A Appendix for Learning Signal-Agnostic Manifolds of Neural Fields

- 2 Please visit our project website at https://yilundu.github.io/gem/ for additional qualitative
- 3 visualizations of test-time reconstruction of audio and audiovisual samples, traversals along the
- 4 underlying manifold of GEM on CelebA-HQ as well as interpolations between audio samples. We
- 5 further illustrate additional image in-painting results, as well as audio completion results. Finally, we
- 6 visualize several audio and audiovisual generations.
- 7 In Section A.1 below, we provide details on training settings, as well as the underlying baseline
- 8 model architectures utilized for each modality. We conclude with details on reproducing our work in
- 9 Section A.2.

10 A.1 Experimental Details

- 11 Training Details For each separate training modality, all models and baselines are trained for one
- day, using one 32GB Volta machine. GEM is trained with the Adam optimizer [3], using a training
- batch size of 128 and a learning rate of 1e-4. Each individual datapoint is fit by fitting the value of
- 14 1024 sampled points in the sample (1024 for each modality in the multi-modal setting). We normalize
- the values of a signals to be between -1 and 1. When computing $\mathcal{L}_{\rm Iso}$, a scalar constant of $\alpha=100$ is
- employed to scale distances in the underlying manifold to that of distances of signals in sample space.
- When enforcing \mathcal{L}_{LLE} , a total of 10 neighbors are considered to compute the loss across modalities.
- We utilize equal loss weight across \mathcal{L}_{Rec} , \mathcal{L}_{Iso} , \mathcal{L}_{LLE} , and found that the relative magnitudes of each
- 19 loss had little impact on the overall performance.
- 20 **Model Details** We provide the architectures of the hypernetwork ψ and implicit function ϕ utilized
- 21 by GEM across separate modalities in Table 2 and Table 3, respectively. Additionally, we provide
- the architectures used in each domain for our baselines: StyleGAN2 in Table 13 each domain in
- 23 Table 13 and VAE in Table 8. Note that for the VAE, the ReLU nonlinearity is used, with each
- separate convolution having stride 2.
- 25 We obtained the hyperparameters for implicit functions and hypernetworks based off of [5]. Early in
- 26 the implementation of the project, we explored a variety of additional architectural choices; however,
- we ultimately found that neither changing the number of layers in the hypernetworks, nor changing
- 28 the number of underlying hidden units in networks, significantly impacted the performance of GEM.
- 29 We will add these details to the appendix of the paper.

30 A.2 Reproducibility

- 31 We next describe details necessary to reproduce each of other underlying empirical results.
- 32 **Hyperparameter Settings for Baselines** We employ the default hyperparameters, as used in the
- original papers for StyleGAN2 [2] and FDN [1], to obtain state-of-the-art performance on their
- 34 respective tasks. Due to computational constraints, we were unfortunately unable to do a complete
- 35 hyperparameter search for each method over all tasks considered. Despite this, we were able to run
- 36 the models on toy datasets and found that these default hyperparameters performed the best. We
- utilized the author's original codebases for experiments.
- 38 Variance Across Seeds Results in the main tables of the paper are run across a single evaluated
- 39 seed. Below in Table 1, we rerun test reconstruction results on CelebA-HQ across different models
- 40 utilizing a total of 3 separate seeds. We find minimal variance across separate runs, and still find the
- 41 GEM performs significantly outperforms baselines.

Modality	Model	MSE ↓	PSNR ↑
Images	VAE FDN StyleGANv2 GEM	$ \begin{array}{c} 0.0327 \pm 0.0035 \\ 0.0062 \pm 0.0003 \\ 0.0044 \pm 0.0001 \\ \textbf{0.0025} \pm 0.0001 \end{array} $	15.16 ± 0.06 22.57 ± 0.02 24.03 ± 0.01 26.53 ± 0.01

Table 1: Test CelebA-HQ reconstruction results of different methods evaluated across 3 different seeds. We further report standard deviation between different runs.

Datasets We provide source locations to download each of the datasets we used in the paper.
The CelebA-HQ dataset can be downloaded at https://github.com/tkarras/progressive_
growing_of_gans/blob/master/dataset_tool.py and is released under the Creative Commons license. The NSynth dataset may be downloaded at https://magenta.tensorflow.
org/datasets/nsynth and is released under the Creative Commons license. The ShapeNet dataset can be downloaded at https://github.com/czq142857/IM-NET and is released under the MIT License, and finally the Sub-URMP dataset we used may be downloaded at https://www.cs.rochester.edu/~cxu22/d/vagan/.

