TNASP: A Transformer-based NAS Predictor with a
Self-evolution Framework - Supplementary Materials

Shun Lu'?2, Jixiang Li%, Jianchao Tan?, Sen Yang?, Ji Liu?
! Research Center for Intelligent Computing Systems, State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences
3 Kuaishou Technology
lushunl19s@ict.ac.cn, {lijixiang, jianchaotan, senyang, jiliu}@kuaishou.com

A Demonstration experiments

A.1 Effects of two encoding branches in TNASP model design

We conduct an ablation study on NAS-Bench-101 [16]] to further analyze the impact of the main
components in our model. As shown in Tab[5] the absence of any encoding branch can lead to
significant performance degradation, from which we can conclude that both positional encoding and
operation encoding branches play an essential part in our TNASP design. Moreover, the operation
encoding branch looks more important than the positional encoding branch. When both branches are
adopted, our TNASP model achieves the best performance.

100 (0.02%) 172 (0.04%) 424 (0.1%) 424 (0.1%) 4236 (1%)

POE OPE all all 100 all all
v 0.386 0.419 0.456 0.426 0.458

v 0.229 0.314 0.366 0.303 0.376

v v 0.600 0.669 0.752 0.705 0.820

Table 5: We analyze the effects of two encoding branches in TNASP model design under various
data splits. OPE: operation encoding, corresponding to the top branch in Fig.1. POE: positional
encoding, represents the bottom branch in Fig.1. When one of the branches is adopted, we shield the
information from the other branch to analyze its effects on our TNASP model.

A.2 Performance of replacing Transformer with GCN or MLP.

From our comparison and experiments, Transformer is necessary. For demonstration, we also have
conducted additional experiments on NAS-Bench-101 [[16] about replacing Transformer with GCN
or MLP and results are shown in Tab. [6] When replacing our Transformer with GCN, we can
get the models almost the same as the ones applied in NP (GCN) [14], which is obviously worse
than our method. If replaced with MLP, since our regressor part is already MLP, that means to
increase the depth of existing MLP, which however, would potentially have poor performance on
such graph-structure data.

A.3 Comparison with SemiNAS
As far as we know, SemiNAS [9] is the most similar work to ours, thus we provide detailed compar-

isons here. There are several essential differences between SemiNAS and TNASP. First, SemiNAS [9]
directly utilize the NAO [10] model as their backbone implementation. On the contrary, we devise a

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

100 (0.02%) 172 (0.04%) 424 (0.1%) 424 (0.1%) 4236 (1%)

Backone all all 100 all all

MLP 0.386 0.419 0.456 0.426 0.458
GCN 0.229 0.314 0.366 0.303 0.376
Transformer 0.600 0.669 0.752 0.705 0.820

Table 6: Replace Transformer with GCN or MLP on NAS-Bench-101.

novel and effective transformer based predictor associated with Laplacian matrix positional encoding
strategy, which surpasses the NAO [10] model a lot on NAS-Bench-101 [16]] and NAS-Bench-201
[S)]. Second, SemiNAS [9] proposed to leverage the general heuristic semi-supervised framework to
use testing set gradually augment the training set, which is usually hard to guarantee the optimization
of the model in the right direction as the predicted data labels are inherently biased. They did propose
a simple strategy to mitigate the bias, however, we propose a novel self-evolution framework to
utilize the historical evaluation information over a validation set as constraints to supervise the model
training, which can essentially guide the training towards the right direction gradually. Moreover,
our method did not explicitly put the validation data into the training dataset as the pseudo label
technique did.

To make a fair comparison, we conduct further experiments with SemiNAS [9]] in Tab[7] When applied
with the SemiNAS framework, we can see that several results only fluctuate around the original one
(Compare three methods with/without mark "SM"). Yet, most ranking results get improved and all
models achieve the best ranking results when applying our self-evolution framework (Compare three
methods with/without mark "SE").

