
A Theory Details

From the LEGI objective, we have assumed gi
i.i.d.∼ µ, xi

i.i.d.∼ ν, and (gi, xi)
i.i.d.∼ p, for (gi, xi) ∈ G×X .

Then for a sample {(gi, xi)}i, we have access to the empirical distributions of the three. In the
procedure of evaluating the objective, we sample uniformly.

Note that, in Eq. 2 of the main paper, we used a d dimensional hidden state hp to denote an edge’s
source node representation and xq as destination node features from the structure of the ego-graph
and the associated source node feature with GNN. In our proof, we denote vp,q as the q-th node in the
p-th layer of the ego-graph and let hp,q = hp and xp,q = xq . For simplicity, in i-th layer, we denote
f(xi) = hip,q‖xip,q , where [·‖·] is the concatenation operation.

Finally, as we are considering GNN with k layers, its computation only depends on the k-hop ego-
graphs of G, which is an important consideration when unfolding the embedding of GNN at a centre
node with Lamma A.1.
Lemma A.1. For any A ∈ Rm×n, where m ≥ n, and A is a submatrix of B ∈ Rm′×n, where
m < m′, we have

‖A‖2 ≤ ‖B‖2.

Proof. Note that, AAT is a principle matrix of BBT , i.e., AAT is obtained by removing the same
set of rows and columns from BBT . Then, by Eigenvalue Interlacing Theorem [24] and the fact that
ATA and AAT have the same set of non-zero singular values, the matrix operator norm satisfies
‖A‖2 =

√
λmax(ATA) =

√
λmax(AAT) ≤

√
λmax(BBT) = ‖B‖2.

A.1 Center-node view of GCN

Recall that Vp(gi) denotes the set of nodes in the pth hop of k-hop ego-graph gi, and xip,q denotes
the feature for qth node in pth hop of gi, for any p = 0, . . . , k; q = 1, . . . , |Vp(gi)|. Similarly, V (gi)
denotes the entire set of nodes in gi. In each ego-graph sample {gi, xi}, the layer-wise propagation
rules for the center node embedding in encoder Ψ and discriminator D can be written into the form
of GCN as followed

Z(l) = ReLU(D−
1
2 (I +A)D−

1
2Z(l−1)θ(l))

where A is adjacency matrix of G. I adds the self-loop and Dii =
∑
j Aij is the degree matrix.

We focus on the center node’s embedding obtained from a k-layer GCN with 1-hop polynomial filter
φ(L) = Id−L. Inspired by the characterization of GCN from a node-wise view in [55], we similarly
denote the embedding of node xi ∀i = 1, · · · , n in the final layer of the GCN as

z
(k)
i = zi = Ψθ(xi) = σ(

∑
j∈N (xi)

eijz
(k−1)
j

T
θ(k)) ∈ Rd,

where eij = [φ(L)]ij ∈ R the weighted link between node i and j; and θ(k) ∈ Rd×d is the weight
for the kth layer sharing across nodes. Then θ = {θ(`)}k`=1. We may denote z(`)

i ∈ Rd similarly for
` = 1, · · · , k − 1, and z0

i = xi ∈ Rd as the node feature of center node xi. With the assumption of
GCN in the statement, it is clear that only the k-hop ego-graph gi centered at xi is needed to compute
z

(k)
i for any i = 1, · · · , n instead of the whole of G. Precisely, p-hop of subgraph corresponds to the
` = (k − p)th layer in the model.

With such observation in mind, let us denote the matrix of node embeddings of gi at the `th layer
as [z

(`)
i] ∈ R|V (gi)|×d for ` = 1, · · · , k; and let [z

(0)
i] ≡ [xi] ∈ (Rd)|V (gi)| denote the matrix of

node features in the k-hop ego-graph gi. In addition, denote [z
(`)
i]p as the principle submatrix, which

includes embeddings for nodes in the 0 to pth hop of gi, 0 ≤ p ≤ k.

We denote Lgi as the out-degree normalised graph Laplacian of gi. Here, the out-degree is defined
with respect to the direction from leaves to centre node in gi. Similarly, denote L̃gi as the in-degree
normalised graph Laplacian of gi, where the direction is from centre to leaves.

WLOG, we write the `th layer embedding in matrix notation of the following form

[z
(`)
i]k−`+1 = σ([φ(Lgi)]k−`+1[z

(`−1)
i]k−`+1θ

(`)),

15

where the GCN only updates the embedding of nodes in the 0 to (k − `)th hop. We also implicitly
assume the embedding of nodes in (k − `+ 1) to kth hop are unchanged through the update, due to
the directed nature of gi. Hence, we obtain zi ≡ [z

(k)
i]0 from the following

[z
(k)
i]1 = σ([φ(Lgi)]1[z

(k−1)
i]1θ

(k)).

