
A Hyperparameters

Tables 3 and 4 summarize hyperparameters for PATE-FM and ALIBI respectively.

Table 3: PATE-FM (Algorithms 1 and 2) hyperparameters for select accuracy levels.

Queries Accuracy
Dataset Teachers σ1 σ2 τ answered Ensemble Student

200 160 20 100 500 90.8% 93.7%
CIFAR-10 800 800 300 400 250 60.8% 86.9%

800 800 500 400 250 36.4% 73.4%

20 7 2 2 9,400 74.0% 69.9%
CIFAR-100 100 45 15 10 1,000 55.0% 50.0%

100 90 30 10 1,000 28.8% 30.5%

Table 4: Hyperparameters of ALIBI (Algorithm 3) for select accuracy levels.

Learning Weight decay
Dataset rate (×10−4) Accuracy

CIFAR-10
0.308 0.568 94.0%
0.960 0.00796 84.2%
0.315 1.50 71.0%

CIFAR-100

0.0037 33.5 75.3%
0.0057 17.5 71.4%
0.100 2.33 51.6%

0.1 1.00 31.4%

B Memorization: Formal treatment

To empirically bound the level ε of DP, prior work instantiates a general membership inference game,
defined in Figure 2 for two arbitrary neighboring datasets D0 and D1.

Attacker(D0, D1) Challenger

D0, D1

b←$ {0, 1}
M ←M(Db)

M

b′ ← A(D0, D1,M)

b′

output b = b′

Figure 2: Basic membership inference game, Game 1.

By repeating this game multiple times, we can estimate the adversary’s success rate and convert this
into a lower bound on ε.

This would be prohibitively expensive in our setting (each iteration of the game requires training
a model on CIFAR-10 or CIFAR-100, and the game has to be repeated about 1,000 times to get

13

non-trivial bounds). We thus propose a heuristic approach for running multiple iterations of this game
while training a single model.

First, we will change the game slightly so as to allow the adversary to abstain from issuing a guess
on some instances. That is, the output range of A is {0, 1,⊥}. We then define the adversary’s correct
guess rate (CGR) as:

CGRD0,D1
:= Pr[b = b′ | b′ = A(D0, D1,M(Db)) ∧ b′ 6= ⊥] .

The probability is taken over the bit b, the randomness of the mechanismM and the algorithm A.

Theorem B.1. IfM satisfies ε-DP and D0, D1 are two adjacent databases, then

ε ≥ log

(
CGRD0,D1

1− CGRD0,D1

)
.

Proof. For notational convenience, define Ax as a random variable distributed according to
A(D0, D1,M(Dx)) for x ∈ {0, 1, b}. Then

CGRD0,D1

1− CGRD0,D1

=
Pr[b′ = b | b′ = Ab ∧ b′ 6= ⊥]

Pr[b′ = 1− b | b′ = Ab ∧ b′ 6= ⊥]

=
Pr[Ab = b]

Pr[Ab = 1− b]

=
Pr[A0 = 0] + Pr[A1 = 1]

Pr[A0 = 1] + Pr[A1 = 0]

≤ max

{
Pr[A0 = 0]

Pr[A1 = 0]
,
Pr[A0 = 1]

Pr[A1 = 1]

}
(by the mediant inequality)

≤ eε ,

where the last inequality follows from the assumption thatM is ε-DP.

It now remains to be seen how we can bound the adversary’s correct guessing rate CGR. We define
Game 2 (Figure 3) by making a small change to Game 1 above, so that the neighboring datasets D0

and D1 are chosen at random in each iteration of the game, by flipping the label of one example of a
common dataset D.

Attacker Challenger(D)

D0, D1 ← D

i←$ [1 : |D|]

y′, y′′ ←$ {
[1 : C] \ {yi}

}
, s.t. y′ 6= y′′

(D0)i ← (xi, y
′)

(D1)i ← (xi, y
′′)

b←$ {0, 1}
M ←M(Db)

D0, D1,M

b′ ← A(D0, D1,M)

b′

output b = b′

Figure 3: D0 and D1 are defined randomly (Game 2).

14

Similar to Game 1, we define the adversary’s probability of winning in Game 2 conditional on A’s
output not being ⊥. Let the average CGR in Game 2 (ACGR) be:

ACGRD := E
D0,D1

[Pr[b = b′ | b′ = A(D0, D1,M(Db)) ∧ b′ 6= ⊥]]

= E
D0,D1

[CGRD0,D1] .

If we can lower-bound ACGR by some value α, then there exists at least one pair of neighboring
datasets D0, D1 such that CGRD0,D1 ≥ α. As the DP guarantee has to hold for all neighboring
datasets, we can use a bound on ACGR to bound ε.

