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Abstract

The Neural Tangent Kernel (NTK) characterizes the behavior of infinitely-wide
neural networks trained under least squares loss by gradient descent. Recent works
also report that NTK regression can outperform finitely-wide neural networks
trained on small-scale datasets. However, the computational complexity of kernel
methods has limited its use in large-scale learning tasks. To accelerate learning
with NTK, we design a near input-sparsity time approximation algorithm for NTK,
by sketching the polynomial expansions of arc-cosine kernels: our sketch for the
convolutional counterpart of NTK (CNTK) can transform any image using a linear
runtime in the number of pixels. Furthermore, we prove a spectral approximation
guarantee for the NTK matrix, by combining random features (based on leverage
score sampling) of the arc-cosine kernels with a sketching algorithm. We bench-
mark our methods on various large-scale regression and classification tasks and
show that a linear regressor trained on our CNTK features matches the accuracy of
exact CNTK on CIFAR-10 dataset while achieving 150× speedup.

1 Introduction

Recent results have shown that over-parameterized Deep Neural Networks (DNNs), generalize
surprisingly well. In an effort to understand this phenomena, researchers have studied ultra-wide
DNNs and shown that in the infinite width limit, a fully connected DNN trained by gradient descent
under least-squares loss is equivalent to kernel regression with respect to the Neural Tangent Kernel
(NTK) [5, 11, 22, 28]. This connection has shed light on DNNs’ ability to generalize [10, 34] and
optimize (train) their parameters efficiently [3, 4, 16]. More recently, Arora et al. [5] proved an analo-
gous equivalence between convolutional DNNs with infinite number of channels and Convolutional
NTK (CNTK). Beyond the aforementioned theoretical purposes, several papers have explored the
algorithmic use of this kernel. Arora et al. [6] and Geifman et al. [19] showed that NTK based
kernel models can outperform trained DNNs (of finite width). Additionally, CNTK kernel regression
sets an impressive performance record on CIFAR-10 for kernel methods without trainable kernels [5].
The NTK has also been used in experimental design [39] and predicting training time [43].

However, the NTK-based approaches encounter the computational bottlenecks of kernel learning.
In particular, for a dataset of n images x1, x2, . . . xn ∈ Rd×d, only writing down the CNTK kernel
matrix requires Ω

(
d4 · n2

)
operations [5]. Running regression or PCA on the resulting kernel matrix

takes additional cubic time in n, which is infeasible in large-scale setups.
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There is a rich literature on kernel approximations for large-scale learning. One of the most popular
approaches is the random features method which works by randomly sampling the feature space of
the kernel function, originally due to the seminal work of Rahimi and Recht [37]. Another popular
approach which is developed in linear sketching literature [41], works by designing sketches that
can be efficiently applied to the feature space of a kernel without needing to explicitly form the
high dimensional feature space. This approach has been successful at designing efficient subspace
embeddings for the polynomial kernel [7, 1]. In this paper, we propose solutions for scaling the
NTK and CNTK by building on both of these kernel approximations techniques and designing
efficient feature maps that approximate the NTK/CNTK evaluation. Consequently, we can simply
transform the input dataset to these feature spaces, and then apply fast linear learning methods to
approximate the answer of the corresponding nonlinear kernel method efficiently. The performance
of such approximate methods is similar or sometimes better than the exact kernel methods due to
implicit regularization effects of the approximation algorithms [37, 38, 23].

1.1 Overview of Our Contributions

• One of our results is an efficient random features construction for the NTK. Our starting point
is the explicit NTK feature map suggested by Bietti and Mairal [9] based on tensor product of the
feature maps of arc-cosine kernels. We obtain our random features, by sampling the feature space of
arc-cosine kernels [12]. However, the naïve construction of the features would incur an exponential
cost in the depth of the NTK, due to the tensor product of features generated in consecutive layers.
We remedy this issue, by utilizing an efficient sketching algorithm for tensor products known as
TENSORSRHT [1] which can effectively approximate the tensor products of vectors while preserving
their inner products. We provide a rigorous error analysis of the proposed scheme in Theorem 2.

• Our next results are sketching methods for both NTK and CNTK using a runtime that is linearly
proportional to the sparsity of the input dataset (or number of pixels of images). Our methods rely
on the arc-cosine kernels’ feature space defined by their Taylor expansion. By careful truncation
of their Taylor series, we approximate the arc-cosine kernels with bounded-degree polynomial
kernels. Because the feature space of a polynomial kernel is the tensor product of its input space,
its dimensionality is exponential in the degree of the kernel. Fortunately, Ahle et al. [1] have
developed a linear sketch known as POLYSKETCH that can reduce the dimensionality of high-degree
tensor products very efficiently, therefore, we can sketch the resulting polynomial kernels using this
technique. We then combine the transformed features from consecutive layers by further sketching
their tensor products. In case of CNTK, we have an extra operation which sketches the direct sum
of the features of neighbouring pixels at each layer that precisely corresponds to the convolution
operation in CNNs. We carefully analyze the errors introduced by polynomial approximations and
various sketching steps in our algorithms and also bound their runtimes in Theorems 1 and 4.

• Furthermore, we improve the arc-cosine random features to spectrally approximate the entire
kernel matrix, which is advocated in recent literature for ensuring high approximation quality in
downstream tasks [8, 32]. Our construction is based on leverage score sampling, which entertains
better convergence bounds [8, 28, 29]. However, computing this distribution is as expensive as
solving the kernel methods exactly. We propose a simple distribution that tightly upper bounds
the leverage scores of arc-cosine kernels and for further efficiency, use Gibbs sampling to generate
random features from our proposed distribution. We provide our spectral approximation guarantee in
Theorem 3.

• Finally, we empirically benchmark our proposed methods on various classification/regression
tasks and demonstrate that our methods perform similar to or better than exact kernel method with
NTK and CNTK while running extremely faster. In particular, we classify CIFAR-10 dataset 150×
faster than exact CNTK and at the same time achieve higher test accuracy.

1.2 Related Works

There has been a long line of work on the correspondence between DNN and kernel machines
[26, 30, 35, 18, 42]. Furthermore, there has been many efforts in understanding a variety of NTK
properties including optimization [27, 3, 16, 44], generalization [10], loss surface [31], etc.

Novak et al. [35] tried accelerating CNTK computations via Monte Carlo methods by taking the
gradient of a randomly initialized CNN with respect to its weights. Although they do not theoretically
bound the number of required features, the fully-connected version of this method is analyzed in [5].
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Particularly, for the gradient features to approximate the NTK up to ε, the network width needs to be
Ω(L

6

ε4 log L
δ ), thus, transforming a single vector x ∈ Rd requires Ω(L

13

ε8 log2 L
δ + L6

ε4 log L
δ · nnz(x))

operations, which is slower than our Theorem 1 by a factor of L3/ε2. Furthermore, [5] shows that
the performance of these random gradients is worse than exact CNTK by a large margin, in practice.
More recently, [28] proposed leverage score sampling for the NTK, however, their work is primarily
theoretical and suggests no practical way of sampling the features. Another line of work on NTK
approximation is an explicit feature map construction via tensor product proposed by Bietti and
Mairal [9]. These explicit features can have infinite dimension in general and even if one uses a
finite-dimensional approximation to the features, the computational gain of random features will be
lost due to expensive tensor product operations.

A popular line of work on kernel approximation problem is based on the Fourier features method [37],
which works well for shift-invariant kernels and with some modifications can embed the Gaussian
kernel near optimally [8]. Other random feature constructions have been suggested for a variety of
kernels, e.g., arc-cosine kernels [12], polynomial kernels [36]. In linear sketching literature, Avron
et al. [7] proposed a subspace embedding for the polynomial kernel which was recently extended
to general dot product kernels [20]. The runtime of this method, while nearly linear in sparsity
of the input dataset, scales exponentially in kernel’s degree. Recently, Ahle et al. [1] improved
this exponential dependence to polynomial which enabled them to sketch high-degree polynomial
kernels and led to near-optimal embeddings for Gaussian kernel. In fact, this sketching technology
constitutes one of the main ingredients of our proposed methods. Additionally, combining sketching
with leverage score sampling can improve the runtime of the polynomial kernel embeddings [40].

1.3 Preliminaries: POLYSKETCH and TENSORSRHT Transforms

Notations. We use [n] := {1, . . . , n}. We denote the tensor (a.k.a. Kronecker) product by ⊗
and the element-wise (a.k.a. Hadamard) product of two vectors or matrices by �. Although tensor
products are multidimensional objects, we often associate x ⊗ y with a single dimensional vector
(x1y1, x2y1, . . . xmy1, x1y2, . . . xmy2, . . . xmyn). For shorthand, we use the notation x⊗p to denote
x⊗ . . .⊗ x︸ ︷︷ ︸

p terms

, the p-fold self-tensoring of x. Another related operation that we use is the direct sum

of vectors: x ⊕ y :=
[
x>, y>

]>
. We need notation for sub-tensors of a tensor. For instance, for

a 3-dimensional tensor Y ∈ Rm×n×d and every l ∈ [d], we denote by Y(:,:,l) the m × n matrix
that is defined as

[
Y(:,:,l)

]
i,j

:= Yi,j,l for i ∈ [m], j ∈ [n]. For square matrices A and B, we write
A � B if B −A is positive semi-definite. We also denote ReLU(x) = max(x, 0) and consider this
element-wise operation when the input is a matrix. We use nnz(x) to denote the number of nonzero
entries in x. Given a positive semidefinite matrix K and λ > 0, the statistical dimension of K with
λ is defined as sλ(K) := tr(K(K + λI)−1). For two functions f and g we denote their twofold
composition by f ◦ g, defined as f ◦ g(α) := f(g(α)).

The TENSORSRHT is a norm-preserving dimensionality reduction that can be applied to the tensor
product of two vectors very quickly [1]. This transformation is a generalization of the Subsampled
Randomized Hadamard Transform (SRHT) [2] and can be computed in near linear time using the FFT
algorithm. The POLYSKETCH extends the idea behind TENSORSRHT to high-degree tensor products
by recursively sketching pairs of vectors in a binary tree structure. This sketch preserves the norm of
vectors in Rdp with high probability and can be applied to tensor product vectors very quickly. The
following Lemma, summarizes Theorems 1.2 and 1.3 of [1] and is proved in Appendix B.

Lemma 1 (POLYSKETCH). For every integers p, d ≥ 1 and every ε, δ > 0, there exists a distribution
on random matrices Qp ∈ Rm×dp , called degree p POLYSKETCH such that (1) for some m =
O
(
p
ε2 log3 1

εδ

)
and any y ∈ Rdp , Pr

[
‖Qpy‖22 ∈ (1± ε)‖y‖22

]
≥ 1− δ; (2) for any x ∈ Rd, if e1 ∈

Rd is the standard basis vector along the first coordinate, the total time to compute Qp(x⊗(p−j) ⊗
e⊗j1 ) for all j = 0, 1, . . . , p is O

(
pm log2m+ min

{
p3/2

ε log 1
δ nnz(x), pd log d

})
; (3) for any

collection of vectors v1, . . . , vp ∈ Rd, the time to compute Qp (v1 ⊗ · · · ⊗ vp) is bounded by

O
(
pm logm+ p3/2

ε d log 1
δ

)
; (4) for any λ > 0 and any matrix A ∈ Rdp×n, where the statis-
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Figure 1: (Left) Normalized ReLU-NTK function K(L)
relu(·) for L = {2, 4, 8, 16, 32} and (Right) a

degree-8 polynomial approximation of ReLU-NTK with L = 3.

tical dimension of A>A is sλ, there exists some m = O
(
p4sλ
ε2 log3 n

εδ

)
such that,

Pr
[
(1− ε)

(
A>A + λI

)
� (QpA)>(QpA) + λI � (1 + ε)

(
A>A + λI

)]
≥ 1− δ. (1)

2 ReLU Neural Tangent Kernel

Arora et al. [5] showed how to exactly compute the NTK of a L-layer fully-connected network,
denoted by Θ

(L)
ntk(y, z), for any pair of vectors y, z ∈ Rd using a dynamic program in O(d+ L) time.

However, it is hard to gain insight into the structure of this kernel using that the dynamic program
expression which involves recursive applications of nontrivial expectations. Fortunately, for the
important case of ReLU activation this kernel takes an extremely nice and highly structured form.
The NTK in this case can be fully characterized by a univariate function K(L)

relu : [−1, 1]→ R that
we refer to as ReLU-NTK, which is the composition of the arc-cosine kernels [12] and was recently
derived in [9]. Exploiting this special structure is the key to designing efficient sketching methods
and random features for this kernel.
Definition 1 (ReLU-NTK function). For every integer L > 0, the L-layer ReLU-NTK function
K

(L)
relu : [−1, 1]→ R is defined via following procedure, for every α ∈ [−1, 1]:

1. Let κ0(α) and κ1(α) be 0th and 1st order arc-cosine kernels [12] defined as follows,

κ0(α) :=
1

π
(π − arccos (α)) , and κ1(α) :=

1

π

(√
1− α2 + α · (π − arccos (α))

)
. (2)

2. Let Σ
(0)
relu(α) := α and for ` = 1, 2, . . . L, define Σ

(`)
relu(α) and Σ̇

(`)
relu(α) as follows,

Σ
(`)
relu(α) := κ1 ◦ κ1 ◦ · · · ◦ κ1︸ ︷︷ ︸

`-fold self composition

(α), and Σ̇
(`)
relu(α) := κ0

(
Σ

(`−1)
relu (α)

)
. (3)

3. Let K(0)
relu(α) := Σ

(0)
relu(α) = α and for ` = 1, 2, . . . L, define K(`)

relu(α) recursively as follows,

K
(`)
relu(α) := K

(`−1)
relu (α) · Σ̇(`)

relu(α) + Σ
(`)
relu(α). (4)

The connection between ReLU-NTK function K(L)
relu and the NTK kernel Θ

(L)
ntk is formalized bellow,

Θ
(L)
ntk(y, z) ≡ ‖y‖2‖z‖2 ·K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
, for any y, z ∈ Rd. (5)

This shows that the NTK is a normalized dot-product kernel which can be fully characterized by
K

(L)
relu : [−1, 1] → R, plotted in Fig. 1. As shown in Fig. 1, this function is smooth and can be

tightly approximated with a low-degree polynomial. It is evident that for larger values of L, K(L)
relu(·)

converges to a knee shape, i.e., it has a nearly constant value of roughly 0.3(L+ 1) on the interval
[−1, 1−O(L−1)], and on the interval [1−O(L−1), 1] its value sharply increases to L+ 1 at α = 1.
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Algorithm 1 NTKSKETCH for fully-connected ReLU networks

1: input: vector x ∈ Rd, network depth L, error and failure parameters ε, δ > 0

2: Choose integers s = Õ
(
L2

ε2

)
, n1 = Õ

(
L4

ε4

)
, r = Õ

(
L6

ε4

)
, m = Õ

(
L8

ε
16
3

)
, and s∗ =

O
(

1
ε2 log 1

δ

)
appropriately†

3: For p =
⌈
2L2/ε

4
3

⌉
and p′ =

⌈
9L2/ε2

⌉
, polynomials P (p)

relu(·) and Ṗ (p′)
relu(·) are defined as,

P
(p)
relu(α) ≡

2p+2∑
j=0

cj · αj :=
1

π
+
α

2
+

1

π

p∑
i=0

(2i)! · α2i+2

22i(i!)2(2i+ 1)(2i+ 2)
,

Ṗ
(p′)
relu(α) ≡

2p′+1∑
j=0

bj · αj :=
1

2
+

1

π

p′∑
i=0

(2i)!

22i(i!)2(2i+ 1)
· α2i+1.