Training Samples 100 (0.02%) 172 (0.04%) 424 (0.1%) 424 (0.1%) 4236 (1%)
Validation Samples 200 200 200 200 200
Test Samples all all 100 all all
Neural Predictor’ [14] 0.391 0.545 0.710 0.679 0.769
NAO? [10] 0.501 0.566 0.704 0.666 0.775
TNASP 0.600 0.669 0.752 0.705 0.820
Neural Predictor’ + SM 0.392 0.547 0.713 0.680 0.770
NAO! + SM 0.501 0.571 0.705 0.670 0.801
TNASP + SM 0.595 0.666 0.750 0.718 0.820
Neural Predictor! + SE 0.458 0.577 0.713 0.684 0.773
NAO¥ + SE 0.564 0.624 0.732 0.680 0.787
TNASP + SE 0.613 0.671 0.754 0.722 0.820

Table 7: Comparison with SemiNAS [9]. We calculate the Kendall’s Tau by predicting accuracy of
architectures in NAS-Bench-101. T: re-implemented by ourselves. *: implemented based on their
released model. SM: SemiNAS [9] framework. SE: self-evolution framework.

A4 Comparison with BONAS

BONAS [12] adopted a GCN-based predictor to encode architectures and applied Bayesian opti-
mization to search for architectures, while we introduced a Transformer-based predictor with novel
positional encoding to encode spatial topology information and utilized the generalized self-evolution
optimization framework to involve any available historical validation evaluation information to
improve the model training.

Besides the difference between backbone models, in terms of how to use historical validation
evaluation information, BONAS [12] trained a Bayesian regression model to make performance
prediction, while our SE framework directly treats each historical validation evaluation information
as each hard constraint during training and reformulate the whole constrained training problem as
a minimax optimization problem, solved by gradient-based optimization method efficiently and

effectively, which we think is a pretty novel and different scheme comparing to BONAS. Our total
design is to combine the spatial topology information encoding of input graph data and temporal
evaluation information together to improve training stability and model generalization.

As for the performance, when evaluated on NAS-Bench-101, BONAS used 85% of the data for
training while our method required at most 1% of the data. When searched in the DARTS search space,
BONAS-A consumed 2.5 GPU days and achieved 97.31 test accuracy (BONAS-B/C/D required
more GPU days) while our method only cost 0.3 GPU days and achieved 97.43 &+ 0.04 test accuracy.
Evidently, our method is novel, lightweight, efficient, and achieves SOTA performance.

A.5 Experiments on ImageNet

To prove the effectiveness of our proposed NAS predictor, we also perform the architecture search on
ImageNet dataset [7]] in a MobileNet-like search space, which is composed of chain-like architectures
and we apply the traditional positional encoding in NLP transformer for such sequential architectures.
We search for the MobileNet block [I1] with kernel sizes {3, 5, 7} and expansion rates {3, 6}, and
use the identity operation instead when there is no down-sampling. We first train a supernet with
totally 21 layers for 120 epochs and then randomly select one thousand models to train our predictor.
Finally, the evolutionary algorithm [3] is used to search for the superb models and we retrain them to
get the final accuracy. All the training configures and the hyper-parameters follow the paper [6} [17].

The comparisons with other methods are summarized in Tab[8] and we visualize our searched
architectures in Sec[C.2] We notice that TNASP-A has obtained the same or better accuracy than
Proxyless (GPU) [1] and SPOS [6] with fewer parameters and FLOPs. When equipped with a little
more parameters and FLOPs, TNPAS-C achieves the best performance than other predictor-based
methods with the highest classification accuracy 75.8.

Method Params(M) FLOPs(M) Top-1(%) Top-5(%)
FBNet-C [15]] 5.5 375 74.9 92.1
Proxyless (GPU) [[1]] 7.0 457 75.1 92.5
SPOS [6] 5.4 472 74.8 -
RLNAS [17] 5.3 473 75.6 92.6
Neural Predictor [[14] 6.4* 536 * 74.75 £+ 0.09 -
NAO [10] 6.5 590 75.5 92.5
TNASP-A 5.0 433 75.1 92.3
TNASP-B 5.1 478 75.5 92.5
TNASP-C 5.3 497 75.8 92.7

Table 8: Comparison with other methods on ImageNet. *: We compute these information by their
released model structure.

B Implementation details

Predictor construction and training We set the embedding dimension of the operation encoding
as 80 and build our predictor with 3 transformer encoder layers, each of which consists of 4 heads.
The regressor module is composed of 2 fully-connected layers with hidden dimension 96. We train
our predictor for 300 epochs with a small batch size of 10 on all search spaces. Adam optimizer
is utilized with weight decay le-3 and we initialize the learning rate as 1e-4 with the cosine decay
strategy.

Applied with self-evolution framework and SemiNAS framework When applied with our self-
evolution framework, we initialize the variable ¥ using a normal distribution and sample 200 data as
the validation dataset for evaluation. We further train the predictor using ADMM optimization for
another 100 epochs (T in the equations of the main paper).

