,A,G(X);
12 Return Y ′i = argmaxjHij

B.2 Hyper-paramter settings

We initialize structure parameter G as a null matrix, thus the weights of all edges in Gp are 0.5 after
the sigmoid function. We use Adam optimizer for all three parameters W , A and G, the learning
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Table 1: The GNN performances under different settings of the searching phase and evaluation phase.
"S" indicates the setting of searching phase. "E" indicates the setting of evaluation phase. All the
results are average of 100 runs, the variances of each result are listed in Appendix C.1. Left: under
different β. Right: under different δ.

S
E

β = 0.2 β = 0.3 β = 0.4 β = 0.5 β = 0.6

β = 0.2 56.4± 4.9 70.9± 4.9 82.0± 5.1 87.9± 5.0 91.6± 4.9
β = 0.3 55.5± 5.1 73.1± 4.4 85.1± 5.2 91.7± 5.1 94.4± 4.6
β = 0.4 52.3± 5.6 73.1± 4.8 86.5± 5.4 93.0± 5.0 96.3± 4.2
β = 0.5 48.5± 7.1 72.7± 5.5 88.6± 3.1 96.1± 1.8 98.6± 1.2
β = 0.6 43.0± 6.4 69.4± 5.8 88.1± 3.2 96.3± 1.6 99.0± 1.0

S
E

δ = 6.0 δ = 5.0 δ = 4.0 δ = 3.0 δ = 2.0

δ = 6.0 93.4± 2.2 88.4± 3.0 80.6± 4.4 68.9± 6.7 55.1± 8.1
δ = 5.0 94.2± 2.1 90.1± 3.5 83.6± 5.5 79.2± 8.4 62.9± 11.5
δ = 4.0 94.2± 2.1 91.3± 3.0 86.3± 5.2 79.2± 8.4 70.5± 12.4
δ = 3.0 92.9± 4.1 91.0± 3.3 88.7± 3.3 85.8± 3.4 82.1± 5.5
δ = 2.0 86.8± 4.6 86.3± 4.6 85.8± 4.4 85.4± 3.6 84.8± 3.4

rates are set as ηW = 0.01, ηA = 0.03 and ηG = 0.04, the weight decay for W is 1e−4, and 0 for the
other two parameters. The DropEdge probability in PubMed is 0.2, no DropEdge in Cora or CiteSeer.
The hyper-parameter λ which controls the hidden feature smoothness is set to be 0.125.

We set the number of layers as 2 in Cora and CiteSeer, 4 in PubMed. The candidate operations
contain GCN [1], GAT [2], GIN [3], MRConv [4] and linear. In the super network, we adopt dropout
(p=0.6) before each layer and a ReLU function after each layer.

C Experiment results

C.1 The variance of synthetic graph experiment

We show the variance of synthetic graph experiment in Table 1 to endorse our analysis in Section 3.
The table shows that the variance of accuracy is relatively big in the experiment setting. However,
all the results are average of 100 runs. Considering the variance of average of 100 tests is 1

100 of
variance of a single test, the relationship among the accuracy is credible. Thus our analysis based on
the experiment results makes sense.

C.2 Hyper-parameter Analysis
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Figure 1: Accuracy on CiteSeer with different lambda

We explore the sensitivity of our hyper-parameter λ, which is used in Equation (??) to control the
restriction of hidden feature smoothness. When λ gets larger, the weight difference between smooth
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edges and non-smooth edges gets larger, and vice versa. If λ is set to 0, the initial G will not be
changed.

We vary λ from (0.03125, 4.0) in a log scale of base 2. We report the performance changes on
CiteSeer in Figure 1. The figure shows that the performance is not very sensitive to λ, which varies
within a 0.5% range in our λ space. There is still a peak around λ = 0.125 where we achieve the
best performance.

D Discussions

In this part, we discuss some key ideas in our methods and their distinction with others.

with GAT. In GAT [2], edges are also given weight during the message passing procedure, so
nodes can aggregate more information from useful neighbors. GAT gives the weight from the
node’s perspective. The weight is calculated by the connected node features and at each layer, and
asymmetric for the two nodes. It is the node that determines what to aggregate at each convolution
layer. Differently, we adopt edge perspective in our design, the edge weight represents the edge’s
importance in the graph, which is more general. We use the same weight for both connected nodes,
for all GNN operations, and for all layers. This perspective of edge weight is more comprehensive.

with Other Structure Learning Methods. There are also other graph models containing structure
learning, aiming at denoising the original data and enhancing robustness, such as TO-GCN [5] and
Pro-GNN [6]. Both of them use first-order proximity to update the graph structure. In TO-GCN,
the predicted labels are used to measure node similarity. However, the predicted labels are discrete
relaxation of node features, which cannot accurately represent the node. In Pro-GNN, the original
features are used to measure node similarity, which makes the structure learning separated from the
model training procedure, i.e., its structure learning phase can be easily moved before model training,
constructing a two-stage scheme. We use the hidden feature instead, combining structure learning
with the training of the model and architecture while keeping accuracy at the same time. Further
exploration is presented in Section 5.

with GraphMix. GraphMix [7] is a graph regularization model where a fully-connected network
(FCN) is used and its parameter is shared with GCN. The FCN is trained by interpolation-based
techniques, restricting the training of GCN to reduce over-fitting. Thus, GraphMix can also be seen
as ensemble model with regularization. In our model, weights are not shared among different types
of operations, but within the same operations at the layer among different architectures. These two
types of parameter sharing are orthometric with each other.
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