(6)

4: φ(0)(x)← ‖x‖−1
2 ·Q1 · x, where Q1 ∈ Rr×d is a degree-1 POLYSKETCH as per Lemma 1

5: ψ(0)(x)← V · φ(0)(x), where V ∈ Rs×r is an instance of SRHT [2]
6: for ` = 1 to L do
7: Let Q2p+2 ∈ Rm×r2p+2

be a degree-2p+ 2 POLYSKETCH. Also, let T ∈ Rr×(2p+3)·m be an
instance of SRHT. For every l = 0, 1, . . . , 2p+ 2, compute:

Z
(`)
l (x)← Q2p+2

([
φ(`−1)(x)

]⊗l
⊗ e⊗2p+2−l

1

)
, φ(`)(x)← T ·

2p+2⊕
l=0

√
clZ

(`)
l (x) (7)

8: Let Q2p′+1 ∈ Rn1×r2p
′+1

be a degree-2p′ + 1 POLYSKETCH. Also, let W ∈ Rs×(2p′+2)·n1

be an instance of SRHT. For every l = 0, 1, . . . , 2p′ + 1, compute:

Y
(`)
l (x)← Q2p′+1

([
φ(`−1)(x)

]⊗l
⊗ e⊗2p′+1−l

1

)
, φ̇(`)(x)←W ·

2p′+1⊕
l=0

√
blY

(`)
l (x) (8)

9: Let Q2 ∈ Rs×s2 be a degree-2 POLYSKETCH. Also, let R ∈ Rs×(s+r) be an SRHT. Compute:

ψ(`)(x)← R ·
(
Q2
(
ψ(`−1)(x)⊗ φ̇(`)(x)

)
⊕ φ(`)(x)

)
. (9)

10: Let G ∈ Rs∗×s be a matrix of i.i.d. entries with distribution N (0, 1
s∗ ). Compute:

Ψ
(L)
ntk(x)← ‖x‖2 ·G · ψ(L)(x). (10)

11: return Ψ
(L)
ntk(x)

3 Sketching and Random Features for NTK

The main results of this section are efficient oblivious sketching as well as random features for
the fully-connected NTK. As shown in Definition 1 and Eq. (5), the NTK Θ

(L)
ntk , is constructed by

recursive composition of arc-cosine kernels κ1(·) and κ0(·). So, to design efficient sketches for the
NTK we crucially need efficient methods for approximating these functions. Generally, there are two
main approaches to approximating these functions; one is random features sampling and the other is
truncated Taylor series expansion coupled with fast sketching. We design algorithms by exploiting
both of these techniques.

3.1 NTK Sketch

Our main tool is approximating the arc-cosine kernels with low-degree polynomials, and then applying
POLYSKETCH to the resulting polynomial kernels. The features for multi-layer NTK are the recursive
tensor product of arc-cosine sketches at consecutive layers, which in turn can be sketched efficiently
using POLYSKETCH. We present our oblivious sketch in Algorithm 1.
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Now we present our main theorem on NTKSKETCH algorithm as follows.

Theorem 1. For every integers d ≥ 1 and L ≥ 2, and any ε, δ > 0, let Θ
(L)
ntk : Rd × Rd → R be the

L-layer NTK with ReLU activation as per Definition 1 and Eq. (5). Then there exists a randomized
map Ψ

(L)
ntk : Rd → Rs∗ for some s∗ = O

(
1
ε2 log 1

δ

)
such that the following invariants hold,

1. For any vectors y, z ∈ Rd: Pr
[∣∣∣〈Ψ

(L)
ntk(y),Ψ

(L)
ntk(z)

〉
−Θ

(L)
ntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
ntk(y, z)

]
≥ 1− δ.

2. For every vecor x ∈ Rd, the time to compute Ψ
(L)
ntk(x) is O

(
L11

ε6.7 log3 L
εδ + L3

ε2 log L
εδ · nnz(x)

)
.

For a proof, see Appendix C. One can observe that the runtime of our NTKSKETCH is faster than the
gradient features of an ultra-wide random DNN, studied by Arora et al. [5], by a factor of L3/ε2.

3.2 NTK Random Features

The main difference between our random features construction and NTKSKETCH is the use of
random features for approximating arc-cosine kernels κ0 and κ1 in Eq. (2). For any x ∈ Rd, we
denote

Φ0(x) :=

√
2

m0
Step

(
[w1, . . . , wm0 ]> x

)
, Φ1(x) :=

√
2

m1
ReLU

([
w′1, . . . , w

′
m1

]>
x
)
, (11)

where w1, . . . , wm0 , w
′
1, . . . , w

′
m1
∈ Rd are i.i.d. samples fromN (0, Id). Cho and Saul [12] showed

that E[〈Φ0(y),Φ0(z)〉] = κ0

(
〈y,z〉
‖y‖2‖z‖2

)
and E[〈Φ1(y),Φ1(z)〉] = ‖y‖2‖z‖2 · κ1

(
〈y,z〉
‖y‖2‖z‖2

)
. The

feature map for multi-layer NTK can be obtained by recursive tensoring of random feature maps
for arc-cosine kernels at each layer of the network. However, one major drawback of such explicit
tensoring is that the number of features, and thus the runtime, will be exponential in depth L. In
order to make the feature map more compact, we utilize a degree-2 POLYSKETCH Q2 to reduce
the dimension of the tensor products at each layer and get rid of exponential dependence on L. We
present the performance guarantee of our random features, defined in Algorithm 2, in Theorem 2.

Theorem 2. Given y, z ∈ Rd and L ≥ 2, let Θ
(L)
ntk the L-layer fully-connected ReLU NTK. For

ε, δ > 0, there exist m0 = O
(
L2

ε2 log L
δ

)
,m1 = O

(
L6

ε4 log L
δ

)
,ms = O

(
L2

ε2 log3 L
εδ

)
, such that,

Pr
[∣∣∣〈Ψ

(L)
rf (y),Ψ

(L)
rf (z)

〉
−Θ

(L)
ntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
ntk(y, z)

]
≥ 1− δ, (12)

where Ψ
(L)
rf (y),Ψ

(L)
rf (z) ∈ Rm1+ms are the outputs of Algorithm 2, using the same randomness.

The proof of Theorem 2 is provided in Appendix D. Arora et al. [5] proved that the gradient of
randomly initialized ReLU network with finite width can approximate the NTK, but their feature di-
mension should be Ω

(
L13

ε8 log2 L
δ + L6

ε4 · log L
δ · d

)
which is larger than ours by a factor of L

7

ε4 log L
δ .

In Section 5, we also empirically show that Algorithm 2 requires far fewer features than random
gradients.

3.3 Spectral Approximation for NTK via Leverage Scores Sampling

Although the above NTK approximations can estimate the kernel function itself, it is still questionable
how it affects the performance of downstream tasks. Several works on kernel approximation adopt
spectral approximation bound with regularization λ > 0 and approximation factor ε > 0, that is,

(1− ε)(K(L)
ntk + λI) � (Ψ(L))>Ψ(L) + λI � (1 + ε)(K

(L)
ntk + λI), (13)

where Ψ(L) :=
[
Ψ(L)(x1), . . . ,Ψ(L)(xn)

]
and [K

(L)
ntk ]i,j = Θ

(L)
ntk(xi, xj). The spectral bound

can provide rigorous guarantees for downstream applications including kernel ridge regression [8],
clustering and PCA [32]. We first provide spectral bounds for arc-cosine kernels, then we present our
spectral approximation bound for two-layer ReLU networks, which is the first in the literature.

†Õ(·) suppresses poly(log L
εδ

) factors.
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Algorithm 2 Random Features for ReLU NTK via POLYSKETCH

1: input: vector x ∈ Rd, network depth L, feature dimensions m0, m1, and ms

2: ψ(0)
rf (x)← x/‖x‖2, φ(0)

rf (x)← x/‖x‖2
3: for ` = 1 to L do
4: φ̇

(`)
rf (x)← Φ0

(
φ

(`−1)
rf (x)

)
, where Φ0 is defines as per Eq. (11) with m0 features

5: φ
(`)
rf (x)← Φ1

(
φ

(`−1)
rf (x)

)
, where Φ1 is defines as per Eq. (11) with m1 features

6: Draw a degree-2 POLYSKETCH Q2 that maps to Rms and compute:

ψ
(`)
rf (x)← φ

(`)
rf (x)⊕Q2 ·

(
φ̇

(`)
rf (x)⊗ ψ(`−1)

rf (x)
)

7: return Ψ
(L)
rf (x)← ‖x‖2 · ψ(L)

rf (x)

To guarantee that the arc-cosine random features in Eq. (11) provide spectral approximation, we will
use the leverage score sampling framework of [8, 28]. We reduce the variance of random features
by performing importance sampling. The challenge is to find a proper modified distribution that
certainly reduces the variance. It turns out that the original 0th order arc-cosine random features
has a small enough variance. More precisely, let K0 be the 0th order arc-cosine kernel matrix, i.e.,
[K0]i,j = κ0

(
〈xi,xj〉
‖xi‖2‖xj‖2

)
, and Φ0 := [Φ0(x1), . . . ,Φ0(xn)], where Φ0(x) is defined in Eq. (11).

If the number of features m0 ≥ 8
3
n
λε2 log

(
16sλ
δ

)
, then

Pr
[
(1− ε)(K0 + λI) � Φ>0 Φ0 + λI � (1 + ε)(K0 + λI)

]
≥ 1− δ. (14)

Next, we consider spectral approximation of the 1st order arc-cosine kernel. Unlike the previous
case, modifications of the sampling distribution are required. Specifically, for any x ∈ Rd, let

Φ̃1(x) =

√
2d

m1
ReLU

([
w1

‖w1‖2
, . . . ,

wm1

‖wm1‖2

]>
x

)
, (15)

where w1, . . . , wm1 ∈ Rd are i.i.d. samples from p(w) := 1
(2π)d/2d

‖w‖22 exp
(
− 1

2 ‖w‖
2
2

)
. For

this modified features, let X ∈ Rd×n be the dataset, K1 be the 1st order arc-cosine kernel matrix,
i.e., [K1]i,j = ‖xi‖2‖xj‖2 · κ1

(
〈xi,xj〉
‖xi‖2‖xj‖2

)
, and Φ1 :=

[
Φ̃1(x1), . . . , Φ̃1(xn)

]
. If the number of

features m1 ≥ 8
3
d
ε2 ·min

{
rank(X)2,

‖X‖22
λ

}
log
(

16sλ
δ

)
, then

Pr
[
(1− ε)(K1 + λI) � Φ>1 Φ1 + λI � (1 + ε)(K1 + λI)

]
≥ 1− δ. (16)

The details are provided in Appendix E.1 and Appendix E.2. We are now ready to state our spectral
approximation bound for our modified random features.

Theorem 3. Given a dataset X ∈ Rd×n with ‖X(:,i)‖2 ≤ 1 for every i ∈ [n], let Kntk,K0,K1

be kernel matrices for two-layer ReLU NTK and arc-cosine kernels of 0th and 1st order, respec-
tively. For any λ > 0, suppose sλ is the statistical dimension of Kntk. Modify Algorithm 2 by
replacing Φ1(·) in line 5 with Φ̃1(·) defined in Eq. (15). For any ε, δ > 0, let Ψ

(L)
rf ∈ R(m1+ms)×n

be the output matrix of this algorithm with L = 1. There exist m0 = O
(
n
ε2λ log sλ

δ

)
,m1 =

O
(
d
ε2 ·min

{
rank(X)2,

‖X‖22
λ

}
log sλ

δ

)
,ms = O

(
1
ε2 · n

1+λ log3 n
εδ

)
such that,

Pr

[
(1− ε) (Kntk + λI) �

(
Ψ

(L)
rf

)>
Ψ

(L)
rf + λI � (1 + ε) (Kntk + λI)

]
≥ 1− δ. (17)

For a proof see Appendix E.3. To generalize the current proof technique to deeper networks, one
needs a monotone property of arc-cosine kernels, i.e., κ1(X) � κ1(Y ) for X � Y . However, this
property does not hold in general and we leave the extension to deeper networks to future work.

7



103 104 105

feature dimension

0.70

0.75

0.80

0.85

0.90

0.95

te
st

ac
cu

ra
cy

GradRF

NTKSketch

NTKRF

Exact NTK

100 101 102

wall-clock time (sec)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

te
st

ac
cu

ra
cy

GradRF

NTKSketch

NTKRF

Exact NTK

(a) MNIST with NTK

102 103 104

feature dimension

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

ac
cu

ra
cy

GradRF

CNTKSketch

Exact CNTK∗

102 103

running time (sec)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

ac
cu

ra
cy

GradRF

CNTKSketch

(b) CIFAR-10 with CNTK
Figure 2: Test accuracy of: (a) approximate NTK methods (GRADRF, NTKSKETCH and NTKRF)
on MNIST and (b) approximate CNTK methods (GRADRF and CNTKSKETCH) on CIFAR-10.

4 Sketching Convolutional Neural Tangent Kernel

In this section, we design and analyze an efficient sketching method for the Convolutional Neural
Tangent Kernel (CNTK). We focus mainly on CNTK with Global Average Pooling (GAP), which
exhibits superior empirical performance compared to vanilla CNTK with no pooling [5], however, our
techniques can be applied to the vanilla version, as well. Using the DP of Arora et al. [5], the number
of operations needed for exact computation of the depth-L CNTK value Θ

(L)
cntk(y, z) for images

y, z ∈ Rd×d is Ω
(
d4 · L

)
, which is extremely slow particularly due to its quadratic dependence on

the number of pixels of input images d2. Fortunately, we are able to show that the CNTK for the
important case of ReLU activation is a highly structured object that can be fully characterized in
terms of tensoring and composition of arc-cosine kernels, and exploiting this special structure is key
to designing efficient sketching methods for the CNTK. Unlike the fully-connected NTK, CNTK
is not a simple dot-product kernel function like Eq. (5). The key reason being that CNTK works
by partitioning its input images into patches and locally transforming the patches at each layer, as
opposed to the NTK which operates on the entire input vectors. We present our derivation of the
ReLU CNTK function and its main properties in Appendix F.

Similar to NTKSKETCH our method relies on approximating the arc-cosine kernels with low-degree
polynomials via Taylor expansion, and then applying POLYSKETCH to the resulting polynomial
kernels. Our sketch computes the features for each pixel of the input image, by tensor product of arc-
cosine sketches at consecutive layers, which in turn can be sketched efficiently using POLYSKETCH .
Additionally, the features of pixels that lie in the same patch get locally combined at each layer via
direct sum operation. This precisely corresponds to the convolution operation in neural networks.
We present our CNTKSKETCH algorithm in Appendix G and give its performance guarantee in the
following theorem.

Theorem 4. For every positive integers d1, d2, c and L ≥ 2, and every ε, δ > 0, if we let Θ
(L)
cntk :

Rd1×d2×c × Rd1×d2×c → R be the L-layer CNTK with ReLU activation and GAP given in [5], then
there exist a randomized map Ψ

(L)
cntk : Rd1×d2×c → Rs∗ for some s∗ = O

(
1
ε2 log 1

δ

)
such that:

1. For any images y, z ∈ Rd1×d2×c:

Pr
[∣∣∣〈Ψ

(L)
cntk(y),Ψ

(L)
cntk(z)

〉
−Θ

(L)
cntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
cntk(y, z)

]
≥ 1− δ.

2. For every image x ∈ Rd1×d2×c, time to compute Ψ
(L)
cntk(x) is O

(
L11

ε6.7 · (d1d2) · log3 d1d2L
εδ

)
.

The proof is in Appendix G. Runtime of our CNTKSKETCH is only linear in the number of image
pixels d1d2, which is in stark contrast to quadratic scaling of the exact CNTK computation [5].