Similarly, we are able to write down the form of discriminator using matrix representation for GCN.
The edge information at `th time point for nodes in V (gi) can be described as follows

[h
(`)
i] = ReLU(φ(L̃gi)[h

(`−1)
i]θ̃(`)),

A.2 Proof for Theorem 4.1

We restate Theorem 4.1 from the main paper as below.
Theorem A.2. Let Ga = {(gi, xi)}ni=1 and Gb = {(gi′ , xi′)}mi′=1 be two graphs and node features
are structure-respecting with xi = f(Lgi), xi′ = f(Lgi′) for some function f : R|V (gi)|×|V (gi)| →
Rd. Consider GCN Ψθ with k layers and a 1-hop polynomial filter φ,the empirical performance
difference of Ψθ with LEGI satisfies

|LEGI(Ga)− LEGI(Gb)| ≤ O

(
1

nm

n∑
i=1

m∑
i′=1

[M + Cλmax(Lgi − Lgi′) + C̃λmax(L̃gi − L̃gi′))]

)
,

(7)

where M is dependant on Ψ, D, node features, and the largest eigenvalue of Lgi and L̃gi . C is a
constant dependant on the encoder, while C̃ is a constant dependant on the decoder. With a slight
abuse of notation, we denote λmax(A) := λmax(ATA)1/2. Note that, in the main paper, we have
C := M + Cλmax(Lgi − Lgi′), and ∆D(Ga, Gb) := C̃λmax(L̃gi − L̃gi′).

Proof. Now,

|LEGI(G)− LEGI(G
′)|

=

∣∣∣∣∣∣ 1

n2

n∑
i,j=1

(D(gi, zj))−
1

n

n∑
i=1

(−(−D(gi, zi))− (
1

m2

m∑
i′,j′=1

(D(gi′ , zj′))−
1

m

m∑
i′=1

(−(−D(gi′ , zi′))))

∣∣∣∣∣∣
≤ 1

n2m2

n∑
i,j=1

m∑
i′,j′=1

|D(gi, zj)−D(gi′ , zj′)|+
1

nm

n∑
i=1

m∑
i′=1

|D(gi, zi)−D(gi′ , zi′)|

=
1

n2m2

n∑
i,j=1

m∑
i′,j′=1

A+
1

nm

n∑
i=1

m∑
i′=1

B.

We make the following assumptions in the proof,

1. Assume the size of the neighborhood for each node is bounded by 0 < r < ∞, then
the maximum number of node for p-th layer subgraph is bounded by rp. WLOG, let
1 ≤ |Vp(gi)| ≤ |Vp(gi′)| ≤ rp;

2. Assume hip,q‖xip,q = 0 if |Vp(gi)| < q, i.e. assume non-informative edge information and
node features for non-existed nodes in the smaller neighborhood with no links;

From Assumption 2, we add isolated nodes to the smaller neighborhood Vp(gi) such that the
neighborhood size at each hop match. It can be found in our code to compute EGI gap as pad_nbhd.
For the following proof, we WLOG assume |Vp(gi)| = |Vp(gi′)| ∀p.

First we consider B. Recall that, Vp(gi) is the set of nodes in layer p of gi,

D(gi, zi) =

k∑
p=1

|Vp(gi)|∑
q=1

log(σsig
(
UT τ

(
WT [f(xi)‖zi]

))
),

16

where σsig(t) = 1
1+e−t is the sigmoid function, τ is some γτ -Lipschitz activation function and [·‖·]

denotes the concatenation of two vectors. Then we obtain

UT τ
(
WT [f(xi)‖zi]

)
= UT τ

(
WT

1 f(xi) +WT
2 zi
)
.

Since log(σsig(t)) = − log(1 + e−t), which is 1-Lipschitz, it gives

B ≤
k∑
p

|
|Vp(gi′)|∑

q

σs(U
T τ
(
WT

1 f(xi) +WT
2 zi
)
)− σs(UT τ

(
WT

1 f(xi
′
) +WT

2 zi′
)

)|

≤ γτ‖U‖2
k∑
p=1

|Vp(gi′)|∑
q=1

(‖WT
1 f(xi)−WT

1 f(xi
′
)‖2 + ‖WT

2 zi −WT
2 zi′‖2)

≤ γτ‖U‖2sw

 k∑
p=1

|Vp(gi′)|∑
q=1

[
‖hip,q − hi

′

p,q‖2 + ‖xip,q − xi
′

p,q‖2
]

+

k∑
p=1

|Vp(gi′)|∑
q=1

‖zi − zi′‖2


≤ C1

 k∑
p=1

|Vp(gi′)|∑
q=1

[
‖hip,q − hi

′

p,q‖2 + ‖xip,q − xi
′

p,q‖2
]
/

k∑
p=1

rp + ‖zi − zi′‖2


= C1 (I1 + I2)

(8)

We provide the derivation for the unfolding of `th layer GCN with the centre-node view in Lemma
A.3. This will be used in the derivation of I1 and I2.