Finally, instead of repeating Game 2 many times to get a bound on ACGR, we instead simulate
multiple iterations of Game 2 at once, which becomes Game 3 (formally defined in Figure 4). The

Attacker Challenger(D)

I ←$ {I ⊆ [1 : |D|] | |I| = N}

b1, . . . , bN ←$ {0, 1}N

D∗ ← D

for i ∈ I do

y′i, y
′′
i ←$ {

[1 : C] \ {yi}
}

, s.t. y′ 6= y′′

if bi = 0 then

D∗i ← (xi, y
′
i)

else

D∗i ← (xi, y
′′
i)

M ←M(D∗)

M,D,D∗, I, {(y′i, y′′i)}Ni=1

for i ∈ I do

D0, D1 ← D

(D0)i ← (xi, y
′
i)

(D1)i ← (xi, y
′′
i)

b′i ← A(D0, D1,M)

b′1, . . . , b
′
N

output {b1 = b′1, . . . , bN = b′N}

Figure 4: Game 3.

heuristic step here is that we assume that each of theN guesses made by the adversary are independent
from each other and reflect the adversary’s guesses in N independent iterations of Game 2.

Given one iteration of Game 3 with N “canaries”, we can compute a lower bound on the adversary’s
average CGR using standard confidence intervals for a Binomial random variable. That is, we count
the number of correct guesses among the M ≤ N instances where the adversary made a guess
b′i 6= ⊥, and apply a Clopper-Pearson bound.

We can improve the tightness of this bound further. In Game 3, for each canary (xi, y
′
i) that the

model is trained on (assuming bi = 0), we record the adversary’s guess with respect to only one other
random label y′′. Yet, we could record the adversary’s guess with respect to all C − 2 choices of
y′′i 6= yi, y

′
i to get a tighter estimate of the adversary’s average success rate. However, we definitely

cannot treat these guesses as independent. Instead, we first estimate the adversary’s (empirical)
average correct guessing rate ACGRi for each canary (where the average is taken over all possible

15

choices for y′′i):

b′i,j := A(D(i,j)
bi,j

, D
(i,j)
1−bi,j ,M) for j = 1, . . . , C − 2,

mi :=

C−2∑
j=1

[b′i,j 6= ⊥],

ACGRi :=
1

mi

C−2∑
j=1

[b′i,j = bi,j],

where bi,j are iid uniform bits, D(i,j)
0 are D for all i and j, D(i,j)

1 , . . . , D
(i,j)
1 are copies of D with

the C − 2 possible choices for the label y′′i , and [·] is the Iverson bracket. (By convention, 0/0 = 0.)
We then compute a confidence interval for the empirical mean of all the ACGRi. As the adversary
may abstain from making a guess with a different probability for each canary (i.e., the mi’s may not
all be equal) we have to weigh the ACGRi values accordingly. That is, we compute the weighted
average and standard deviation of the ACGRi with the Mi as reliability weights. Finally, we obtain
a confidence interval for the adversary’s ACGR using a standard 95% confidence interval for the
normal distribution.

Finally, it remains to define our adversary A(D0, D1,M) where (xi, y
′) ∈ D0 and (xi, y

′′) ∈ D1.
The adversary simply looks at the model’s confidence on xi for both possible labels and guesses that
the more confident of the two is the label that the model was trained on. However, if both labels have
confidence below some fixed threshold τ , the adversary abstains. Formally:

A(D0, D1,M) =

{⊥ if max(M(xi)y′ ,M(xi)y′′) < τ

[M(xi)y′ > M(xi)y′′] otherwise
.

We consider different thresholds τ ∈ [0.5, 0.99] and report the best resulting attack (i.e., the setting
with the highest lower-bound on ACGR). For simplicity, we omit corrections for multiple hypothesis
testing.

C Memorization: Validating the Heuristic

The previous section introduces a sequence of security games (Figures 2–4) that relate the success
probability of a membership inference adversary (Game 1) to an efficient computational procedure
(Game 3). It starts by randomizing a single instance of Game 1 into Game 2. In order to compute
the adversary’s probability of winning Game 2 with sufficient accuracy, the experiment needs to be
repeated hundreds of times. Doing so would be prohibitively expensive as each run requires training
a new model from scratch.

We use a heuristic whereby the independent runs of Game 2 are replaced with correlated instances of
the membership inference game that share the same trained model (Game 3). Concretely, it means
that instead of introducing a single canary (a mislabeled input) into a training dataset, Game 3 injects
multiple canaries all at once. While doing so does change the input distribution of the training
procedure, we argue that the overall effects are minimal and do not qualitatively affect our findings.