	Dense \rightarrow 512
	Dense \rightarrow 512
	Dense \rightarrow 512
De	$nse \rightarrow \phi$ Parameters

Table 2: The architecture of the hypernetwork utilized by GEM.

Pos Embed (512)
Dense \rightarrow 512
Dense \rightarrow 512
Dense \rightarrow 512
$Dense \rightarrow Output \ Dim$

Table 3: The architecture of the implicit function ϕ used to agnostically encode each modality. We utilize the Fourier embedding from [4] to embed coordinates.

3x3 Conv2d, 64
3x3 Conv2d, 128
3x3 Conv2d, 256
3x3 Conv2d, 512
3x3 Conv2d, 512
$z \leftarrow Encode$
Reshape(2, 2)
3x3 Conv2d Transpose, 512
3x3 Conv2d Transpose, 512
3x3 Conv2d Transpose, 256
3x3 Conv2d Transpose, 128
3x3 Conv2d Transpose, 3

Table 4: The encoder and decoder of the VAE utilized for CelebA-HQ.

3x3 Conv2d, 32	
3x3 Conv2d, 64	
3x3 Conv2d, 128	
3x3 Conv2d, 256	
3x3 Conv2d, 512	
$z \leftarrow Encode$	
Reshape(4, 2)	
3x3 Conv2d Transpose, 512	
3x3 Conv2d Transpose, 256	
3x3 Conv2d Transpose, 128	
3x3 Conv2d Transpose, 64	
3x3 Conv2d Transpose, 32	
3x3 Conv2d Transpose, 1	
Crop	

Table 5: The encoder and decoder of the VAE utilized for NSynth

3x3 Conv2d, 32
3x3 Conv2d, 64
3x3 Conv2d, 128
3x3 Conv2d, 256
3x3 Conv2d, 512
$z \leftarrow Encode$
Reshape(2, 2)
3x3 Conv2d Transpose, 512
3x3 Conv2d Transpose, 256
3x3 Conv2d Transpose, 128
3x3 Conv2d Transpose, 64
3x3 Conv2d Transpose, 32
3x3 Conv2d Transpose, 3

Table 6: The architecture of encoder and decoder of the VAE utilized for audiovisual dataset on images. Latent encodings from image and audio modalities are added together.

3x3 Conv2d, 32	
3x3 Conv2d, 64	
3x3 Conv2d, 128	
3x3 Conv2d, 256	
3x3 Conv2d, 512	
$z \leftarrow Encode$	
Reshape(4, 1)	
3x3 Conv2d Transpose, 512	
3x3 Conv2d Transpose, 256	
3x3 Conv2d Transpose, 128	
3x3 Conv2d Transpose, 64	
3x3 Conv2d Transpose, 32	
3x3 Conv2d Transpose, 1	
Crop	

Table 7: The architecture of encoder and decoder of the VAE utilized for audiovisual dataset on audio. Latent encodings from image and audio modalities are added together.

Table 8: The architecture of the VAE utilized across datasets.

Constant Insert (512, 4, 4)	Constant Input
Constant Input (512, 4, 4)	StyleCon
StyleConv 512	StyleCon
StyleConv 256	3x3 Conv
3x3 Conv2d, 3	Croi
	C.O.

Table 9:	The	genera
tor archite	cture	of Style-
GAN2 for	Celeb	A-HQ.

Constant Input (512, 8, 4)	Constant Input (512, 4, 4)
StyleConv 512	StyleConv 512
StyleConv 256	StyleConv 256
3x3 Conv2d, 1	3x3 Conv2d, 3
Crop	T-1-1- 11. The
	Table 11: The genera-

Table 10: The generator architecture of Style-	tor architecture of Style-GAN2 for audiovisual
GAN2 for NSynth	domain for images.

. (510 4 4)	Constant Input (512, 8, 2)
nput (512, 4, 4)	StyleConv 512
Conv 512	StyleConv 256
Conv 256	3x3 Conv2d, 1
Conv2d, 3	Crop

Table 12: The generator architecture of Style-GAN2 for audiovisual domain for audio.

Table 13: The architecture of the StyleGAN generator utilized across datasets.

References

- 51 [1] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions. *arXiv* preprint arXiv:2102.04776, 2021. 1
- [2] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2020.
- 56 [3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. 1
- [4] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
 Nerf: Representing scenes as neural radiance fields for view synthesis. In *Proc. ECCV*, 2020.
- [5] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous images.
 arXiv preprint arXiv:2011.12026, 2020. 1