Lemma A.3. For any ` = 1, · · · , k, we have an upper bound for the hidden representation difference
between gi and g′i,

‖[z(`)
i]k−` − [z

(`)
i′]k−`‖2 ≤ (γσcθ)

`‖φ(Lgi)‖`2‖[xi]− [xi′]‖2

+
(γσcθ)

`‖φ(Lgi)‖`2 + 1

γσcθ‖φ(Lgi)‖2 − 1
γσcθcz‖φ(Lgi)− φ(Lgi′)‖2.

(9)

Specifically, for ` = k, we obtain the expansion for center node embedding ‖[z(k)
i]0 − [z

(k)
i′]0‖ ≡

‖zi − zi′‖.

Proof. By Lemma A.1, for any ` = 1, · · · , k, the following holds

‖[z(`)
i]k−` − [z

(`)
i′]k−`‖2 ≤ ‖[z(`)

i]k−`+1 − [z
(`)
i′]k−`+1‖2.

Assume max` ‖[z(`)
i]‖2 ≤ cz <∞ ∀i, and max` ‖θ(`)‖2 ≤ cθ <∞, where cθ = ∨`sθ(`) the largest

singular value.

Then, for ` = 1, · · · , k − 1, we have

‖[z(`)
i′]k−` − [z

(`)
i′]k−`‖2

≤‖[σ([φ(Lgi)]k−`+1[z
(`−1)
i]k−`+1θ

(`))− σ([φ(Lgi′)]k−`+1[z
(`−1)
i′]k−`+1θ

(`))]k−`)‖2
≤γσ‖[φ(Lgi)]k−`+1[z

(`−1)
i]k−`+1 − [φ(Lgi′)]k−`+1[z

(`−1)
i′]k−`+1‖2‖θ(k)‖2

≤γσcθ‖[φ(Lgi)]k−`+1‖2‖[z(`−1)
i]k−`+1 − [z

(`−1)
i′]k−`+1‖2 + γσcθ‖[z(`−1)

i′]k−`+1‖2‖[φ(Lgi)]k−`+1 − [φ(Lgi′)]k−`+1‖2
≤γσcθ‖φ(Lgi)‖2‖[z

(`−1)
i]k−`+1 − [z

(`−1)
i′]k−`+1‖2 + γσcθcz‖φ(Lgi)− φ(Lgi′)‖2.

(10)
since [φ(Lgi)]k−`+1 is the principle submatrix of φ(Lgi). Then we equivalently write the above
equation as E` ≤ bE`−1 + a, which gives

E` ≤ b`E1 +
b` + 1

b− 1
a.

17

With [xi] = [z
(0)
i]k, we see the following is only dependant on the structure of gi and gi′ ,

‖[z(`)
i′]k−` − [z

(`)
i′]k−`‖2 ≤ (γσcθ)

`‖φ(Lgi)‖`2‖[xi]− [xi′]‖2

+
(γσcθ)

`‖φ(Lgi)‖`2 + 1

γσcθ‖φ(Lgi)‖2 − 1
γσcθcz‖φ(Lgi)− φ(Lgi′)‖2.

Since the the graph Laplacians are normalised, we have ‖φ(Lgi)‖2 ≤ cL <∞ ∀i. In addition, let

‖xip,q − xi
′

p,q‖2 ≤ sup
i

sup
p,q
‖xip,q − xi

′

p,q‖2 = sup
i
‖f(Lgi)− f(Lgi′)‖2 := δx.

Hence, ‖[xi] − [xi′]‖2 ≤ δx(
∑k
p=1 r

p)1/2 := cx. From Lemma A.3, it is clear that we obtain the
following at the final layer

I2 = ‖zi − zi′‖2 ≤ (γσcθcL)kcx +
(γσcθcL)k + 1

γσcθcL − 1
γσcθcz‖φ(Lgi)− φ(Lgi′)‖2

≤ C(Mcx + ‖Lgi − Lgi′‖2)

= C(Mcx + λmax(Lgi − Lgi′)
1/2).

(11)

since φ is a linear function for L. Indeed, this can be generalised to polynomial function φ of higher
powers.

Now, consider the following term that is related with discriminator D,

I1 =

k∑
p=1

|Vp(gi′)|∑
q=1

[
‖hip,q − hi

′

p,q‖2 + ‖xip,q − xi
′

p,q‖2
]
/

k∑
p=1

rp

Firstly, we denote L̃p,q as the in-degree graph Laplacian derived with the subgraph gq of gi centred at
q ∈ Vp(gi). Different from the encoder, we utilize every node’s hidden embedding in the computation.
Specifically, gq is obtained by retrieving links in gi that connects to the qth node in the pth layer. This
is a principle submatrix of the in-degree graph Laplacian L̃gi of gi.