We test the heuristic’s validity by comparing the adversary’s advantage against ALIBI in Game 3,
where the number of simultaneously inserted canaries is N = 1,000 as in Table 1, with ten repetitions
of Game 3 with N = 100. The results are presented in Table 5. Notably, the 95% confidence intervals
for εm are in very close agreement, thus supporting the heuristic.

D Post-processing for Soft Randomized Response

For completeness, we describe Soft RR variants instantiated with uninformed post-processing and
the Gaussian mechanism. We found that ALIBI dominates alternatives by achieving better accuracy
with stronger privacy. In particular, ALIBI’s upper bounds are stronger than those of the Gaussian
mechanisms for the same levels of accuracy, while their empirical privacy losses are statistically
indistinguishable.

16

Table 5: Comparison of 95% confidence intervals (CI) for the membership inference adversary
against ALIBI given a single run of Game 3 with N = 1000 and 10 runs of Game 3 with N = 100.

95%-CI εm
Dataset Accuracy level 1,000 labels 10×100 labels

CIFAR-10
High 2.9–4.0 2.7–3.6
Medium 1.0–2.2 0.2–2.5
Low 0.0–2.2 0.0–1.6

CIFAR-100
High 2.8–3.5 2.7–3.4
Medium 1.4–2.4 1.3–2.0
Low 0.6–1.0 0.6–1.1

D.1 Uninformed post-processing

Given Soft-RR’s output vector o, we may reduce error by mapping it to the closest point on the
probability simplex (compare with Nikolov et al. [27]). In other words, we are solving the following
constrained optimization problem:

min ‖o∗ − o‖2 subject to
{∀i 0 ≤ o∗i ≤ 1,∑

i o
∗
i = 1

The problem is (strictly) convex, and thus admits a unique, efficiently computable solution. Moreover,
a particularly simple and efficient method (Algorithm 4) exists due to Duchi et al. [10] (see also Wang
and Carreira-Perpiñán for other approaches [35]).

Algorithm 4: Post-processing using Min Projection (Duchi et al. [10]).

Input: o = (o1, . . . , oC) ∈ RC
Output: Projection of o onto the probability simplex
Sort o as s1 ≥ s2 ≥ · · · ≥ sC
Find k ← maxj

{
j ∈ [1 : C] : sj >

1
j (
∑j
i=1 si − 1)

}
u← 1

k (
∑k
i=1 si − 1)

for i← 1 to C do
o′i ← max(oi − u, 0)

end
Output o′

D.2 Bayesian post-processing on Additive Gaussian Mechanism

This follows the same post-processing algorithm as ALIBI as described in Section 5.2, except for
Gaussian noise instead of Laplace. Eq. (2) changes to the following (note the switch of the noise
parameter from λ to σ):

p(o | y = k, σ) ∝ e−
(ok−1)2

2σ2

∏
j 6=k

e−
o2
j

2σ2 . (4)

Plugging (4) in (1) we have:

p(y = c | o, σ) = eoc/σ
2 · p(y = c)∑

k e
ok/σ2 · p(y = k)

= SoftMax(oc/σ
2 + log p(y = c)). (5)

The training algorithm as described in Algorithm 3 can be modified by setting BPP to (5) to work in
this setting.

The results of applying the Gaussian mechanism (“AGIBI”) are reported in Table 6 together with
ALIBI performance from Table 1 for ease of comparison. The claimed privacy losses (the ε column)
strongly favor ALIBI over the Gaussian mechanism; the empirically computed privacy loss lower
bounds do not separate the two mechanisms.

17

Table 6: ALIBI and AGIBI on CIFAR-10 and CIFAR-100 using Wide-ResNet18, matched by test
accuracy levels. Empirical privacy loss εm is reported as a 95% confidence interval (CI).

Dataset Accuracy level Algorithm Accuracy ε 95%-CI εm

CIFAR-10

High ALIBI 94.0% 8.0 2.9–4.0
AGIBI 93.5% 19 2.1–3.2

Medium ALIBI 84.2% 2.1 1.0–2.2
AGIBI 84.3% 7.7 0.7–1.4

Low ALIBI 71.0% 1.0 0.0–2.2
AGIBI 71.3% 3.7 0.0–2.0

CIFAR-100

High ALIBI 71.4% 6.3 2.8–3.5
AGIBI 69.9% 17 2.7–3.4

Medium ALIBI 51.6% 3.0 1.4–2.4
AGIBI 50.8% 8.4 1.3–2.0

Low ALIBI 31.4% 2.0 0.6–1.0
AGIBI 28.7% 5.4 0.6–1.1

18