5 Experiments

In this section, we empirically show that running least squares regression on the features generated by
our methods is extremely fast and effective for learning with NTK and CNTK kernel machines. We
run experiments on a system with an Intel E5-2630 CPU with 256 GB RAM and a single GeForce
RTX 2080 GPUs with 12 GB RAM. Codes are available at https://github.com/insuhan/
ntk-sketch-rf.
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Table 1: Test accuracy and runtime to solve CNTK regression and its approximations on CIFAR-10.
(*) means that the result is copied from Arora et al. [5].

CNTKSKETCH (ours) GRADRF Exact CNTK CNN

Feature dimension 4,096 8,192 16,384 9,328 17,040 42,816

Test accuracy (%) 67.58 70.46 72.06 62.49 62.57 65.21 70.47∗ 63.81∗
Time (s) 780 1,870 5,160 300 360 580 > 1,000,000

Table 2: MSE and runtime on large-scale UCI datasets. We measure the entire time to solve kernel
ridge regression. (−) means Out-of-Memory error.

MillionSongs WorkLoads CT Protein

# of data points (n) 467,315 179,585 53,500 39,617

MSE Time (s) MSE Time (s) MSE Time (s) MSE Time (s)

RBF Kernel − − − − 35.37 59.23 18.96 46.45
RFF 109.50 231 4.034× 104 53.0 48.20 15.2 19.72 12.1

NTK − − − − 30.52 72.10 20.24 76.93
NTKRF (ours) 94.27 95 3.554× 104 35.7 46.91 2.12 20.51 4.3
NTKSKETCH (ours) 92.83 36 3.538× 104 27.5 46.52 18.8 21.19 14.91

5.1 NTK Classification on MNIST

We first benchmark our proposed NTK approximation algorithms on MNIST [25] dataset and compare
against gradient-based NTK random features [5] (GRADRF) as a baseline method. To apply our
methods and GRADRF into classification task, we encode class labels into one-hot vectors with
zero-mean and solve the ridge regression problem. We search the ridge parameter with a random
subset of training set and choose the one that achieves the best validation accuracy. We use the ReLU
network with depth L = 1. In Fig. 2a, we observe that our random features (NTKRF ) achieves the
best test accuracy. The NTKSKETCH narrowly follows the performance of NTKRF and the Grad-RF
is the worst method which confirms the observations of Arora et al. [5], i.e., gradient of a finite width
network degrades practical performances.

Remark 1 (Optimizing NTKSKETCH for Deeper Nets). As shown in Eq. (5), the NTK is a normal-
ized dot-product kernel characterized by the functionK(L)

relu(α). This function can be easily computed
using O(L) operations at any desired α ∈ [−1, 1], therefore, we can efficiently fit a polynomial to
this function using numerical methods (for instance, it is shown in Fig. 1 that a degree-8 polynomial
can tightly approximate the depth-3 ReLU-NTK function K(3)

relu). Then, we can efficiently sketch the
resulting polynomial kernel using POLYSKETCH , as was previously done for Gaussian and general
dot-product kernels [1, 40]. Therefore, we can accelerate our NTKSKETCH for deeper networks
(L > 2), using this heuristic.

5.2 CNTK Classification on CIFAR-10

Next we test our CNTKSKETCH on CIFAR-10 dataset [24]. We choose a convolutional network
of depth L = 3 and compare CNTKSKETCH and GRADRF for various feature dimensions. We
borrow results of both CNTK and CNN from Arora et al. [5]. The results are provided in Fig. 2b
and Table 1. Somewhat surprisingly, CNTKSKETCH even performs better than the exact CNTK
regression by achieving 72.06% when feature dimension is set to 16,384. The likely explanation is
that CNTKSKETCH takes advantages of implicit regularization effects of approximate feature map
and powerful expressiveness of the CNTK. Moreover, computing the CNTK matrix takes over 250
hours (12 days) under our setting which is at least 150× slower than our CNTKSKETCH.

5.3 Regression on Large-scale UCI Datasets
We also demonstrate the computational efficiency of our NTKSKETCH and NTKRF using 4 large-
scale UCI regression datasets [17] by comparing against exact NTK, RBF as well as Random Fourier
Features (RFF). For our methods and RFF, we fix the output dimension to m = 8,192 for all datasets.
In Table 2, we report the runtime to compute feature map or kernel matrix and evaluate the averaged
mean squared errors (MSE) on the test set via 4-fold cross validation. The exact kernel methods face
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Out-of-Memory error on larger datasets. The proposed NTK approximations are significantly faster
than the exact NTK, e.g., NTKRF shows up to 30× speedup under CT dataset. We also verify that,
except for Protein dataset, our methods outperform RFF.

6 Discussion and Conclusion
In this work, we propose efficient low-rank feature maps for the NTK and CNTK kernel matrices
based on both sketching and random features. Computing NTK have been raised severe computational
problems when they apply to practical applications. Our methods runs remarkably faster than the
NTK with performance improvement.

Potential negative societal impact. This is a technical work proposing provable algorithms which
stand alone independently of data, e.g., do not learn any private information of input data. We think
there is no particular potential negative societal impact due to our work.

Limitations. This paper only considers fully-connected and convolutional neural networks, and our
ideas are not directly applicable to scale up NTK of other deep networks, e.g., transformers [21].
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A ReLU-NTK Expression

Arora et al. [5] showed how to exactly compute the L-layer NTK with activation σ : R→ R using
the following dynamic program (DP):

1. For every y, z ∈ Rd, let Σ(0)(y, z) := 〈y, z〉 and for every layer h = 1, 2, . . . L, recursively define
the covariance Σ(h) : Rd × Rd → R as:

Λ(h)(y, z) :=

(
Σ(h−1)(y, y) Σ(h−1)(y, z)
Σ(h−1)(z, y) Σ(h−1)(z, z)

)
,

Σ(h)(y, z) :=
E(u,v)∼N(0,Λ(h)(y,z)) [σ(u) · σ(v)]

Ex∼N (0,1) [|σ(x)|2]
.

(18)

2. For h = 1, 2, . . . L, define the derivative covariance as,

Σ̇(h)(y, z) :=
E(u,v)∼N(0,Λ(h)(y,z)) [σ̇(u) · σ̇(v)]

Ex∼N (0,1) [|σ(x)|2]
. (19)

3. Let Θ
(0)
ntk(y, z) := Σ(0)(y, z) and for every integer L ≥ 1, the depth-L NTK expression is defined

recursively as:
Θ

(L)
ntk(y, z) := Θ

(L−1)
ntk (y, z) · Σ̇(L)(y, z) + Σ(L)(y, z). (20)

While using this DP, one can compute the kernel value Θ
(L)
ntk(y, z) for any pair of vectors y, z ∈ Rd

using O(d + L) operations, it is hard to gain insight into the structure of this kernel using the
expression above. In particular, the NTK expression involves recursive computation of nontrivial
expectations which makes it is unclear whether there exist efficient sketching solutions for this kernel
in its current form. However, we show that for the important case of ReLU activation, this kernel
takes an extremely nice and highly structured form. In fact, the NTK can be fully characterized by a
univariate function K(L)

relu : [−1, 1]→ R, and exploiting this special structure is the key to designing
efficient sketching methods for this kernel.

Now we proceed to prove Eq. (5), that is,

Θ
(L)
ntk(y, z) ≡ ‖y‖2‖z‖2 ·K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
, for any y, z ∈ Rd. (5)

First note that the main component of the DP given in Eq. (18), Eq. (19), and Eq. (20) is the Activation
Covariances:

Ew∼N (0,Id)

[
σ(w>y) · σ(w>z)

]
, and Ew∼N (0,Id)

[
σ̇(w>y) · σ̇(w>z)

]
for every y, z ∈ Rd.

It is worth noting that the above activation covariance functions are positive definite and hence
they both define valid kernel functions in Rd × Rd. The connection between the ReLU activation
covariance functions and arc-cosine kernel functions defined in Eq. (2) of Definition 1 is proved in
Cho and Saul [12]. We restate this result as follows,

Ew∼N (0,Id)

[
ReLU(w>y) · ReLU(w>z)

]
=
‖y‖2‖z‖2

2
· κ1

( 〈y, z〉
‖y‖2‖z‖2

)
Ew∼N (0,Id)

[
Step(w>y) · Step(w>z)

]
=

1

2
· κ0

( 〈y, z〉
‖y‖2‖z‖2

)
.

(21)

Proof of Eq. (5): Consider the NTK expression given in Eq. (18), Eq. (19), and Eq. (20). We first
prove by induction on h = 0, 1, 2, . . . L that the covariance function Σ(h)(y, z) defined in Eq. (18)
satisfies:

Σ(h)(y, z) = ‖y‖2‖z‖2 · Σ(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
.

The base of induction is trivial for h = 0 due to Σ(0)(y, z) = 〈y, z〉 = ‖y‖2‖z‖2 ·Σ(0)
relu

(
〈y,z〉
‖y‖2‖z‖2

)
.
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To prove the inductive step, suppose that the inductive hypothesis holds for h− 1, i.e.,

Σ(h−1)(y, z) = ‖y‖2‖z‖2 · Σ(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
The 2 × 2 covariance matrix Λ(h)(y, z), defined in Eq. (18), can be decomposed as Λ(h)(y, z) =(
f>

g>

)
· (f g), where f, g ∈ R2. Now note that ‖f‖22 = Σ(h−1)(y, y), hence, by inductive

hypothesis, we have, ‖f‖22 = ‖y‖22 · Σ(h−1)
relu

(
〈y,y〉
‖y‖22

)
= ‖y‖22 · Σ(h−1)

relu (1) = ‖y‖22.

Using a similar argument we have ‖g‖22 = ‖z‖22. Therefore, by Eq. (21), we can write

Σ(h)(y, z) =
1

Ex∼N (0,1) [|σ(x)|2]
· Ew∼N (0,I2)

[
σ(w>f) · σ(w>g)

]
=

2

κ1(1)
· Ew∼N (0,I2)

[
σ(w>f) · σ(w>g)

]
= ‖f‖2‖g‖2 · κ1

( 〈f, g〉
‖f‖2‖g‖2

)
= ‖y‖2‖z‖2 · κ1

( 〈f, g〉
‖y‖2‖z‖2

)
.

Since we assumed that Λ(h)(y, z) =

(
f>

g>

)
· (f g), we have 〈f, g〉 = Σ(h−1)(y, z). By inductive

hypothesis along with Eq. (3), we find that

Σ(h)(y, z) = ‖y‖2‖z‖2 · κ1

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))
= ‖y‖2‖z‖2 · Σ(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
,

which completes the induction and proves that for every h = 0, 1, . . . , L,

Σ(h)(y, z) = ‖y‖2‖z‖2 · Σ(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
. (22)

For obtaining the final NTK expression we also need to simplify the derivative covariance function
defined in Eq. (19). Recall that we proved before, the covariance matrix Λ(h)(y, z) can be decomposed

as Λ(h)(y, z) =

(
f>

g>

)
· (f g), where f, g ∈ R2 with ‖f‖2 = ‖y‖2 and ‖g‖2 = ‖z‖2. Therefore,

by Eq. (21), we can write

Σ̇(h)(y, z) =
1

Ex∼N (0,1) [|σ(x)|2]
· Ew∼N (0,I2)

[
σ̇(w>f) · σ̇(w>g)

]
=

2

κ1(1)
· Ew∼N (0,I2)

[
σ̇(w>f) · σ̇(w>g)

]
= κ0

( 〈f, g〉
‖y‖2‖z‖2

)
.

Since we assumed that Λ(h)(y, z) =

(
f>

g>

)
· (f g), 〈f, g〉 = Σ(h−1)(y, z) = ‖y‖2‖z‖2 ·

Σ
(h−1)
relu

(
〈y,z〉
‖y‖2‖z‖2

)
. Therefore, by Eq. (3), for every h ∈ {1, 2, . . . L},

Σ̇(h)(y, z) = κ0

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))
= Σ̇

(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
. (23)

Now we prove by induction on integer L that the NTK with L layers and ReLU activation given in
Eq. (20) satisfies

Θ
(L)
ntk(y, z) = ‖y‖2‖z‖2 ·K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
.

The base of induction, trivially holds because, by Eq. (22):

Θ
(0)
ntk(y, z) = Σ(0)(y, z) = ‖y‖2‖z‖2 ·K(0)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
.
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To prove the inductive step, suppose that the inducive hypothesis holds for L − 1, that is
Θ

(L−1)
ntk (y, z) = ‖y‖2‖z‖2 ·K(L−1)

relu

(
〈y,z〉
‖y‖2‖z‖2

)
. Now using the recursive definition of Θ

(L)
ntk(y, z)

given in Eq. (20) along with Eq. (22) and Eq. (23) we can write,

Θ
(L)
ntk(y, z) = Θ

(L−1)
ntk (y, z) · Σ̇(L)(y, z) + Σ(L)(y, z)

= ‖y‖2‖z‖2 ·K(L−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
· Σ̇(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
+ ‖y‖2‖z‖2 · Σ(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
≡ ‖y‖2‖z‖2 ·K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)
.

This completes the proof of Eq. (5).

B Sketching Preliminaries: POLYSKETCH and SRHT

Our sketching algorithms use the Subsampled Randomized Hadamard Transform (SRHT) [2] to
reduce the dimensionality of the intermediate vectors that arise in our computations. Next lemma
gives the performance of SRHT sketches which is proved, for instance, in Theorem 9 of [13],
Lemma 2 (SRHT Sketch). For every positive integer d and every ε, δ > 0, there exists a distribution
on random matrices S ∈ Rm×d with m = O

(
1
ε2 · log2 1

εδ

)
, called SRHT sketch, such that for

any vector x ∈ Rd, Pr
[
‖Sx‖22 ∈ (1± ε)‖x‖22

]
≥ 1 − δ. Moreover, Sx can be computed in time

O
(

1
ε2 · log2 1

εδ + d log d
)
.

Now we restate the Lemma 1 and present the proof,
Lemma 1 (POLYSKETCH). For every integers p, d ≥ 1 and every ε, δ > 0, there exists a distribution
on random matrices Qp ∈ Rm×dp , called degree p POLYSKETCH such that (1) for some m =
O
(
p
ε2 log3 1

εδ

)
and any y ∈ Rdp , Pr

[
‖Qpy‖22 ∈ (1± ε)‖y‖22

]
≥ 1− δ; (2) for any x ∈ Rd, if e1 ∈

Rd is the standard basis vector along the first coordinate, the total time to compute Qp(x⊗(p−j) ⊗
e⊗j1 ) for all j = 0, 1, . . . , p is O

(
pm log2m+ min

{
p3/2

ε log 1
δ nnz(x), pd log d

})
; (3) for any

collection of vectors v1, . . . , vp ∈ Rd, the time to compute Qp (v1 ⊗ · · · ⊗ vp) is bounded by

O
(
pm logm+ p3/2

ε d log 1
δ

)
; (4) for any λ > 0 and any matrix A ∈ Rdp×n, where the statis-

tical dimension of A>A is sλ, there exists some m = O
(
p4sλ
ε2 log3 n

εδ

)
such that,

Pr
[
(1− ε)

(
A>A + λI

)
� (QpA)>(QpA) + λI � (1 + ε)

(
A>A + λI

)]
≥ 1− δ. (1)

Proof of Lemma 1: The fourth statement of the lemma immediately follows from Theorem 1.3 of
Ahle et al. [1]. Moreover, by invoking Theorem 1.2 of Ahle et al. [1], we find that there exists a
random sketch Qp ∈ Rm×dp such that m = C · pε2 log3 1

εδ , for some absolute constant C, and for
any y ∈ Rdp ,

Pr
[
‖Qpy‖22 ∈ (1± ε)‖y‖22

]
≥ 1− δ.