Just as defined in §A.1, we denote [h
(p)
q]` as the pth layer GCN embedding for nodes in hop 0 to hop

` ∈ [0, p] of gq. Note that in this case, [h
(p)
q]0 = h

(p)
q , which is one row of [h

(p)
i], corresponding to

the q-th node in the neighborhood. So we may write the first term in I1 as
k∑
p=1

|Vp(gi′)|∑
q=1

‖h(p)
q − h

(p)
q′ ‖

where h(p)
q′ := hi

′

p,q for short. In this way, we regard each node q ∈ Vp(gi) as the centre node, which
allows us to unfold the convolution similarly as expanding the I2 term. Now, for any q ∈ Vk(gi), i.e.
when p = k, we apply Lemma A.3 similarly as for ‖zi − zi′‖2. Then,

‖h(k)
q − h

(k)
q′ ‖ ≤ (γσcθ̃cL̃)kcx +

(γσcθ̃cL̃)k + 1

γσcθ̃cL̃ − 1
γσcθ̃ch‖φ(L̃k,q)− φ(L̃k,q′)‖2

≤ C̃k(M̃kcx + ‖φ(L̃gi)− φ(L̃gi′)‖2)

where L̃p,q is the principle submatrix of L̃gi and Lemma A.1 can be applied iin the last inequality. In
addition, C̃k and M̃k are taken to be the maximum over any q ∈ Vk(gi). In general, for q ∈ Vp(gi),
0 < p < k, we have

‖h(p)
q − h

(p)
q′ ‖2 ≤ C̃p(M̃pcx + ‖φ(L̃gi)− φ(L̃gi′)‖2)

Take a common upper bound for C̃p, M̃p over 0 < p ≤ k, we obtain

k∑
p=1

|Vp(gi′)|∑
q=1

‖h(p)
q − h

(p)
q′ ‖/

k∑
p=1

rp ≤ C̃(M̃cx + ‖L̃gi − L̃gi′‖2)

= C̃(M̃cx + λmax(L̃gi − L̃gi′)
1/2)

18

In addition, for the other half of I1, we have
k∑
p=1

|Vp(gi′)|∑
q=1

‖xip,q − xi
′

p,q‖2/
k∑
p=1

rp ≤ sup
i

sup
p,q
‖xip,q − xi

′

p,q‖2 = δx = cx/(

k∑
p=1

rp)1/2

We can write B in terms of weights C and C̃, which is dependant on the activation function σ, k and
supi λmax(Lgi). Hence,

B ≤ (CM + C̃M̃ + 1/(

k∑
p=1

rp))cx + Cλmax(Lgi − Lgi′) + C̃λmax(L̃gi − L̃gi′)

= M ′cx + Cλmax(Lgi − Lgi′) + C̃λmax(L̃gi − L̃gi′)

Note that the derived I1 for B is the same for A, since the node features, edge information and
embedded features are bounded by separate terms in Eq. 8. The only difference is given by I2, where
a different set of graph Laplacians Lgj , Lgj′ and node features (xj) are used. Therefore,

A ≤M ′cx + Cλmax(Lgj − Lgj′) + C̃λmax(L̃gi − L̃gi′)
Hence the result.

Note that, our view of structural information is closely related to graph kernels [4] and graph
perturbation [55]. Specifically, our Definition on k-hop ego-graph is motivated by the concept of
k-layer expansion sub-graph in [4]. However, [4] used the Jensen-Shannon divergence between
pairwise representations of sub-graphs to define a depth-based sub-graph kernel, while we depict G
as samples of its ego-graphs. In this sense, our view is related to the setup in [55], which derived a
uniform algorithmic stability bound of a 1-layer GNN under 1-hop structure perturbation of G.

In the setting of domain adaptation, [7] draws a connection between the difference in the distributions
of source and target domains and the model transferability, and learns a transferable model by
minimizing such distribution differences. This coincides with our approach of connecting the
structure difference of two graphs in terms of k-hop subgraph distributions and the transferability of
GNNs in the above theory.

B Model Details

Following the same notations used in the main paper, EGI consists of a GNN encoder Ψ and a GNN
discriminator D. In general, the GNN encoder Ψ and discriminator D can be any existing GNN
models. For each ego-graph and its node features {gi, xi}, the GNN encoder returns node embedding
zi for the center node vi. As mentioned in Eq. 2 in the main paper, the GNN discriminator D makes
edge-level predictions as follows,

D(eṽv|hq̃p,q, xip,q, zi) = σ
(
UT · τ

(
WT [hq̃p,q||xip,q||zi]

))
, (12)

where eṽv ∈ E(gi) and hq̃p,q ∈ Rd (simplified as hp in the main paper, same for xip,q = xq) is the
representation for edge eṽv between node vp−1,q̃ in hop p − 1 and vp,q in hop p. The prediction
relies on the combination of center node embedding zi, destination node feature xip,q and source node
representation hq̃p,q . And now we describe how we calculate the source node representation in D.