When applied with SemiNAS [9], we predict the accuracy of another 100 data and add them to the
training set. We then use the newly generated training set to train the SemiNAS predictor for 50
epochs and we repeat the above iteration twice.

Model evaluation We retrain the searched cells in DARTS search space for 600 epochs with batch
size 96, initial channels 36, and layers 20. The SGD optimizer is employed and we initialize the
learning rate as 0.025 with a cosine decay strategy. We adopt the Cutout [4] to augment the training
set and apply the Dropout [[13]] strategy in our training process. The auxiliary head is also utilized
with a weight of 0.4. All of the training settings in DARTS search space follow the paper [8]]. In the
MobileNet-like search space, we retrain the searched architecture for 240 epochs with batch size
1024 on 8 NVIDIA V100 GPUs. Most of the training settings are kept the same as RLNAS [17].
We adopt the SGD optimizer and the initial learning rate is 0.5 with a cosine decay strategy. Label
smoothing is applied with the weight of 0.1 and we clip the gradients larger than 5. We also use fixed
AutoAugment policy [2] in our training.

We will release all the implementation code files, logs, and trained models once the paper is accepted.

C Visualization

C.1 Searched architectures in DARTS search space

We name three searched cells in DARTS search space as TNASP-a, TNASP-b, and TNASP-c.
TNASP-a is the best searched cell and has been shown in our main text. TNASP-b and TNASP-c are
shown in Fig[5] Normal cells are placed on the left side and reduction cells are visualized on the right
side.

avg_pool_3x3

(a) TNASP-b

sep_conv_3x3

(b) TNASP-c

Figure 5: Other searched cells in DARTS search space. Left side are normal cells and right side are
reduction cells.

C.2 Searched architectures in MobileNet-like search space

‘We visualize our searched architectures TNASP-A, TNASP-B and TNASP-C in Fig@

D Broader impact

Neural architecture search (NAS) has been a pretty active topic in recent years. This work mainly
focuses on how to accurately predict the network performance efficiently during the neural architecture
search, which can alleviate a large amount of computing cost and can help others construct more
intelligent NAS-related systems. However, it still needs a few training data to train our predictor and
requires expert experience to elaborately design the predictor and the search space for specific tasks.

MBE3_K3
Identity
MBE3_K3
MBE3_K3
MBE3_K3
Identity
MBE3_K3
MBE3_K3

(a) TNASP-A

MBE3_K3
Identity
MBE3_K3
MBE3_K3
MBE3_K3
Identity

(b) TNASP-B

MBE3_K3
MBE3_K3

MBE3_K3

MBE3_K3
Identity

Y]
~
o
w
)
=

(¢) TNASP-C

Figure 6: Our searched architectures in MobileNet-like search space.

References

[1] Han Cai et al. Proxylessnas: Direct neural architecture search on target task and hardware. In
ICLR, 2019.

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. In CVPR, 2019.

[3] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist
multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182-197, 2002.

[4] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[5] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In ECCV, 2020.

[7] Alex Krizhevsky et al. Imagenet classification with deep convolutional neural networks. Com-
munications of the ACM, 60(6):84-90, 2017.

[8] Hanxiao Liu et al. DARTS: Differentiable architecture search. In /CLR, 2019.

[9] Rengian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised
neural architecture search. In NeurIPS, 2020.

[10] Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimiza-
tion. In NeurIPS, 2018.

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[12] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T Kwok, and Tong Zhang. Bridging the gap
between sample-based and one-shot neural architecture search with bonas. In NeurIPS, 2020.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

[14] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li, Gabriel Bender, and Pieter-Jan Kindermans.
Neural predictor for neural architecture search. In ECCV, 2020.

[15] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In CVPR, 2019.

[16] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.
Nas-bench-101: Towards reproducible neural architecture search. In ICML, 2019.

[17] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian Sun. Neural architecture search with
random labels. In CVPR, 2021.

	Demonstration experiments
	Effects of two encoding branches in TNASP model design
	Performance of replacing Transformer with GCN or MLP.
	Comparison with SemiNAS
	Comparison with BONAS
	Experiments on ImageNet

	Implementation details
	Visualization
	Searched architectures in DARTS search space
	Searched architectures in MobileNet-like search space

	Broader impact