This immediately proves the first statement of the lemma.

As shown in [1], the sketch Qp can be applied to tensor product vectors of the form v1 ⊗ v2 ⊗ . . . vp
by recursive application of O(p) independent instances of OSNAP transform [33] and a novel variant
of the SRHT , proposed in [1] called TENSORSRHT, on vectors vi and their sketched versions. The
sketch Qp, as shown in Fig. 3, can be represented by a binary tree with p leaves where the leaves are
OSNAP sketches and the internal nodes are the TENSORSRHT. The use of OSNAP in the leaves
of this sketch structure ensures excellent runtime for sketching sparse input vectors. However, note
that if the input vectors are not sparse, i.e., nnz(vi) = Ω̃(d) for input vectors vi, then we can simply
remove the OSNAP transforms from the leaves of this structure and achieve improved runtime,
without hurting the approximation guarantee. Therefore, the sketch Qp that satisfies the statement of
the lemma is exactly the one introduced in [1] for sparse input vectors and for non-sparse inputs is
obtained by removing the OSNAP transforms from the leaves of the sketch structure given in Fig. 3.
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Sbase

Sbase

Tbase Tbase

Sbase

Tbase Tbase

internal nodes: TENSORSRHT

leaves: OSNAP

Figure 3: The structure of sketch Qp proposed in Theorem 1.2 of [1]: the sketch matrices in nodes
of the tree labeled with Sbase and Tbase are independent instances of TENSORSRHT and OSNAP,
respectively.

Runtime analysis: By Theorem 1.2 of [1], for any vector x ∈ Rd, Qpx⊗p can be computed in time
O
(
pm logm+ p3/2

ε log 1
δ · nnz(x)

)
. From the binary tree structure of the sketch, shown in Fig. 3,

it follows that once we compute Qpx⊗p, then Qp
(
x⊗p−1 ⊗ e1

)
can be computed by updating the

path from one of the leaves to the root of the binary tree which amounts to applying an instance
of OSNAP transform on the e1 vector and then applying O(log p) instances of TENSORSRHT
on the intermediate nodes of the tree. This can be computed in a total additional runtime of
O(m logm log p). By this argument, it follows that Qp

(
x⊗p−j ⊗ ej1

)
can be computed sequentially

for all j = 0, 1, 2, · · · p in total time O
(
pm log p logm+ p3/2

ε log 1
δ · nnz(x)

)
. By plugging in the

value m = O
(
p
ε2 log3 1

εδ

)
, this runtime will be O

(
p2 log2 p

ε

ε2 log3 1
εδ + p3/2

ε log 1
δ · nnz(x)

)
, which

gives the second statement of the lemma for sparse input vectors x. If x is non-sparse, as we
discussed in the above paragraph, we just need to omit the OSNAP transforms from our sketch
construction which translates into a runtime of O

(
p2 log2 p

ε

ε2 log3 1
εδ + pd log d

)
. Therefore, the

final runtime bound is O
(
p2 log2 p

ε

ε2 log3 1
εδ + min

{
p3/2

ε log 1
δ · nnz(x), pd log d

})
, which proves

the second statement of the lemma.

Furthermore, the sketch Qp can be applied to tensor product of any collection of p vectors. The time
to apply Qp to the tensor product v1⊗ v2⊗ . . . vp consists of time of applying OSNAP to each of the
vectors v1, v2 . . . vp and time of applying O(p) instances of TENSORSRHT to intermediate vectors

which are of size m. This runtime can be upper bounded by O
(
p2 log p

ε

ε2 log3 1
εδ + p3/2

ε d · log 1
δ

)
,

which proves the third statement of the Lemma 1.

C NTK Sketch: Claims and Invariants

We start by proving that the polynomials P (p)
relu(·) and Ṗ (p′)

relu(·) defined in Eq. (6) of Algorithm 1
closely approximate the arc-cosine functions κ1(·) and κ0(·) on the interval [−1, 1].

Remark. Observe that κ0(α) = d
dα (κ1(α)).

Lemma 3 (Polynomial Approximations to κ1 and κ0). If we let κ1(·) and κ0(·) be defined as in
Eq. (2) of Definition 1, then for any integer p ≥ 1

9ε2/3
, the polynomial P (p)

relu(·) defined in Eq. (6) of
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Algorithm 1 satisfies,
max

α∈[−1,1]

∣∣∣P (p)
relu(α)− κ1(α)

∣∣∣ ≤ ε.
Moreover, for any integer p′ ≥ 1

26ε2 , the polynomial Ṗ (p′)
relu(·) defined as in Eq. (6) of Algorithm 1,

satisfies,
max

α∈[−1,1]

∣∣∣Ṗ (p′)
relu(α)− κ0(α)

∣∣∣ ≤ ε.
Proof of Lemma 3: We start by Taylor series expansion of κ0(·) around α = 0, κ0(α) = 1

2 + 1
π ·∑∞

i=0
(2i)!

22i·(i!)2·(2i+1) · α2i+1. Therefore, we have

max
α∈[−1,1]

∣∣∣Ṗ (p′)
relu(α)− κ0(α)

∣∣∣ =
1

π
·
∞∑

i=p′+1

(2i)!

22i · (i!)2 · (2i+ 1)

≤ 1

π
·
∞∑

i=p′+1

e · e−2i · (2i)2i+1/2

2π · 22i · e−2i · n2i+1 · (2i+ 1)

=
e√
2π2
·
∞∑

i=p′+1

1√
i · (2i+ 1)

≤ e√
2π2
·
∫ ∞
p′

1√
x · (2x+ 1)

dx

≤ e√
2π2
· 1√

p′
≤ ε.

To prove the second part of the lemma, we consider the Taylor expansion of κ1(·) at α = 0. Since
κ0(α) = d

dα (κ1(α)), the Taylor series of κ1(α) can be obtained from the Taylor series of κ0(α) as
follows,

κ1(α) =
1

π
+
α

2
+

1

π
·
∞∑
i=0

(2i)!

22i · (i!)2 · (2i+ 1) · (2i+ 2)
· α2i+2.

Hence, we have

max
α∈[−1,1]

∣∣∣P (p)
relu(α)− κ1(α)

∣∣∣ =
1

π
·
∞∑

i=p+1

(2i)!

22i · (i!)2 · (2i+ 1) · (2i+ 2)

≤ 1

π
·
∞∑

i=p+1

e · e−2i · (2i)2i+1/2

2π · 22i · e−2i · n2i+1 · (2i+ 1) · (2i+ 2)

=
e√
2π2
·
∞∑

i=p+1

1√
i · (2i+ 1) · (2i+ 2)

≤ e√
2π2
·
∫ ∞
p

1√
x · (2x+ 1) · (2x+ 2)

dx

≤ e√
2π2
· 1

6 · p3/2
≤ ε.

This completes the proof of Lemma 3. .

Therefore, it is possible to approximate the function κ0(·) up to error ε using a polynomial of degree
O
(

1
ε2

)
. Also if we want to approximate κ1(·) using a polynomial up to error ε on the interval [−1, 1],

it suffices to use a polynomial of degree O
(

1
ε2/3

)
. One can see that since the Taylor expansions

of κ1 and κ0 contain non-negative coefficients only, both of these functions are positive definite.
Additionally, the polynomial approximations P (p)

relu and Ṗ (p′)
relu given in Eq. (6) of Algorithm 1 are

positive definite functions.

In order to prove Theorem 1, we also need the following lemma on the error sensitivity of polynomials
P

(p)
relu and Ṗ (p′)

relu,
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Lemma 4 (Sensitivity of P (p)
relu and Ṗ (p)

relu). For any integer p ≥ 3, any α ∈ [−1, 1], and any α′

such that |α− α′| ≤ 1
6p , if we let the polynomials P (p)

relu(α) and Ṗ (p)
relu(α) be defined as in Eq. (6) of

Algorithm 1, then ∣∣∣P (p)
relu(α)− P (p)

relu(α
′)
∣∣∣ ≤ |α− α′|,

and ∣∣∣Ṗ (p)
relu(α)− Ṗ (p)

relu(α
′)
∣∣∣ ≤ √p · |α− α′|.

Proof of Lemma 4: Note that an α′ that satisfies the preconditions of the lemm, is in the
range

[
−1− 1

6p , 1 + 1
6p

]
. Now we bound the derivative of the polynomial Ṗ (p)

relu on the interval[
−1− 1

6p , 1 + 1
6p

]
,

max
α∈[−1− 1

6p ,1+ 1
6p ]

∣∣∣∣ ddα (Ṗ (p)
relu(α)

)∣∣∣∣ =
1

π
·
p∑
i=0

(2i)!

22i · (i!)2
·
(

1 +
1

6p

)2i

≤ 1

π
+

e4/3

√
2π2
·
p∑
i=1

1√
i

≤ 1

π
+

e4/3

√
2π2
·
∫ p

0

1√
x
dx

≤ √p,
therefore, the second statement of lemma holds.

To prove the first statement of lemma, we bound the derivative of the polynomial P (p)
relu on the interval[

−1− 1
6p , 1 + 1

6p

]
as follows,

max
α∈[−1− 1

6p ,1+ 1
6p ]

∣∣∣∣ ddα (P (p)
relu(α)

)∣∣∣∣ =
1

π
·
p∑
i=0

(2i)!

22i · (i!)2 · (2i+ 1)
·
(

1 +
1

6p

)2i+1

≤ 19

18π
+
e25/18

√
2π2
·
p∑
i=1

1√
i · (2i+ 1)

≤ 19

18π
+
e25/18

√
2π2
·
∫ p

0

1√
x · (2x+ 1)

dx

≤ 1,

therefore, the second statement of the lemma follows. This completes the proof of Lemma 4.

For the rest of this section, we need two basic properties of tensor products and direct sums:
〈x⊗ y, z ⊗ w〉 = 〈x, z〉 · 〈y, w〉, 〈x⊕ y, z ⊕ w〉 = 〈x, z〉+ 〈y, w〉 (24)

for vectors x, y, z, w with conforming sizes.

Now we are in a position to analyze the invariants that are maintained throughout the execution of
NTKSKETCH (Algorithm 1):
Lemma 5 (Invariants of the NTKSKETCH algorithm). For every positive integers d and L, every
ε, δ > 0, every vectors y, z ∈ Rd, if we let Σ

(h)
relu : [−1, 1] → R and K(h)

relu : [−1, 1] → R be the
functions defined in Eq. (3) and Eq. (4) of Algorithm 1, then with probability at least 1 − δ the
following invariants hold for every h = 0, 1, 2, . . . L:

1. The mapping φ(h)(·) computed by NTKSKETCH in line 4 and Eq. (7) of Algorithm 1 satisfy∣∣∣∣〈φ(h)(y), φ(h)(z)
〉
− Σ

(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ (h+ 1) · ε2

60L3
.

2. The mapping ψ(h)(·) computed by NTKSKETCH in line 5 and Eq. (9) of Algorithm 1 satisfy∣∣∣∣〈ψ(h)(y), ψ(h)(z)
〉
−K(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε · h2 + 1

10L
.
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Proof of Lemma 5: The proof is by induction on the value of h = 0, 1, 2, . . . L. More formally,
consider the following statements for every h = 0, 1, 2, . . . L:

P1(h) : ∣∣∣∣〈φ(h)(y), φ(h)(z)
〉
− Σ

(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ (h+ 1) · ε2

60L3
,∣∣∣∣∥∥∥φ(h)(y)

∥∥∥2

2
− 1

∣∣∣∣ ≤ (h+ 1) · ε2

60L3
, and

∣∣∣∣∥∥∥φ(h)(z)
∥∥∥2

2
− 1

∣∣∣∣ ≤ (h+ 1) · ε2

60L3
.

P2(h) : ∣∣∣∣〈ψ(h)(y), ψ(h)(z)
〉
−K(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε · h2 + 1

10L
,∣∣∣∣∥∥∥ψ(h)(y)

∥∥∥2

2
−K(h)

relu(1)

∣∣∣∣ ≤ ε · h2 + 1

10L
, and

∣∣∣∣∥∥∥ψ(h)(z)
∥∥∥2

2
−K(h)

relu(1)

∣∣∣∣ ≤ ε · h2 + 1

10L
.

We prove that the following holds,

Pr[P1(0)] ≥ 1−O
(
δ

L

)
, and Pr[P2(0)|P1(0)] ≥ 1−O

(
δ

L

)
. (25)

Additionally, by induction, we prove that for every h = 1, 2, . . . L,

Pr [P1(h)|P1(h− 1)] ≥ 1−O
(
δ

L

)
, and

Pr [P2(h)|P2(h− 1), P1(h), P1(h− 1)] ≥ 1−O
(
δ

L

)
. (26)

(1) Base of induction (h = 0): By line 4 of Algorithm 1, φ(0)(y) = 1
‖y‖2 · S · Q

1 · y and

φ(0)(z) = 1
‖z‖2 · S ·Q

1 · z, thus, Lemma 2 implies the following

Pr

[∣∣∣∣∣〈φ(0)(y), φ(0)(z)
〉
−
〈
Q1y,Q1z

〉
‖y‖2‖z‖2

∣∣∣∣∣ ≤ O
(
ε2

L3

)
·
∥∥Q1y

∥∥
2
‖Q1z‖2

‖y‖2‖z‖2

]
≥ 1−O

(
δ

L

)
. (27)

By using the above together with Lemma 1 and union bound as well as triangle inequality, we have

Pr

[∣∣∣∣〈φ(0)(y), φ(0)(z)
〉
− 〈y, z〉
‖y‖2‖z‖2

∣∣∣∣ ≤ O( ε2

L3

)]
≥ 1−O

(
δ

L

)
. (28)

Similarly, we can prove that

Pr

[∣∣∣∣∥∥∥φ(0)(y)
∥∥∥2

2
− 1

∣∣∣∣ ≤ O( ε2

L3

)]
≥ 1−O

(
δ

L

)
, and

Pr

[∣∣∣∣∥∥∥φ(0)(z)
∥∥∥2

2
− 1

∣∣∣∣ ≤ O( ε2

L3

)]
≥ 1−O

(
δ

L

)
.

Using union bound, this proves the base of induction for statement P1(0), i.e.,

Pr[P1(0)] ≥ 1−O
(
δ

L

)
. (29)

Moreover, by line 5 of Algorithm 1, ψ(0)(y) = V ·φ(0)(y) and ψ(0)(z) = V ·φ(0)(z), thus, Lemma 2
implies that,

Pr
[∣∣∣〈ψ(0)(y), ψ(0)(z)

〉
−
〈
φ(0)(y), φ(0)(z)

〉∣∣∣ ≤ O ( ε
L

)
·
∥∥∥φ(0)(y)

∥∥∥
2

∥∥∥φ(0)(z)
∥∥∥
2

]
≥ 1−O

(
δ

L

)
.

(30)
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By conditioning on P1(0) and using the above together with triangle inequality it follows that,

Pr

[∣∣∣∣〈ψ(0)(y), ψ(0)(z)
〉
−K(0)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε

10L

]
≥ 1−O

(
δ

L

)
. (31)

Similarly we can prove that with probability 1−O
(
δ
L

)
we have

∣∣∣∥∥ψ(0)(y)
∥∥2

2
−K(0)

relu(1)
∣∣∣ ≤ ε

10L

and
∣∣∣∥∥ψ(0)(z)

∥∥2

2
−K(0)

relu(1)
∣∣∣ ≤ ε

10L , which proves the base of induction for the second statement,
i.e., Pr[P2(0)|P1(0)] ≥ 1−O (δ/L). This completes the base of induction.