To obtain the source node representation representations h, the GNN in discriminator D operates
on a reversed ego-graph g̃i while encoder Ψ performs forward propagation on gi. The discrimina-
tor GNN starts from the center node vi and compute the hidden representation mp−1,q̃ for node
vp−1,q at each hop. We denote the source node at p − 1 hop as q̃ ∈ Q̃p,q, Q̃p,q = {q̃ : vp−1,q̃ ∈
Vp−1(gi), e(p−1,q̃)(p,q) ∈ E(gi)}. Although hp,q is calculated as node embedding, in reversed ego
graph g̃i, node only has one incoming edge. Thus, we can also interpret hq̃p,q as the edge embedding
as it combines source node’s hidden representation mp−1,q̃ and destination node features xp,q as
follows,

hq̃p,q = ReLU
(
WT
p

(
mp−1,q̃ + xip,q

))
, mp−1,q̃ =

1

|Q̃p−1,q̃|

∑
q′∈Q̃p−1q̃

hq
′

p−1,q̃ (13)

19

Algorithm 1: Pseudo code for training EGI

1 The GNN encoder Ψ and the GNN discriminator D, k-hop ego graph and features {gi, xi};
2 /* EGI-training starts */
3 while LEGI not converges do
4 Sample M ego-graphs {(g1, x1), ..., (gM , xM)} from empirical distribution P without

replacement, and obtained their positive and negative node embeddings zi, z′i through Ψ

zi = Ψ(gi, xi), z
′
i = Ψ(g′i, x

′
i),

/* Initialize positive and negative expectation in Eq. 1 in the main paper*/
5 Epos = 0, Eneg = 0
6 for p = 1 to k do
7 /* Compute JSD on edges at each hop*/
8 for e(p−1,q̃)(p,q) ∈ E(gi) do
9 generate source node embedding hq̃p,q in Eq. 13 ;

10 Epos = Epos + σ
(
UT · τ

(
WT [hq̃p,q||xip,q||zi]

))
11 Eneg = Eneg + σ

(
UT · τ

(
WT [hq̃p,q||xip,q||z′i]

))
12 end
13 end
14 /* Compute batch loss*/
15 LEGI = Eneg − Epos
16 /* Update Ψ, D */

17 θΨ
+←− −∇ΨLEGI, θD

+←− −∇DLEGI
18 end

When p = 1, every edge origins from the center node vi and m0,q′ is the center node feature xvi .
Note that we the elaborated aggregation rule is equivalent as layer-wise propagation rules (different
in-degree matrix for each hp,q) of EGI earlier in §A.1.

In every batch, we sample a set of ego-graphs and their node features {gi, xi}. During the forward
pass of encoder Ψ, it aggregates from neighbor nodes to the center node vi. Then, the discriminator
calculates the edge embedding in Eq. 13 from center node vi to its neighbors and make edge-level
predictions– fake or true. Besides training framework Figure 2 in the main paper, the algorithm EGI
is depicted in Algorithm 1.

We implement our method and all of the baselines using the same encoders Ψ: 2-layer GIN [60] for
synthetic and role identification experiments, 2-layer GraphSAGE [15] for the relation prediction
experiments. We set hidden dimension as 32 for both synthetic and role identification experiments,
For relation prediction fine-tuning task, we set hidden dimension as 256. We train EGI in a mini-batch
fashion since all the information for encoder and discriminators are within the k-hop ego-graph gi
and its features xi. Further, we conduct neighborhood sampling and set maximum neighbors as 10
to speed up the parrallel training. The space and time complexity of EGI is O(BNK), where B is
the batch size, N is the number of the neighbors and k is the number of hops of ego-graphs. Notice
that both the encoder Ψ and discriminator D propagate message on the k-hop ego-graphs, so the
extra computation cost of D compared with a common GNN module is a constant multiplier over the
original one. The scalability of EGI on million scale YAGO network is reported in section C.3.

B.1 Transfer Learning Settings

The goal of transfer learning is to train a model on a dataset or task, and use it on another. In our graph
learning setting, we focus on training the model on one graph and using it on another. In particular,
we focus our study on the setting of unsupervised-transfering, where the model learned on the source
graph is directly applied on the target graph without fine-tuning. We study this setting because it
allows us to directly measure the transferability of GNNs, which is not affected by the fine-tuning
process on the target graph. In other words, the fine-tuning process introduces significant uncertainty
to the analysis, because there is no guarantee on how much the fine-tuned GNN is different from the
pre-trained one. Depending on specific tasks and labels distributions on the two graphs, the fine-tuned

20

GNN might be quite similar to the pre-trained one, or it can be significantly different. It is then
very hard to analyze how much the pre-trained GNN itself is able to help. Another reason is about
efficiency. The fine-tuning of GNNs requires the same environment set-up and computation resource
as training GNNs from scratch, although it may take less training time eventually if pre-training is
effective. It is intriguing if this whole process can be eliminated when we guarantee the performance
with unsupervised-transfering.

In our experiments, we also study the setting of transfer learning with fine-tuning, particularly on the
real-world large-scale YAGO graphs. Since we aim to study the general transferability of GNNs not
bounded to specific tasks, we always pre-train GNNs with the unsupervised pre-training objective on
source graphs. Then we enable two types of fine-tuning. The first one is post-fine-tuning (L = Ls),
where the pre-trained GNNs are fine-tuned with the supervised task specific objective Ls on the
target graphs. The second on is joint-fine-tuning (L = Ls + Lu), where pre-training is the same, but
fine-tuning is done w.r.t. both the pre-training objective Lu and task specific objective Ls on target
graphs in a semi-supervised learning fashion. The unsupervised pre-training objective Lu of EGI is
Algorithm 1, while those of the compared algorithms are as defined in their papers. The supervised
fine-tuning objective Ls is the same as in the DistMult paper [61] for all algorithms.