(2) Inductive step: Assume that the inductive hypothesis holds for h−1. First, note that by Lemma 2
and using Eq. (7) we have the following,

Pr

∣∣∣∣∣∣
〈
φ(h)(y), φ(h)(z)

〉
−

2p+2∑
j=0

cj

〈
Z

(h)
j (y), Z

(h)
j (z)

〉∣∣∣∣∣∣ ≤ O
(
ε2

L3

)
·A

 ≥ 1−O
(
δ

L

)
, (32)

where A :=
√∑2p+2

j=0 cj‖Z(h)
j (y)‖22 ·

√∑2p+2
j=0 cj‖Z(h)

j (z)‖22 and the collection of vectors{
Z

(h)
j (y)

}2p+2

j=0
and

{
Z

(h)
j (z)

}2p+2

j=0
and coefficients {cj}2p+2

j=0 are defined as per Eq. (7) and Eq. (6),

respectively.

By Lemma 1 together with union bound, the following inequalities simultaneously hold for all
j = 0, . . . , 2p+ 2, with probability at least 1−O (δ/L):∣∣∣∣〈Z(h)

j (y), Z
(h)
j (z)

〉
−
〈
φ(h−1)(y), φ(h−1)(z)

〉j∣∣∣∣ ≤ O( ε2

L3

)
·
∥∥∥φ(h−1)(y)

∥∥∥j
2

∥∥∥φ(h−1)(z)
∥∥∥j

2∥∥∥Z(h)
j (y)

∥∥∥2

2
≤ 11

10
·
∥∥∥φ(h−1)(y)

∥∥∥2j

2
(33)∥∥∥Z(h)

j (z)
∥∥∥2

2
≤ 11

10
·
∥∥∥φ(h−1)(z)

∥∥∥2j

2

Therefore, by plugging Eq. (33) to Eq. (32) and using union bound, triangle inequality and
Cauchy–Schwarz inequality we find that,

Pr

[∣∣∣〈φ(h)(y), φ(h)(z)
〉
− P (p)

relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)∣∣∣ ≤ O( ε2
L3

)
·B
]
≥ 1−O

(
δ

L

)
, (34)

where B :=

√
P

(p)
relu

(
‖φ(h−1)(y)‖22

)
· P (p)

relu

(
‖φ(h−1)(z)‖22

)
and P (p)

relu(α) =
∑2p+2
j=0 cj · αj is the

polynomial defined in Eq. (6). Using the inductive hypothesis P1(h− 1), we have that∣∣∣∣∥∥∥φ(h−1)(y)
∥∥∥2

2
− 1

∣∣∣∣ ≤ h · ε2

60L3
, and

∣∣∣∣∥∥∥φ(h−1)(z)
∥∥∥2

2
− 1

∣∣∣∣ ≤ h · ε2

60L3
. (35)

Therefore, by Lemma 4 we have
∣∣∣P (p)

relu

(
‖φ(h−1)(y)‖22

)
− P (p)

relu(1)
∣∣∣ ≤ h · ε2

60L3 and∣∣∣P (p)
relu

(
‖φ(h−1)(z)‖22

)
− P (p)

relu(1)
∣∣∣ ≤ h · ε2

60L3 . Consequently, since P (p)
relu(1) ≤ P (+∞)

relu (1) = 1, we

obtain that B ≤ 11
10 . By plugging this into Eq. (34) we have,

Pr

[∣∣∣〈φ(h)(y), φ(h)(z)
〉
− P (p)

relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)∣∣∣ ≤ O( ε2

L3

)]
≥ 1−O

(
δ

L

)
. (36)

Furthermore, the inductive hypothesis P1(h− 1) implies that∣∣∣∣〈φ(h−1)(y), φ(h−1)(z)
〉
− Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ h · ε2

60L3
. (37)

Hence, using Lemma 4 we find that,∣∣∣∣P (p)
relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)
− P (p)

relu

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ h · ε2

60L3
. (38)
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By incorporating the above inequality into Eq. (36) using triangle inequality we find that,

Pr

[∣∣∣∣〈φ(h)(y), φ(h)(z)
〉
− P (p)

relu

(
Σ

(h−1)
relu

(
〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ h · ε2

60L3
+O

(
ε2

L3

)]
≥ 1−O

(
δ

L

)
. (39)

Now, by invoking Lemma 3 and using the fact that p =
⌈
2L2/ε4/3

⌉
we have,∣∣∣∣P (p)

relu

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))
− κ1

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ ε2

76L3
. (40)

By combining the above inequality with Eq. (39) using triangle inequality and using the fact that
κ1

(
Σ

(h−1)
relu

(
〈y,z〉
‖y‖2‖z‖2

))
= Σ

(h)
relu

(
〈y,z〉
‖y‖2‖z‖2

)
(by Eq. (3)), we get the following bound,

Pr

[∣∣∣∣〈φ(h)(y), φ(h)(z)
〉
− Σ

(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ (h+ 1) · ε2

60L3

]
≥ 1−O

(
δ

L

)
. (41)

Similarly, we can prove that

Pr

[∣∣∣∣∥∥∥φ(h)(y)
∥∥∥2

2
− 1

∣∣∣∣ > (h+ 1) · ε2

60L3

]
≤ O

(
δ

L

)
, and

Pr

[∣∣∣∣∥∥∥φ(h)(z)
∥∥∥2

2
− 1

∣∣∣∣ > (h+ 1) · ε2

60L3

]
≤ O

(
δ

L

)
.

This is sufficient to prove the inductive step by union bound, i.e., Pr[P1(h)|P1(h− 1)] ≥ 1−O
(
δ
L

)
.

Now we prove the inductive step for statement P2(h), that is, we prove that conditioned on P2(h−
1), P1(h), P1(h− 1), statement P2(h) holds with probability at least 1−O

(
δ
L

)
. First, note that by

Lemma 2 and using Eq. (8) we have,

Pr

∣∣∣∣∣∣
〈
φ̇(h)(y), φ̇(h)(z)

〉
−

2p′+1∑
j=0

bj

〈
Y

(h)
j (y), Y

(h)
j (z)

〉∣∣∣∣∣∣ ≤ O
( ε
L

)
· Â

 ≥ 1−O
(
δ

L

)
, (42)

where Â :=
√∑2p′+1

j=0 bj‖Y (h)
j (y)‖22 ·

√∑2p′+1
j=0 bj‖Y (h)

j (z)‖22 and the collection of vectors{
Y

(h)
j (y)

}2p′+1

j=0
and

{
Y

(h)
j (z)

}2p′+1

j=0
and coefficients {bj}2p

′+1
j=0 are defined as per Eq. (8) and

Eq. (6), respectively. By invoking Lemma 1 along with union bound, with probability at least
1−O

(
δ
L

)
, the following inequalities hold true simultaneously for all j = 0, 1, . . . 2p′ + 1∣∣∣∣〈Y (h)

j (y), Y
(h)
j (z)

〉
−
〈
φ(h−1)(y), φ(h−1)(z)

〉j∣∣∣∣ ≤ O ( εL) · ∥∥∥φ(h−1)(y)
∥∥∥j

2

∥∥∥φ(h−1)(z)
∥∥∥j

2∥∥∥Y (h)
j (y)

∥∥∥2

2
≤ 11

10
·
∥∥∥φ(h−1)(y)

∥∥∥2j

2
(43)∥∥∥Y (h)

j (z)
∥∥∥2

2
≤ 11

10
·
∥∥∥φ(h−1)(z)

∥∥∥2j

2

Therefore, by plugging Eq. (43) into Eq. (42) and using union bound, triangle inequality and
Cauchy–Schwarz inequality we find that,

Pr
[∣∣∣〈φ̇(h)(y), φ̇(h)(z)

〉
− Ṗ (p′)

relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)∣∣∣ ≤ O ( ε
L

)
· B̂
]
≥ 1−O

(
δ

L

)
, (44)

where B̂ :=

√
Ṗ

(p′)
relu

(
‖φ(h−1)(y)‖22

)
· Ṗ (p′)

relu

(
‖φ(h−1)(z)‖22

)
and Ṗ (p′)

relu(α) =
∑2p′+1
j=0 bj · αj is the

polynomial defined in Eq. (6). By inductive hypothesis P1(h− 1) we have
∣∣∣∥∥φ(h−1)(y)

∥∥2

2
− 1
∣∣∣ ≤

h · ε2

60L3 and
∣∣∣∥∥φ(h−1)(z)

∥∥2

2
− 1
∣∣∣ ≤ h · ε2

60L3 . Therefore, using the fact that p′ =
⌈
9L2/ε2

⌉
and

Lemma 4,
∣∣∣Ṗ (p′)

relu

(
‖φ(h−1)(y)‖22

)
− Ṗ (p′)

relu(1)
∣∣∣ ≤ h·ε

20L2 and
∣∣∣Ṗ (p′)

relu

(
‖φ(h−1)(z)‖22

)
− Ṗ (p′)

relu(1)
∣∣∣ ≤

h·ε
20L2 . Consequently, since Ṗ (p′)

relu(1) ≤ Ṗ
(+∞)
relu (1) = 1, we find that B̂ ≤ 11

10 . By plugging this into
Eq. (44) we have,

Pr
[∣∣∣〈φ̇(h)(y), φ̇(h)(z)

〉
− Ṗ (p′)

relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)∣∣∣ ≤ O ( ε
L

)]
≥ 1−O

(
δ

L

)
. (45)
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Furthermore, inductive hypothesisP1(h−1) implies
∣∣∣〈φ(h−1)(y), φ(h−1)(z)

〉
− Σ

(h−1)
relu

(
〈y,z〉
‖y‖2‖z‖2

)∣∣∣ ≤
h · ε2

60L3 , hence, by invoking Lemma 4 we find that,∣∣∣∣Ṗ (p′)
relu

(〈
φ(h−1)(y), φ(h−1)(z)

〉)
− Ṗ (p′)

relu

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ h · ε
20L2

.

By plugging the above inequality into Eq. (45) using triangle inequality, we find that,

Pr

[∣∣∣∣〈φ̇(h)(y), φ̇(h)(z)
〉
− Ṗ (p′)

relu

(
Σ

(h−1)
relu

(
〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ h · ε
20L2

+O
( ε
L

)]
≥ 1−O

(
δ

L

)
. (46)

Now, by invoking Lemma 3 and using the fact that p′ =
⌈
9L2/ε2

⌉
we have,∣∣∣∣Ṗ (p′)

relu

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))
− κ0

(
Σ

(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

))∣∣∣∣ ≤ ε

15L
. (47)

By combining the above inequality with Eq. (46) using triangle inequality and using the fact that
κ0

(
Σ

(h−1)
relu

(
〈y,z〉
‖y‖2‖z‖2

))
= Σ̇

(h)
relu

(
〈y,z〉
‖y‖2‖z‖2

)
(by Eq. (3)), we get the following bound,

Pr

[∣∣∣∣〈φ̇(h)(y), φ̇(h)(z)
〉
− Σ̇

(h)
relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε

8L

]
≥ 1−O

(
δ

L

)
. (48)

Similarly we can show that,

Pr
[∣∣∣∥∥∥φ̇(h)(y)

∥∥∥− 1
∣∣∣ > ε

8L

]
≤ O

(
δ

L

)
, and Pr

[∣∣∣∥∥∥φ̇(h)(z)
∥∥∥− 1

∣∣∣ > ε

8L

]
≤ O

(
δ

L

)
. (49)

Now let f := ψ(h−1)(y) ⊗ φ̇(h)(y) and g := ψ(h−1)(z) ⊗ φ̇(h)(z). Then by Lemma 2 and using
Eq. (9) we have the following,

Pr
[∣∣∣〈ψ(h)(y), ψ(h)(z)

〉
−
〈
Q2f ⊕ φ(h)(y),Q2g ⊕ φ(h)(z)

〉∣∣∣ ≤ O ( ε
L

)
·D
]
≥ 1−O

(
δ

L

)
, (50)

where D :=
∥∥Q2f ⊕ φ(h)(y)

∥∥
2

∥∥Q2g ⊕ φ(h)(z)
∥∥

2
. By the fact that we conditioned on P1(h),

D ≤
√
‖Q2f‖22 +

11

10
·
√
‖Q2g‖22 +

11

10
.

By Lemma 1, we can further obtain an upper bound:

D ≤ 11

10
·
√
‖f‖22 + 1 ·

√
‖g‖22 + 1.

Now note that because we conditioned on P2(h − 1) and using Eq. (49), with probability at least
1−O

(
δ
L

)
the following holds:

‖f‖22 =
∥∥∥ψ(h−1)(y)

∥∥∥2

2

∥∥∥φ̇(h)(y)
∥∥∥2

2
≤ 11

10
·K(h−1)

relu (1) =
11

10
h.

Similarly, ‖g‖22 ≤ 11
10h with probability at least 1−O

(
δ
L

)
, thus, by union bound:

Pr[D ≤ 2(h+ 1)|P2(h− 1), P1(h), P1(h− 1)] ≥ 1−O
(
δ

L

)
.

Therefore, by combining the above with Eq. (50) via union bound we find that,

Pr

[∣∣∣〈ψ(h)(y), ψ(h)(z)
〉
−
〈
Q2f ⊕ φ(h)(y),Q2g ⊕ φ(h)(z)

〉∣∣∣ ≤ O(εh
L

)]
≥ 1−O

(
δ

L

)
, (51)

Now note that
〈
Q2f ⊕ φ(h)(y),Q2g ⊕ φ(h)(z)

〉
=
〈
Q2f,Q2g

〉
+
〈
φ(h)(y), φ(h)(z)

〉
. We proceed

by bounding the term
∣∣〈Q2f,Q2g

〉
− 〈f, g〉

∣∣ using Lemma 1, as follows,

Pr
[∣∣〈Q2f,Q2g

〉
− 〈f, g〉

∣∣ ≤ O ( ε
L

)
· ‖f‖2‖g‖2

]
≥ 1−O

(
δ

L

)
. (52)
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We proved that conditioned on P2(h− 1) and P1(h− 1), ‖f‖22 ≤ 11h/10 and ‖g‖22 ≤ 11h/10 with
probability at least 1−O

(
δ
L

)
. Hence, by union bound we find that,

Pr

[∣∣〈Q2f,Q2g
〉
− 〈f, g〉

∣∣ ≤ O(εh
L

)∣∣∣∣P2(h− 1), P1(h− 1)

]
≥ 1−O

(
δ

L

)
. (53)

Note that 〈f, g〉 =
〈
ψ(h−1)(y), ψ(h−1)(z)

〉
·
〈
φ̇(h)(y), φ̇(h)(z)

〉
, thus by conditioning on inductive

hypothesis P2(h− 1) and Eq. (48) we have,∣∣∣∣〈f, g〉 −K(h−1)
relu

( 〈y, z〉
‖y‖2‖z‖2

)
· Σ̇(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε

8L

(
h+ ε · (h− 1)2 + 1

10L

)
+ ε · (h− 1)2 + 1

10L

By combining the above inequality with Eq. (53), P1(h), and Eq. (51) using triangle inequality and
union bound we get the following inequality,

Pr

[∣∣∣∣〈ψ(h)(y), ψ(h)(z)
〉
−K(h−1)

relu

(
〈y, z〉
‖y‖‖z‖

)
· Σ̇(h)

relu

(
〈y, z〉
‖y‖‖z‖

)
− Σ

(h)
relu

(
〈y, z〉
‖y‖‖z‖

)∣∣∣∣ > ε · h
2 + 1

10L

]
≤ O

(
δ

L

)
.