C Additional Experiment Details

C.1 Synthetic Experiments

Data. As mentioned in the main paper, we use two traditional graph generation models for synthetic
data generation: (1) barabasi-albert graph [5] and (2) forest-fire graph [32]. We generate 40 graphs
each with 100 nodes with each model. We control the parameters of two models to generate two
graphs with different ego-graph distributions. Specifically, we set the number of attached edges as 2
for barabasi-albert model and set pforward = 0.4, pbackward = 0.3 for forest-fire model. In Figure 4a
and 4b, we show example graphs from two families in our datasets. They have the same size but
different appearance which leads to our study on the transferability gap ∆D(F, F) and ∆D(B, F) in
Table 1 in the main paper. The accuracy of this task defined as the percentage of nearest neighbors
for target node in the embedding space z = Ψ(·) that are structure-equivalent, i.e. #correct k-nn
neighbors / #ground truth equivalent nodes.

(a) Forest-fire graph example (b) Barabasi-albert graph example (c) structural label example

Figure 4: Visualizations of the graphs and labels we use in the synthetic experiments.

Results. The structural equivalence label is obtained by a 2-hop WL-test [58] on the ego-graphs. If
two nodes have the same 2-hop ego-graphs, they will be assigned the same label. In the example of
Figure 4c, the nodes labeled with same number (e.g. 2, 4) have the isomorphic 2-hop ego-graphs.
Note that this task is exactly solvable when node features and GNN architectures are powerful enough
like GIN [60]. In order to show the performance difference among different methods, we set the
length of one-hot node degree encoding to 3 (all nodes with degrees higher than 3 have the same
encoding). Here, we present the performance comparison with different length of degree encodings
(d) in Table 4. When the capacity of initial node features is high (d=10), the transfer learning gap
diminishes between different methods and different graphs because the structural equivalence problem
can be exactly solved by neighborhood aggregations. However, when the information in initial node

21

features is limited, the advantage of EGI in learning and transfering the graph structural information
is obvious. In Table 5, we also show the performance of different transferable and non-transferable
features discussed after Definition 4.3 in the main paper, i.e. node embedding [42] and random feature
vectors. The observation is similar with Table 1 in the main paper: the transferable feature can reflect
the performance gap between similar and dissimilar graphs while non-transferable features can not.

In both Table 4 and 8 here as well as Table 1 in the main paper, we report the structural difference
among graphs in the two sets (d̄) calculated w.r.t. the term ∆D(Ga, Gb) on the RHS of Theorem 4.1
in the main paper. This indicates that the Forest fire graphs are structurally similar to the other Forest
fire graphs, while less similar to the Barabasi graphs, as can be verified from Figure 4a and 4b. Our
bound in Theorem 4.1 then tells us that the GNNs (in particular, EGI) should be more transferable in
the F-F case than B-F. This is verified in Table 4 and 5 when using the transferable node features of
degree encoding with limited dimension (d=3) as well as DeepWalk embedding, as EGI pre-trained
on Forest fire graphs performs significantly better on Forest fire graphs than on Barabasi graphs (with
+0.094 and +0.057 differences, respectively).

Table 4: Synthetic experiments of identifying structural-equivalent nodes with different degree encoding
dimensions.

Method #dim degree encoding d = 3 # dim degree encoding d = 10 structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GCN (untrained) 0.478 0.478 / 0.940 0.940 /

0.752 0.883
GIN (untrained) 0.572 0.572 / 0.940 0.940 /
VGAE (GIN) 0.498 0.432 +0.066 0.939 0.937 0.002
DGI (GIN) 0.578 0.591 -0.013 0.939 0.941 -0.002
EGI (GIN) 0.710 0.616 +0.094 0.942 0.942 0

Table 5: Synthetic experiments of identifying structural-equivalent nodes with different transferable and non-
transferable features.

Method DeepWalk embedding random vectors structural difference
F-F B-F δ(acc.) F-F B-F δ(acc.) ∆D(F,F) ∆D(B,F)

GCN (untrained) 0.658 0.658 / 0.246 0.246 /

0.752 0.883
GIN (untrained) 0.663 0.663 / 0.520 0.520 /
GVAE (GIN) 0.713 0.659 +0.054 0.266 0.264 0.002
DGI (GIN) 0.640 0.613 +0.027 0.512 0.576 -0.064
EGI (GIN) 0.772 0.715 +0.057 0.507 0.485 +0.022