By noting that K(h−1)
relu (α) · Σ̇(h)

relu (α) + Σ
(h)
relu (α) = K

(h)
relu (α) (see Eq. (4)) we have proved that

Pr

[∣∣∣∣〈ψ(h)(y), ψ(h)(z)
〉
−K(h)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε · h2 + 1

10L

]
≥ 1−O

(
δ

L

)
. (54)

Similarly we can prove the following inequalities hold with probability at least 1−O
(
δ
L

)
,∣∣∣∣∥∥∥ψ(h)(y)

∥∥∥2

2
−K(h)

relu(1)

∣∣∣∣ ≤ ε · h2 + 1

10L
, and

∣∣∣∣∥∥∥ψ(h)(z)
∥∥∥2

2
−K(h)

relu(1)

∣∣∣∣ ≤ ε · h2 + 1

10L
.

This proves the inductive step for the statement P2(h) follows, i.e.,

Pr[P2(h)|P2(h− 1), P1(h), P1(h− 1)] ≥ 1−O
(
δ

L

)
.

Therefore, by union bounding over all h = 0, 1, 2, . . . L, it follows that the statements of the lemma
hold simultaneously for all hwith probability at least 1−δ. This completes the proof of Lemma 5.

We now analyze the runtime of the NTKSKETCH algorithm:

Lemma 6 (Runtime of NTKSKETCH). For every positive integers d and L, every ε, δ > 0, every
vector x ∈ Rd, the time to compute NTKSKETCH Ψ

(L)
ntk(x) ∈ Rs∗ , for s∗ = O

(
1
ε2 · log 1

δ

)
, using

the procedure given in Algorithm 1 is bounded by,

O
(
L11

ε6.7
· log3 L

εδ
+
L3

ε2
· log

L

εδ
· nnz(x)

)
.

Proof of Lemma 6: There are three main components to the runtime of this procedure that we have to
account for. The first is the time to apply the sketch Q1 to x in line 4 of Algorithm 1. By Lemma 1,
the runtime of computing Q1 · x is O

(
L6

ε4 · log3 L
εδ + L3

ε2 · log L
εδ · nnz(x)

)
. The second heavy

operation corresponds to computing vectors Z(h)
j (x) = Q2p+2 ·

([
φ(h−1)(x)

]⊗j ⊗ e⊗2p+2−j
1

)
for

j = 0, 1, 2, . . . 2p+ 2 and h = 1, 2, . . . L in Eq. (7). By Lemma 1, the time to compute Z(h)
j (x) for

a fixed h and all j = 0, 1, 2, . . . 2p+ 2 is bounded by,

O
(
L10

ε20/3
· log2 L

ε
· log3 L

εδ
+

L8

ε16/3
· log3 L

εδ

)
= O

(
L10

ε6.7
· log3 L

εδ

)
.

The total time to compute vectors Z(h)
j (x) for all h = 1, 2, . . . L and all j = 0, 1, 2, . . . 2p + 2 is

thus O
(
L11

ε6.7 · log3 L
εδ

)
. Finally, the last computationally expensive operation is computing vectors

Y
(h)
j (x) = Q2p′+1 ·

([
φ(h−1)(x)

]⊗j ⊗ e⊗2p′+1−j
1

)
for j = 0, 1, 2, . . . 2p′+1 and h = 1, 2, . . . L in
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Eq. (8). By Lemma 1, the runtime of computing Y (h)
j (x) for a fixed h and all j = 0, 1, 2, . . . 2p′ + 1

is bounded by,

O
(
L6

ε6
· log2 L

ε
· log3 L

εδ
+
L8

ε6
· log3 L

εδ

)
= O

(
L8

ε6
· log3 L

εδ

)
.

Hence, the total time to compute vectors Y (h)
j (x) for all h = 1, 2, . . . L and all j = 0, 1, 2, . . . 2p′+ 1

is O
(
L9

ε6 · log3 L
εδ

)
. The total runtime of the NTK Sketch is obtained by summing up these three

contributions. This completes the proof of Lemma 6.

Now we are ready to prove the main theorem on NTKSKETCH.

Theorem 1. For every integers d ≥ 1 and L ≥ 2, and any ε, δ > 0, let Θ
(L)
ntk : Rd × Rd → R be the

L-layer NTK with ReLU activation as per Definition 1 and Eq. (5). Then there exists a randomized
map Ψ

(L)
ntk : Rd → Rs∗ for some s∗ = O

(
1
ε2 log 1

δ

)
such that the following invariants hold,

1. For any vectors y, z ∈ Rd: Pr
[∣∣∣〈Ψ

(L)
ntk(y),Ψ

(L)
ntk(z)

〉
−Θ

(L)
ntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
ntk(y, z)

]
≥ 1− δ.

2. For every vecor x ∈ Rd, the time to compute Ψ
(L)
ntk(x) is O

(
L11

ε6.7 log3 L
εδ + L3

ε2 log L
εδ · nnz(x)

)
.

Proof of Theorem 1: Let ψ(L) : Rd → Rs for s = O
(
L2

ε2 · log2 L
εδ

)
be the mapping defined in

Eq. (9) of Algorithm 1. By Eq. (10), the NTK Sketch Ψ
(L)
ntk(x) is defined as

Ψ
(L)
ntk(x) := ‖x‖2 ·G · ψ(L)(x).

Because G is a matrix of i.i.d normal entries with s∗ = C · 1
ε2 · log 1

δ rows, for a large enough
constant C, G is a JL transform [15] and hence Ψ

(L)
ntk satisfies the following,

Pr
[∣∣∣〈Ψ

(L)
ntk(y),Ψ

(L)
ntk(z)

〉
− ‖y‖2‖z‖2 ·

〈
ψ(L)(y), ψ(L)(z)

〉∣∣∣ ≤ O(ε) ·A
]
≥ 1−O(δ),

where A := ‖y‖2‖z‖2
∥∥ψ(L)(y)

∥∥
2

∥∥ψ(L)(z)
∥∥

2
. By Lemma 5 and using the fact that K(L)

relu(1) =

L+ 1, the following bounds hold with probability at least 1−O(δ):∥∥∥ψ(L)(y)
∥∥∥2

2
≤ 11

10
· (L+ 1), and

∥∥∥ψ(L)(z)
∥∥∥2

2
≤ 11

10
· (L+ 1).

Therefore, by union bound we find that,

Pr
[∣∣∣〈Ψ

(L)
ntk(y),Ψ

(L)
ntk(z)

〉
− ‖y‖2‖z‖2 ·

〈
ψ(L)(y), ψ(L)(z)

〉∣∣∣ ≤ O(εL) · ‖y‖2‖z‖2
]
≥ 1−O(δ).

Additionally, by Lemma 5, the following holds with probability at least 1−O(δ):∣∣∣∣〈ψ(L)(y), ψ(L)(z)
〉
−K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε(L+ 1)

10
.

Hence by union bound and triangle inequality we have,

Pr

[∣∣∣∣〈Ψ
(L)
ntk(y),Ψ

(L)
ntk(z)

〉
− ‖y‖2‖z‖2 ·K(L)

relu

( 〈y, z〉
‖y‖2‖z‖2

)∣∣∣∣ ≤ ε(L+ 1)

9
· ‖y‖2‖z‖2

]
≥ 1−O(δ).

Now note that by Eq. (5), ‖y‖2‖z‖2 ·K(L)
relu

(
〈y,z〉
‖y‖2‖z‖2

)
= Θ

(L)
ntk(y, z), and also note that for every

L ≥ 2 and any α ∈ [−1, 1], K(L)
relu (α) ≥ (L+ 1)/9, therefore,

Pr
[∣∣∣〈Ψ

(L)
ntk(y),Ψ

(L)
ntk(z)

〉
−Θ

(L)
ntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
ntk(y, z)

]
≥ 1− δ.

Remark on the fact that K(L)
relu (α) ≥ (L + 1)/9 for every L ≥ 2 and any α ∈ [−1, 1]. Note

that from the definition of Σ
(h)
relu in Eq. (3), we have that for any α ∈ [−1, 1]: Σ

(0)
relu(α) ≥ −1,
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Σ
(1)
relu(α) ≥ 0, Σ

(2)
relu(α) ≥ 1

π , and Σ
(h)
relu(α) ≥ 1

2 for every h ≥ 3 because κ1(·) is a monotonically
increasing function on the interval [−1, 1]. Moreover, using the definition of Σ̇

(h)
relu in Eq. (3), we

have that for any α ∈ [−1, 1]: Σ̇
(1)
relu(α) ≥ 0, Σ̇

(2)
relu(α) ≥ 1

2 , and Σ̇
(h)
relu(α) ≥ 3

5 for every h ≥ 3
because κ0(·) is a monotonically increasing function on the interval [−1, 1]. By an inducive proof
and using the definition of K(L)

relu in Eq. (4), we can show that K(L)
relu (α) ≥ (L + 1)/9 for every

L ≥ 2 and any α ∈ [−1, 1]

Runtime analysis: By Lemma 6, runtime to compute the NTKSKETCH is

O
(
L11

ε6.7
log3 L

εδ
+
L3

ε2
log

L

εδ
· nnz(x)

)
. (55)

This completes the proof of Theorem 1.

D NTK Random Features: Claims and Proofs

D.1 Proof of Theorem 2

In this section we prove Theorem 2. We first restate the theorem:

Theorem 2. Given y, z ∈ Rd and L ≥ 2, let Θ
(L)
ntk the L-layer fully-connected ReLU NTK. For

ε, δ > 0, there exist m0 = O
(
L2

ε2 log L
δ

)
,m1 = O

(
L6

ε4 log L
δ

)
,ms = O

(
L2

ε2 log3 L
εδ

)
, such that,

Pr
[∣∣∣〈Ψ

(L)
rf (y),Ψ

(L)
rf (z)

〉
−Θ

(L)
ntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
ntk(y, z)

]
≥ 1− δ, (12)

where Ψ
(L)
rf (y),Ψ

(L)
rf (z) ∈ Rm1+ms are the outputs of Algorithm 2, using the same randomness.

In the proof of this theorem we use the following results from the literature,

Lemma 7 (Corollary 16 in [14]). Given integer ` > 0 and x, x′ ∈ Rd such that ‖y‖2 = ‖z‖2 = 1,
let φ(`)

rf (y), φ
(`)
rf (z) be defined as per line 5 of Algorithm 2. For δ1, ε1 ∈ (0, 1), there exists a constant

C1 > 0 such that for any m1 ≥ C1
L2

ε21
log
(
L
δ1

)
the following holds:

Pr
[∣∣∣〈φ(`)

rf (y), φ
(`)
rf (z)

〉
− Σ

(`)
relu(〈y, z〉)

∣∣∣ ≤ ε1

]
≥ 1− δ1. (56)

We also need the following lemma,

Lemma 8 (Lemma E.5 in [5]). Given x, x′ ∈ Rd with ‖x‖2 = ‖x′‖2 = 1, integer ` > 0, let
φ

(`)
rf (x), φ

(`)
rf (x′) be defined as per line 5 of Algorithm 2. For any ε2 ∈ (0, 1) assume that∣∣∣〈φ(`)

rf (x), φ
(`)
rf (x′)

〉
− Σ

(`)
relu(〈x, x′〉)

∣∣∣ ≤ ε2
2

2
. (57)

Then, for φ̇(`)
rf (x), φ̇

(`)
rf (x′) defined as in line 4 of Algorithm 2, and any δ2 > 0 the following holds:

Pr

[∣∣∣〈φ̇(`)
rf (x), φ̇

(`)
rf (x′)

〉
− Σ̇

(`)
relu(〈x, x′〉)

∣∣∣ ≤ ε2 +

√
2

m0
log

(
6

δ2

)]
≥ 1− δ2. (58)

Proof of Theorem 2: For fixed y, z ∈ Rd and ` = 0, . . . , L, we denote the estimation error as

∆` := max
(x,x′)∈{(y,z),(y,y),(z,z)}

∣∣∣∣〈ψ(`)
rf (x), ψ

(`)
rf (x′)

〉
−K(`)

relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣
and note that ∆0 = 0. Recall that, by Definition 1 and Eq. (5):

Θ
(`)
ntk(x, x

′) = ‖x‖2‖x′‖2 ·K(`)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)
, (59)
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where for every α ∈ [−1, 1] and ` = 1, . . . , L:

K
(`)
relu(α) := K

(`−1)
relu (α) · Σ̇(`)

relu(α) + Σ
(`)
relu(α),

Σ̇
(`)
relu(α) := κ0

(
Σ

(`−1)
relu (α)

)
,

Σ
(`)
relu(α) := κ1

(
Σ

(`−1)
relu (α)

)
.

We use the recursive relation to approximate:〈
ψ

(`)
rf (x), ψ

(`)
rf (x′)

〉
=
〈
φ

(`)
rf (x), φ

(`)
rf (x′)

〉
+
〈
Q2 ·

(
φ̇

(`)
rf (x)⊗ ψ(`−1)

rf (x)
)
,Q2 ·

(
φ̇

(`)
rf (x′)⊗ ψ(`−1)

rf (x′)
)〉

≈
〈
φ

(`)
rf (x), φ

(`)
rf (x′)

〉
+
〈
φ̇

(`)
rf (x)⊗ ψ(`−1)

rf (x), φ̇
(`)
rf (x′)⊗ ψ(`−1)

rf (x′)
〉

≈
(

Σ
(`)
relu + Σ̇

(`)
relu ·K(`−1)

relu

)( 〈x, x′〉
‖x‖2‖x′‖2

)
= K

(`)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)
.

For notational simplicity, we define the following events:

E(`)φ (ε) :=

{∣∣∣∣〈φ(`)
rf (x), φ

(`)
rf (x′)

〉
− Σ

(`)
relu

(
〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ ≤ ε : ∀(x, x′) ∈ {(y, z), (y, y), (z, z)}
}
, (60)

Ė(`)φ (ε) :=

{∣∣∣∣〈φ̇(`)
rf (x), φ̇

(`)
rf (x′)

〉
− Σ̇

(`)
relu

(
〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ ≤ ε : ∀(x, x′) ∈ {(y, z), (y, y), (z, z)}
}
. (61)

Our proof is based on the following claims:

First we claim that, there exists a constant C1 > 0 such that for any m1 ≥ C1
L6

ε4 log
(
L
δ

)
:

Pr

[
E(`)
φ

(
ε2

100L2

)]
≥ 1− δ

3L
. (62)

which directly follows by invoking Lemma 7 with (x, x′) ∈{(
y
‖y‖2 ,

z
‖z‖2

)
,
(

y
‖y‖2 ,

y
‖y‖2

)
,
(

z
‖z‖2 ,

z
‖z‖2

)}
and setting ε1 = ε2

100L2 and δ1 = δ
9L and

applying union bound over choices of (x, x′).

Our second claim is that there exists a constant C0 > 0 such that if m0 ≥ C0
L2

ε2 log
(
L
δ

)
then

Pr

[
Ė(`)
φ

( ε

8L

)∣∣∣ E(`)
φ

(
ε2

100L2

)]
≥ 1− δ

3L
. (63)

The above statement is a direct consequence of invoking Lemma 8 with (x, x′) ∈{(
y
‖y‖2 ,

z
‖z‖2

)
,
(

y
‖y‖2 ,

y
‖y‖2

)
,
(

z
‖z‖2 ,

z
‖z‖2

)}
and union bounding over choices of (x, x′). In

Lemma 8, we choose ε2 = ε
10L , δ2 = δ

9L and m0 ≥ 3200L2

ε2 log
(

54L
δ

)
for ε, δ ∈ (0, 1) to ob-

tain Eq. (63) by union bound.

Our next claim is the following,

Claim 1. Let f(x) := φ̇
(`)
rf (x) ⊗ ψ

(`−1)
rf (x) for every x ∈ Rd. There exists a con-

stant C2 > 0 such that if ms ≥ C2
L2

ε2 log L
εδ then conditioned on the events Ė(`)

φ

(
ε

8L

)
and E(`)

φ

(
ε2

100L2

)
the following holds with probability at least 1 − δ

3L , for all (x, x′) ∈{(
y
‖y‖2 ,

z
‖z‖2

)
,
(

y
‖y‖2 ,

y
‖y‖2

)
,
(

z
‖z‖2 ,

z
‖z‖2

)}
,∣∣〈Q2 · f(x),Q2 · f(x′)

〉
− 〈f(x), f(x′)〉

∣∣ ≤ ε

100L
(`+ ∆`−1).

The proof of the above claim is provided in Appendix D.2. Now, by combining Eq. (62), Eq. (63)
and Claim 1, we can prove the following claim which provides a recursive relation for bounding ∆`.
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Claim 2. If the events in Eq. (62), Eq. (63) and Claim 1 hold, then

∆` ≤
(

1 +
ε

7L

)
∆`−1 +

ε

7L
`. (64)

The proof of Claim 2 is provided in Appendix D.2.

Note that by union bound, with probability 1− δ
L , all preconditions of Claim 2 hold and thus Eq. (64)

holds with probability 1 − δ
L . Applying union bound on Eq. (64) for all ` ∈ [L] and solving the

recurrence, we obtain that with probability at least 1− δ, the following bound holds

∆` ≤
ε

9L
· `2. (65)

When L ≥ 2, we showed in the proof of Theorem 1 that K(L)
relu(·) ≥ L+1

9 , therefore,∣∣∣∣〈ψ(L)
rf (x), ψ

(L)
rf (x′)

〉
−K(L)

relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ ≤ ε ·K(L)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)
. (66)

Since Ψ
(L)
rf (x) = ‖x‖2 · ψ(L)(x) and Ψ

(L)
rf (x′) = ‖x′‖2 · ψ(L)(x′), this implies that,

Pr
[∣∣∣〈Ψ

(L)
rf (x),Ψ

(L)
rf (x′)

〉
−Θ

(L)
ntk(x, x′)

∣∣∣ ≤ ε ·Θ(L)
ntk(x, x′)

]
≥ 1− δ.

This completes the proof of Theorem 2.

D.2 Proof of Auxiliary Claims

Claim 1. Let f(x) := φ̇
(`)
rf (x) ⊗ ψ

(`−1)
rf (x) for every x ∈ Rd. There exists a con-

stant C2 > 0 such that if ms ≥ C2
L2

ε2 log L
εδ then conditioned on the events Ė(`)

φ

(
ε

8L

)
and E(`)

φ

(
ε2

100L2

)
the following holds with probability at least 1 − δ

3L , for all (x, x′) ∈{(
y
‖y‖2 ,

z
‖z‖2

)
,
(

y
‖y‖2 ,

y
‖y‖2

)
,
(

z
‖z‖2 ,

z
‖z‖2

)}
,∣∣〈Q2 · f(x),Q2 · f(x′)

〉
− 〈f(x), f(x′)〉

∣∣ ≤ ε

100L
(`+ ∆`−1).

Proof of Claim 1: The proof is based on Lemma 1 that provides an upper bound on variance of the
POLYSKETCH. By using the definition of f(x), f(x′) and Lemma 1, with probability at least 1− δ

9L ,
we have ∣∣〈Q2 · f(x),Q2 · f(x′)

〉
− 〈f(x), f(x′)〉

∣∣
≤ ε

200L

∥∥∥φ̇(`)
rf (x)

∥∥∥
2

∥∥∥φ̇(`)
rf (x′)

∥∥∥
2

∥∥∥ψ(`−1)
rf (x)

∥∥∥
2

∥∥∥ψ(`−1)
rf (x′)

∥∥∥
2

≤ ε

200L

(
1 +

ε

8L

)∥∥∥ψ(`−1)
rf (x)

∥∥∥
2

∥∥∥ψ(`−1)
rf (x′)

∥∥∥
2

≤ ε

100L
(`+ ∆`−1)

where the second inequality follows from the assumption that Ė(`)
φ

(
ε

8L

)
holds and the third one

follows from the fact that K(`−1)
relu (α) ≤ ` for any α ∈ [−1, 1] and∥∥∥ψ(`−1)

rf (x)
∥∥∥2

2
≤ K(`−1)

relu (x, x′) + ∆`−1 ≤ `+ ∆`−1. (67)

Union bounding over the choices of (x, x′) completes the proof of Claim 1.

Claim 2. If the events in Eq. (62), Eq. (63) and Claim 1 hold, then

∆` ≤
(

1 +
ε

7L

)
∆`−1 +

ε

7L
`. (64)
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Proof of Claim 2: Recall that

∆` := max
(x,x′)∈{(y,z),(y,y),(z,z)}

∣∣∣∣〈ψ(`)
rf (x), ψ

(`)
rf (x′)

〉
−K(`)

relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ .
Observe that the estimation error ∆` can be decomposed into three parts:∣∣∣∣〈ψ(`)

rf (x), ψ
(`)
rf (x′)

〉
−K(`)

relu

(
〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ ≤ ∣∣∣∣〈φ(`)
rf (x), φ

(`)
rf (x′)

〉
− Σ

(`)
relu

(
〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣
+
∣∣〈Q2 · f(x),Q2 · f(x′)

〉
−
〈
f(x), f(x′)

〉∣∣ (68)

+

∣∣∣∣〈φ̇(`)
rf (x)⊗ ψ(`−1)

rf (x), φ̇
(`)
rf (x′)⊗ ψ(`−1)

rf (x′)
〉
− Σ̇

(`)
relu

(
〈x, x′〉
‖x‖2‖x′‖2

)
K

(`−1)
relu

(
〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ .
for (x, x′) ∈ {(y, z), (y, y), (z, z)}. By the assumption that Eq. (62) holds, the definition of
E(`)
φ

(
ε2

100L2

)
implies that,∣∣∣∣〈φ(`)

rf (x), φ
(`)
rf (x′)

〉
− Σ

(`)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣ ≤ ε2

100L2
(69)

Furthermore, the assumption that Claim 1 holds, implies that,∣∣〈Q2 · f(x),Q2 · f(x′)
〉
− 〈f(x), f(x′)〉

∣∣ ≤ ε

100L
(`+ ∆`−1). (70)

For the third part in Eq. (68), we observe that∣∣∣∣〈φ̇(`)
rf (x)⊗ ψ(`−1)

rf (x), φ̇
(`)
rf (x′)⊗ ψ(`−1)

rf (x′)
〉
− Σ̇

(`)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)
K

(`−1)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣
≤
∣∣∣〈φ̇(`)

rf (x), φ̇
(`)
rf (x′)

〉∣∣∣ · ∣∣∣∣〈ψ(`−1)
rf (x), ψ

(`−1)
rf (x′)

〉
−K(`−1)

relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣
+K

(`−1)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)
·
∣∣∣∣〈φ̇(`)

rf (x), φ̇
(`)
rf (x′)

〉
− Σ̇

(`)
relu

( 〈x, x′〉
‖x‖2‖x′‖2

)∣∣∣∣
≤
(

1 +
ε

8L

)
·∆`−1 + ` · ε

8L
, (71)

where the second inequality comes from that the assumption that Eq. (63) holds along with∣∣∣Σ̇(`)
relu(·)

∣∣∣ ≤ 1 and
∣∣∣K(`−1)

relu (·)
∣∣∣ ≤ `. Putting Eq. (69), Eq. (70) and Eq. (71) into Eq. (68), we

have

∆` ≤
ε2

100L2
+

ε

100L
(`+ ∆`−1) +

(
1 +

ε

8L

)
∆`−1 +

` · ε
8L

=
(

1 +
ε

7L

)
∆`−1 +

ε

7L
`. (72)

This completes the proof of Claim 2.

E Spectral Approximation via Leverage Scores Sampling

E.1 Zeroth Order Arc-Cosine Kernels

The proofs here rely on Theorem 3.3 in [28] which states spectral approximation bounds of random
features for general kernels equipped with the leverage score sampling. This result is a generalization
of [8] on the Random Fourier Features.
Theorem 5 (Theorem 3.3 in [28]). Suppose K ∈ Rn×n is a kernel matrix with statistical dimension
sλ for some λ ∈ (0, ‖K‖2). Let Φ(w) ∈ Rn be a feature map with a random vector w ∼ p(w)

satisfying that K = Ew

[
Φ(w)Φ(w)>

]
. Define τλ(w) := p(w) ·Φ(w)>(K + λI)−1Φ(w). Let

τ̃(w) be any measurable function such that τ̃(w) ≥ τλ(w) for all w. Assume that sτ̃ :=
∫
τ̃(w)dw

is finite. Consider random vectors w1, . . . ,wm sampled from q(w) := τ̃(w)/sτ̃ and define that

Φ :=
1√
m

[√
p(w1)

q(w1)
Φ(w1), . . . ,

√
p(wm)

q(wm)
Φ(wm)

]>
. (73)
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If m ≥ 8
3ε
−2sτ̃ log (16sλ/δ) then

(1− ε) (K + λI) � Φ
>

Φ + λI � (1 + ε) (K + λI) (74)

holds with probability at least 1− δ.

We now ready to provide spectral approximation guarantee for arc-cosine kernels of order zero.

Theorem 6. Given dataset X ∈ Rd×n, let K0 ∈ Rn×n be the arc-cosine kernel matrix of 0-th

order with X and denote Φ0 :=
√

2
mStep(WX) ∈ Rm×n where each entry in W ∈ Rm×d is an

i.i.d. sample from N (0, 1). For λ ∈ (0, ‖K0‖2), let sλ be the statistical dimension of K0. Given
ε ∈ (0, 1/2) and δ ∈ (0, 1), if m ≥ 8

3
n
λε2 log

(
16sλ
δ

)
, then it holds that

(1− ε)(K0 + λI) � Φ>0 Φ0 + λI � (1 + ε)(K0 + λI)

with probability at least 1− δ.

Proof of Theorem 6: Let Φ0(w) :=
√

2 Step(X>w) ∈ Rn for w ∈ Rd and p(w) be the probability
density function of the standard normal distribution. As studied in [12], Φ0(w) is a random feature
of K0 such that

K0 = Ew∼p(w)

[
Φ0(w)Φ0(w)>

]
. (75)

In order to utilize Theorem 5, we need an upper bound of τλ(w) as below:

τλ(w) := p(w) ·Φ0(w)> (K0 + λI)
−1

Φ0(w) (76)

≤ p(w)
∥∥(K0 + λI)−1

∥∥
2
‖Φ0(w)‖22 (77)

≤ p(w)
‖Φ0(w)‖22

λ
(78)

≤ p(w)
2n

λ
(79)

where the inequality in second line holds from the definition of matrix operator norm and the inequality
in third line follows from the fact that smallest eigenvalue of K0 + λI is equal to or greater than λ.
The last inequality is from that ‖Step(x)‖22 ≤ n for any x ∈ Rn. Note that

∫
Rd p(w) 2n

λ dw = 2n
λ and

since it is constant the modified random features correspond to the original ones. Putting all together
into Theorem 5, we can obtain the result. This completes the proof of Theorem 6.

E.2 First Order Arc-Cosine Kernels

Theorem 7. Given dataset X ∈ Rd×n, let K1 ∈ Rn×n be the arc-cosine kernel matrix of 1-
th order with X and v1, . . . , vm ∈ Rd be i.i.d. random vectors from probability distribution

q(v) = 1
(2π)d/2d

‖v‖22 exp
(
− 1

2 ‖v‖
2
2

)
. Denote Φ1 :=

√
2d
m

[
ReLU(X>v1)
‖v1‖2

, . . . , ReLU(X>vm)
‖vm‖2

]>
and for λ ∈ (0, ‖K1‖2), let sλ be the statistical dimension of K1. Given ε ∈ (0, 1/2) and δ ∈ (0, 1),

if m ≥ 8
3
d
ε2 min

{
rank(X)2,

‖X‖22
λ

}
log
(

16sλ
δ

)
, then it holds that

(1− ε)(K1 + λI) � Φ>1 Φ1 + λI � (1 + ε)(K1 + λI)

with probability at least 1− δ.

Proof of Theorem 7: Let Φ1(w) :=
√

2 ReLU(X>w) ∈ Rn for w ∈ Rd and p(w) be the probability
density function of standard normal distribution. Cho and Saul [12] also showed that Φ1(w) is a
random feature of K1 such that

K1 = Ew∼p(w)

[
Φ1(w)Φ1(w)>

]
. (80)
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Then,

τλ(w) := p(w) ·Φ1(w)>(K1 + λI)−1Φ1(w)

≤ p(w)
∥∥(K1 + λI)−1

∥∥
2
‖Φ1(w)‖22

= 2 p(w)

∥∥ReLU(X>w)
∥∥2

2

λ

≤ 2 p(w)

∥∥X>w∥∥2

2

λ

≤ 2 p(w) ‖w‖22
‖X‖22
λ

where the inequality in fourth line holds from the fact that ‖ReLU(x)‖22 ≤ ‖x‖
2
2 for any vector x.

On the other hand, if we write the ReLU function in terms of a matrix form, i.e., Φ1(w) =√
2 ReLU(X>w) =

√
2 SX>w where S is a diagonal matrix such that Sii = 1 if [X>w]i > 0

else Sii = 0 for i ∈ [n], then we can obtain that

τλ(w) := p(w) ·Φ1(w)>(K1 + λI)−1Φ1(w)

= 2 p(w) · w>XS(K1 + λI)−1SX>w. (81)

Now note that by definition of K1, we have [K1]i,j = ‖xi‖2‖xj‖2 · κ1

(
〈xi,xj〉
‖xi‖2‖xj‖2

)
. Therefore,

using the Taylor expansion of the function κ1(α) = 1
π + α

2 + 1
π ·
∑∞
i=0

(2i)!
22i·(i!)2·(2i+1)·(2i+2) · α2i+2

and the fact that its Taylor coefficients are all non-negative, we have,

1

2
X>X �K1.

Using the above inequality along with Eq. (81), we can write,

τλ(w) ≤ 2 p(w) · w>XS

(
1

2
X>X + λI

)−1

SX>w

≤ 2 p(w) · ‖w‖22 ·
∥∥∥∥∥XS

(
1

2
X>X + λI

)−1

SX>

∥∥∥∥∥
2

(82)

To obtain an upper bound of the third term in Eq. (82), we consider the singular value decomposition
of X = V ΣU>. And we have∥∥∥∥∥XS

(
1

2
X>X + λI

)−1

SX>

∥∥∥∥∥
2

=

∥∥∥∥∥V ΣU>S

(
1

2
UΣ2U> + λI

)−1

SUΣV >

∥∥∥∥∥
2

=

∥∥∥∥∥ΣU>S

(
1

2
UΣ2U> + λI

)−1

SUΣ

∥∥∥∥∥
2

=

∥∥∥∥∥ΣU>SU

(
1

2
Σ2 + λI

)−1

U>SUΣ

∥∥∥∥∥
2

(83)

Now we observe that

[U>SU ]ij ≤ ‖ui‖2 ‖uj‖2 (84)

which leads us to
∥∥U>SU∥∥

F
≤ rank(U) = rank(X). Since U>SU is a positive semi-definite

matrix we have,
0 � U>SU � rank(X) · I.