C.2 Real-world Role Identification Experiments

Data. We report the number of nodes, edges and classes for both airport and gene dataset. The
numbers for the Gene dataset are the aggregations of the total 52 gene networks in the dataset. For the
three airport networks, Figure 5 shows the power-law degree distribution on log-log scale. The class
labels are between 0 to 3 reflecting the level of the airport activities [45]. For the Gene dataset, we
matched the gene names in the TCGA dataset [68] to the list of transcription factors on wikipedia5.
75% of the genes are marked as 1 (transcription factors) and some gene graphs have extremely
imbalanced class distributions. So we conduct experiments on the relatively balanced gene graphs

5https://en.wikipedia.org/wiki/Transcription_factor

Table 6: Overall Dataset Statistics

Dataset # Nodes # Edges # Classes

Europe 399 5,995 4
USA 1,190 13,599 4
Brazil 131 1,074 4
Gene 9,228 57,029 2

22

https://en.wikipedia.org/wiki/Transcription_factor

of brain cancers (Figure 2 in the main paper). Both datasets do not have organic node attributes.
The role-based node labels are highly relevant to their local graph structures, but are not trivially
computable such as from node degrees.

(a) Europe airport log-log plot (b) USA airport log-log plot (c) Brazil airport log-log plot

Figure 5: Visualizations of power-law degree distribution on three airport dataset.

Results. As we can observe from Figure 5, the three airport graphs have quite different sizes and
structures (e.g., regarding edge density and connectivity pattern). Thus, the absolute classification
accuracy in both Table 2 in the main paper and Table 8 here varies across different graphs. However,
as we mention in the main paper, the structural difference we compute based on Eq. 5 in Theorem 3.1
is close among the Europe-USA and Europe-Brazil graph pairs (0.869 and 0.851), which leads to
close transferability of EGI from Europe to USA and Brazil. This indicates the effectiveness of our
view over essential structural information. We also provide detailed standard deviations of Table 2
(main paper) when using node degree as features.

Table 7: Results of role identification with direct-transfering on the Airport dataset (Table 2, main paper). The
performance reported (%) are the average over 100 runs. We set all node features same as non-transferable
features.

Method Europe (source) USA (target) Brazil (target)
node degree same feat. node degree same feat. node degree same feat.

features 52.81 20.59 55.67 20.22 67.11 19.63
GIN (untrained) 55.75 53.88 61.56 58.32 70.04 70.37
GVAE 53.90 21.12 55.51 22.39 66.33 17.70
DGI 57.75 22.13 54.90 21.76 67.93 18.78
MaskGNN 56.37 55.53 60.82 54.64 66.71 74.54
ContextPredGNN 52.69 49.95 50.38 54.75 62.11 70.66
Structural Pre-train 56.00 53.83 62.17 57.49 68.78 72.41
MVC 53.16 51.69 59.66 50.42 66.07 61.55
GMI 58.12 46.25 59.28 47.64 73.07 62.96
EGI (GIN) 59.15∗∗ 54.98 64.55∗∗ 57.40 73.15 70.00

Besides that, the results present in Table 8 are the accuracy of GNNs directly trained and evaluated on
each network without transfering. Therefore, only the Europe column has the same results as in Table
2 in the main paper, while the USA and Brazil columns can be regarded as providing an upper-bound
performance of GNN transfered from other graphs. As we can see, EGI gives the closest results from
Table 2 (main paper) to Table 8 here, demonstrating the its plausible transferability. The scores are so
close, showing a possibility to skip fine-tuning when the source and target graphs are similar enough.
Also note that, although the variances are pretty large (which is also observed in other works like
[45] since the networks are small), our t-tests have shown the improvements of EGI to be significant.

C.3 Real-world large-scale Relation Prediction Experiments

Data. As shown in Table 9, the source graph we use to pre-train GNNs is the full graph cleaned
from the YAGO dump [49], where we assume the relations among entities are unknown. The target

23

Table 8: Role identification that identifies structurally similar nodes on real-world networks. The performance
reported are the average and standard deviation for 10 runs. Our classification accuracy on three datasets all
passed the t-test (p<0.01) with the second best result in the table.

Method Airport [45]
Europe USA Brazil

node degree 52.81% ± 5.81% 55.67% ± 3.63% 67.11% ± 7.58%
GCN (random-init) 52.96% ± 4.51% 56.18% ± 3.82% 55.93% ± 1.38%
GIN (random-init) 55.75% ± 5.84% 62.77% ± 2.35% 69.26% ± 9.08%
GVAE (GIN) 53.90% ± 4.65% 58.99% ± 2.44% 55.56% ± 6.83%
DGI (GIN) 57.75% ± 4.47% 62.44% ± 4.46% 68.15% ± 6.24%
Mask-GIN 56.37% ± 5.07% 63.78% ± 2.79% 61.85% ± 10.74%
ContextPred-GIN 52.69% ± 6.12% 56.22% ± 4.05% 58.52% ± 10.18%
Structural Pre-train 56.00% ± 4.58% 62.29% ± 3.51% 71.48% ± 9.38 %
MVC 53.16% ± 4.07% 62.81 % ± 3.12% 67.78 % ± 4.79%
GMI 58.12 % ± 5.28% 63.36 % ± 2.92% 73.70% ± 4.21%
EGI (GIN) 59.15% ± 4.44% 65.88% ± 3.65% 74.07% ± 5.49%

Table 9: dataset statistics and running time of EGI

Dataset # Nodes # Edges # Relations # Train/Test Training time per epoch

YAGO-Source 579,721 2,191,464 / / 338 seconds
YAGO-Target 115,186 409,952 24 480/409,472 134 seconds

graph we use is a subgraph uniformed sampled from the same YAGO dump (we sample the nodes
and then include all edges among the sampled nodes). The similar ratio between number of nodes
and edges can be observed in Table 9. On the target graph, we also have the access to 24 different
relations [48] such as isAdvisedBy, isMarriedTo and so on. Such relation labels are still relevant
to the graph structures, but the relevance is lower compared with the structural role labels. We use
the 256-dim degree encoding as node features for pre-training on the source graph, then we use
the 128-dim positional embedding generated by LINE [51] for fine-tuning on the target graph, to
explicitly make the features differ across source and target graphs.

Results. In Section B.1, we introduced two different types of fine-tuning, i.e., post-fine-tuning and
joint-fine-tuning. For both types of fine-tuning, we add one feature encoder E before feeding it
into the GNNs for two purposes. First, the target graph fine-tuning feature usually has different
dimensions with the pre-training features, such as the node degree encoding we use. Second, the
semantics and distributions of fine-tuning features can be different from pre-training features. The
feature encoder aims to bridge the gap between feature difference in practice. The supervised loss
used in this experiment is the same as in DistMult [61]. In particular, the bilinear score function is
calculated as s(h, r, t) = zThMrzt, where Mr is a diagonal matrix for each relation r, zh and zt the
the embedding of GNN encoder Ψ for head and tail entities. The experiments were run on GTX1080
with 12G memories. We report the average training time per epoch of our algorithm in pre-training
and fine-tuning stage in Table 9 as well. The pre-training and fine-tuning takes about 40 epochs and 10
epochs to converge, respectively. In Table 9, we also present the per-epoch training time of EGI. EGI
takes about 338 seconds per epoch for optimizing the ego-graph information maximization objective
on YAGO-source. As we can see, fine-tuning also takes significant time compared to pre-training,
which strengthens our arguments about avoiding or reducing fine-tuning through structural analysis.
We implement all baselines within the same pipeline, and the running times are all in same scale.

C.4 Parameter study

In this section, we provide additional parameter analysis towards proposed EGI model - choices of k,
and efficiency study on EGI gap ∆D - sampling frequencies.

Performance of different size of ego-graphs. In our Theorem 3.1 and EGI algorithm (Eq. 1),
number of hops k determines the size of ego-graphs. In principle, k may affect the transferability of
EGI in two ways: (1) larger k may make the EGI model (both center node encoder Ψ and neighbor
node encoder Φ) more expressive (better precision) and the EGI gap ∆D more accurate (better

24

Table 10: Comparison of EGI with different k. Accuracy and EGI gap ∆D are reported.
Europe (source) USA (target) Brazil (target)

acc. acc. ∆D acc. ∆D

EGI (k=1) 58.25 60.08 0.385 60.74 0.335
EGI (k=2) 59.15 64.55 0.869 73.15 0.851
EGI (k=3) 57.63 64.12 0.912 72.22 0.909

predictiveness); (2) However, the GNN encoders may suffer from the over-smoothing problem and
the computations may suffer from more noises. Therefore, it is hard to determine the influence
of k without empirical analysis. As we can observe in , when k = 1 or k = 3, the classification
accuracy of the source graph is worse than k = 2, likely because the GNN encoder is either less
powerful or over-smoothed. As a result, k = 2 obtains the best transferability to both the USA and
Brazil networks. When k = 3, ∆D likely accounts for too subtle/noisy ego-graph differences and
may become less effective in predicting the transferability. Therefore, we choose k = 2 to conduct
experiments in main paper.

Precision of ∆D under different sampling frequencies. In Table 11, we present the estimated ∆D
versus sampling frequency for 10 runs on airport dataset. A theoretical study on its convergence
could be an interesting future direction. As we can observe, large sample frequency leads to more
accurate and robust estimation of ∆D. Between Europe and USA, although 100 pairs of ego-graphs
are only equivalent as 2.1% of the total pair-wise enumerations, the estimated ∆D is pretty close.

Table 11: EGI gap ∆D on airport dataset with different sampling frequencies.
Sampling frequency ∆D(Europe, USA) ∆D(Europe, Brazil)

100 pairs 0.872±0.039 0.854±0.042
1000 pairs 0.859±0.012 0.848±0.007
All pairs 0.869 ±0.000 0.851 ±0.000

25

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Mainly see Sections 3 and 4
(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.2
and Appendix §A

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix §A
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See Section 4
and supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to space limit, but we conducted significant tests on
all claimed improvements

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4
(b) Did you mention the license of the assets? [No] They are all public
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provide our models and code in the supplemental material
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

26