Therefore, plugging this into Eq. (83) and Eq. (82) gives,

τλ(w) ≤ 2 p(w) · ‖w‖22 · rank(X)2.
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Algorithm 3 Gibbs Sampling for Approximating Eq. (86) via Inverse Transformation Method

1: Input: X ∈ Rd×n, feature dimension m, Gibbs iterations T
2: Draw i.i.d. wi ∼ N (0, Id) for i ∈ [m]
3: for i = 1 to m do
4: q(x, z)← inverse of

erf(x/
√

2)+1

2 − x exp(−x2/2)√
2π(z+1)

(i.e., CDF of Pr([wi]j |[wi]\{j}))
5: for t = 1 to T do
6: for j = 1 to d do
7: u← sample from [0, 1] at uniformly random
8: [wi]j ← q

(
u,
∑
k∈[d]\{j}[wi]

2
k

)
9: return

√
2d
m

[
ReLU(X>w1)
‖w1‖2

, . . . , ReLU(X>wm)
‖wm‖2

]

Denote τ̃(w) := 2 p(w) ‖w‖22 min
{

rank(X)2,
‖X‖22
λ

}
and it holds that∫

Rd
τ̃(w)dw = 2dmin

{
rank(X)2,

‖X‖22
λ

}
(85)

since
∫
Rd p(w) ‖w‖22 = tr(Id) = d for w ∼ N (0, Id). We define the modified distribution as

q(w) :=
τ̃(w)∫

Rd τ̃(w)dw
= p(w)

‖w‖22
d

=
1

(2π)d/2d
‖w‖22 exp

(
−1

2
‖w‖22

)
(86)

and recall that the modified random features are defined as

Φ1 =
1√
m

[√
p(w1)

q(w1)
Φ1(w1), . . . ,

√
p(wm)

q(wm)
Φ1(wm)

]>
(87)

=

√
2d

m

[
ReLU(X>w1)

‖w1‖2
, . . . ,

ReLU(X>wm)

‖wm‖2

]>
. (88)

Putting all together into Theorem 5, we derive the result. This completes the proof of Theorem 7.

Approximate sampling. It is not trivial to sample a vector w ∈ Rd from the distribution q(·) defined
in Eq. (86). Thus, we suggest to perform an approximate sampling via Gibbs sampling. The algorithm
starts with a random initialized vector w and then iteratively replaces [w]i with a sample

q([w]i|[w]\{i}) ∝
‖w‖22

1 + ‖w‖22 − [w]2i
exp

(
− [w]2i

2

)
(89)

for i ∈ [d] and repeats this process for T iterations. Sampling from q([w]i|[w]\{i}) can be done
via the inverse transformation method.‡ We empirically verify that T = 1 is enough for promising
performances. The running time of Gibbs sampling becomes O(m1dT ) where m1 corresponds
to the number of independent samples from q(v). This is negligible compared to the feature map
construction with POLYSKETCH for T = O(1). The pseudo-code for the modified random features
of A1 using Gibbs sampling is outlined in Algorithm 3.

E.3 Proof of Theorem 3

Our proof relies on spectral approximation bounds of POLYSKETCH given in the fourth part of
Lemma 1.
Theorem 3. Given a dataset X ∈ Rd×n with ‖X(:,i)‖2 ≤ 1 for every i ∈ [n], let Kntk,K0,K1

be kernel matrices for two-layer ReLU NTK and arc-cosine kernels of 0th and 1st order, respec-
tively. For any λ > 0, suppose sλ is the statistical dimension of Kntk. Modify Algorithm 2 by

‡It requires the CDF of q([w]i|[w]\{i}) which is equivalent to
erf([w]i/

√
2)+1

2
− [w]i exp(−[w]2i /2)√

2π(1+‖w‖22−[w]2i )
.
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replacing Φ1(·) in line 5 with Φ̃1(·) defined in Eq. (15). For any ε, δ > 0, let Ψ
(L)
rf ∈ R(m1+ms)×n

be the output matrix of this algorithm with L = 1. There exist m0 = O
(
n
ε2λ log sλ

δ

)
,m1 =

O
(
d
ε2 ·min

{
rank(X)2,

‖X‖22
λ

}
log sλ

δ

)
,ms = O

(
1
ε2 · n

1+λ log3 n
εδ

)
such that,

Pr

[
(1− ε) (Kntk + λI) �

(
Ψ

(L)
rf

)>
Ψ

(L)
rf + λI � (1 + ε) (Kntk + λI)

]
≥ 1− δ. (17)

Proof of Theorem 3: Note that the NTK of two-layer ReLU network can be formulated as

Kntk = K1 + K0 � (X>X) (90)

where K0 and K1 are the arc-cosine kernel matrices of order 0 and 1 with dataset X , respectively.

Let Φ0 and Φ1 be the random features of K0 and K1, defined as per Theorem 6 and Theorem 7,
respectively. Also let Ψrf be the feature matrix that Algorithm 2 outputs, that is each column of
this matrix is obtained by applying this algorithm on the dataset X . By basic properties of tensor
products we have,

Ψrf := Φ1 ⊕Q2 · (Φ0 ⊗X) . (91)

Our proof is a combination of spectral analysis of Φ>0 Φ0,Φ
>
1 Φ1 and

(
Q2 (Φ0 ⊗X)

)> ·
Q2 (Φ0 ⊗X) which are stated in Theorem 6, Theorem 7 and Lemma 1, respectively.

From Theorem 7, if m1 ≥ 16
3
d
ε2 min

{
rank(X)2,

‖X‖22
λ

}
log
(

48sλ
δ

)
then with probability at least

1− δ
3 the following holds,

(1− ε)
(
K1 +

λ

2
I

)
� Φ>1 Φ1 +

λ

2
I � (1 + ε)

(
K1 +

λ

2
I

)
. (92)

From Theorem 6, if m0 ≥ 48 n
λε2 log

(
48sλ
δ

)
then with probability at least 1− δ

3 it holds that,(
1− ε

3

)(
K0 +

λ

2
I

)
� Φ>0 Φ0 +

λ

2
I �

(
1 +

ε

3

)(
K0 +

λ

2
I

)
(93)

Rearranging Eq. (93), we get

Φ>0 Φ0 �
(

1 +
ε

3

)
K0 +

ε

6
λI.

Now we bound the trace of (Φ0 ⊗X)
> · (Φ0 ⊗X) = Φ>0 Φ0 �X>X:

tr
(
Φ>0 Φ0 �X>X

)
=
∑
j∈[n]

[Φ>0 Φ0]j,j · [X>X]j,j

≤
∑
j∈[n]

[Φ>0 Φ0]j,j

≤ n.

Now note that, we can write,

sλ

(
(Φ0 ⊗X)

>
(Φ0 ⊗X)

)
≤ tr

(
Φ>0 Φ0 �X>X

)
tr
(
Φ>0 Φ0 �X>X

)
/n+ λ

≤ n

1 + λ
. (94)

To guarantee spectral approximation of
(
Q2 (Φ0 ⊗X)

)> ·Q2 (Φ0 ⊗X), we will use the result of
Lemma 1. Using Eq. (94) along with Lemma 1 and the fact that ms ≥ C

ε2 · n
1+λ log3 n

εδ for some
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constant C, and union bound, with probability at least 1− δ
2 , we have(

Q2 (Φ0 ⊗X)
)>

Q2 (Φ0 ⊗X) +
λ

2
I �

(
1 +

ε

3

)(
Φ>0 Φ0 �X>X +

λ

2
I

)
�
(

1 +
ε

3

)([(
1 +

ε

3

)
K0 +

ε

6
λI
]
�X>X +

λ

2
I

)
=
(

1 +
ε

3

)((
1 +

ε

3

) (
K0 �X>X

)
+
ε

6
λ(I �X>X) +

λ

2
I

)
�
(

1 +
ε

3

)(
1 +

ε

3

)(
K0 �X>X +

λ

2
I

)
� (1 + ε)

(
K0 �X>X +

λ

2
I

)
(95)

where the inequality in second line follows from Lemma 9 and the fourth line follows from the
assumption

∥∥X(:,i)

∥∥
2
≤ 1 for all i ∈ [n] which leads that I � (X>X) � I . The last inequality

holds since ε ∈ (0, 1/2).

Similarly, we can obtain the following lower bound:(
Q2 (Φ0 ⊗X)

)>
Q2 (Φ0 ⊗X) +

λ

2
I � (1− ε)

(
K0 �X>X +

λ

2
I

)
. (96)

Combining Eq. (92), Eq. (95) and Eq. (96) gives

(1− ε) (Kntk + λI) � Ψ>rfΨrf + λI � (1 + ε) (Kntk + λI) . (97)

Furthermore, by taking a union bound over all events, Eq. (97) holds with probability at least 1− δ.
This completes the proof of Theorem 3.

E.4 Auxiliary Lemmas

Lemma 9. If A,B,C are positive semi-definite matrices of conforming sizes such that B � C,
then,

A�B � A�C.

Proof of Lemma 9: We want to show that for any vector v, v>A �Bv � v>A � Cv. Because
the matrices A,B,C are PSD, there exist matrices X,Y ,Z of appropriate sizes such that we can
decompose these matrices as follows,

A = X>X, B = Y >Y , C = Z>Z.

Using this and basic properties of tensor products, we have the following for any vector v,

v>A�Bv = ‖X ⊗ Y v‖22
= ‖X · diag(v) · Y >‖2F
=
∑
i

(X(i,:) � v)> ·B · (X(i,:) � v)

≤
∑
i

(X(i,:) � v)> ·C · (X(i,:) � v)

= v>A�Cv.

This completes the proof of Lemma 9.

F ReLU-CNTK: Expression and Main Properties

In this section we prove that the depth-L CNTK corresponding to ReLU activation is highly structured
and can be fully characterized in terms of tensoring and composition of arc-cosine kernel functions
κ1(·) and κ0(·). We refer to this kernel function as ReLU-CNTK. First we start by restating the DP
proposed by Arora et al. [5] for computing the L-layer CNTK kernel corresponding to an arbitrary
activation function σ : R→ R and convolutional filters of size q × q, with GAP:
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1. Let y, z ∈ Rd1×d2×c be two input images, where c is the number of channels (c = 3 for RGB
images). Define Γ(0) : Rd1×d2×c×Rd1×d2×c → Rd1×d2×d1×d2 and Σ(0) : Rd1×d2×c×Rd1×d2×c →
Rd1×d2×d1×d2 as follows for every i, i′ ∈ [d1] and j, j′ ∈ [d2]:

Γ(0)(y, z) :=

c∑
l=1

y(:,:,l) ⊗ z(:,:,l),

Σ
(0)
i,j,i′,j′(y, z) :=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

Γ
(0)
i+a,j+b,i′+a,j′+b(y, z).

(98)

2. For every layer h = 1, 2, . . . , L of the network and every i, i′ ∈ [d1] and j, j′ ∈ [d2], define
Γ(h) : Rd1×d2×c × Rd1×d2×c → Rd1×d2×d1×d2 recursively as:

Λ
(h)
i,j,i′,j′(y, z) :=

Σ
(h−1)
i,j,i,j (y, y) Σ

(h−1)
i,j,i′,j′(y, z)

Σ
(h−1)
i′,j′,i,j(z, y) Σ

(h−1)
i′,j′,i′,j′(z, z)

 ,

Γ
(h)
i,j,i′,j′(y, z) :=

1

q2 · Ew∼N (0,1) [|σ(w)|2]
· E

(u,v)∼N
(

0,Λ
(h)

i,j,i′,j′ (y,z)
) [σ(u) · σ(v)] ,

Σ
(h)
i,j,i′,j′(y, z) :=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

Γ
(h)
i+a,j+b,i′+a,j′+b(y, z),

(99)

3. For every h = 1, 2, . . . L, every i, i′ ∈ [d1] and j, j′ ∈ [d2], define Γ̇(h)(y, z) ∈ Rd1×d2×d1×d2 as:

Γ̇
(h)
i,j,i′,j′(y, z) :=

1

q2 · Ew∼N (0,1) [|σ(w)|2]
· E

(u,v)∼N
(

0,Λ
(h)

i,j,i′,j′ (y,z)
) [σ̇(u) · σ̇(v)] . (100)

4. Let Π(0)(y, z) := 0 and for every h = 1, 2, . . . , L− 1, every i, i′ ∈ [d1] and j, j′ ∈ [d2], define
Π(h) : Rd1×d2×c × Rd1×d2×c → Rd1×d2×d1×d2 recursively as:

Π
(h)

i,j,i′,j′(y, z) :=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[
Π(h−1)(y, z)� Γ̇(h)(y, z) + Γ(h)(y, z)

]
i+a,j+b,i′+a,j′+b

,

Π(L)(y, z) := Π(L−1)(y, z)� Γ̇(L)(y, z).

(101)

5. The final CNTK expressions is defined as:

Θ
(L)
cntk(y, z) :=

1

d2
1d

2
2

·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

Π
(L)
i,j,i′,j′(y, z). (102)

Now we show how to recursively compute the ReLU-CNTK as follows,
Definition 2 (ReLU-CNTK). For every positive integers q, L, the L-layer CNTK for ReLU activation
function and convolutional filter size of q × q is defined as follows

1. For x ∈ Rd1×d2×c, every i ∈ [d1] and j ∈ [d2] let N (0)
i,j (x) := q2 ·∑c

l=1 |xi+a,j+b,l|
2, and for

every h ≥ 1, recursively define,

N
(h)
i,j (x) :=

1

q2
·

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

N
(h−1)
i+a,j+b(x). (103)

2. Define Γ(0)(y, z) :=
∑c
l=1 y(:,:,l) ⊗ z(:,:,l). Let κ1 : [−1, 1] → R be the function defined in

Eq. (2) of Definition 1. For every layer h = 1, 2, . . . , L, every i, i′ ∈ [d1] and j, j′ ∈ [d2], define
Γ(h) : Rd1×d2×c × Rd1×d2×c → Rd1×d2×d1×d2 recursively as:

Γ
(h)

i,j,i′,j′(y, z) :=

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
· κ1


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b(y, z)√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

 . (104)
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3. Let κ0 : [−1, 1]→ R be the function defined in Eq. (2) of Definition 1. For every h = 1, 2, . . . L,
every i, i′ ∈ [d1] and j, j′ ∈ [d2], define Γ̇(h)(y, z) ∈ Rd1×d2×d1×d2 as:

Γ̇
(h)
i,j,i′,j′(y, z) :=

1

q2
· κ0


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i′+a,j′+b(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)

 . (105)

4. Let Π(0)(y, z) := 0 and for every h = 1, 2, . . . , L− 1, every i, i′ ∈ [d1] and j, j′ ∈ [d2], define
Π(h) : Rd1×d2×c × Rd1×d2×c → Rd1×d2×d1×d2 recursively as:

Π
(h)

i,j,i′,j′(y, z) :=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[
Π(h−1)(y, z)� Γ̇(h)(y, z) + Γ(h)(y, z)

]
i+a,j+b,i′+a,j′+b

. (106)

Furthermore, for h = L define:

Π(L)(y, z) := Π(L−1)(y, z)� Γ̇(L)(y, z). (107)

5. The final CNTK expressions for ReLU activation is:

Θ
(L)
cntk(y, z) :=

1

d2
1d

2
2

·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

Π
(L)
i,j,i′,j′(y, z). (108)

In what follows we prove that the procedure in Definition 2 precisely computes the CNTK kernel
function corresponding to ReLU activation and additionally, we present useful corollaries and
consequences of this fact.

Lemma 10. For every positive integers d1, d2, c, odd integer q, and every integer h ≥ 0, if the
activation function is ReLU, then the tensor covariances Γ(h), Γ̇(h)(y, z) : Rd1×d2×c ×Rd1×d2×c →
Rd1×d2×d1×d2 defined in Eq. (99) and Eq. (100), are precisely equal to the tensor covariances defined
in Eq. (104) and Eq. (105) of Definition 2, respectively.

Proof of Lemma 10: To prove the lemma, we first show by induction on h = 1, 2, . . . that N (h)
i,j (x) ≡

Σ
(h−1)
i,j,i,j (x, x) for every x ∈ Rd1×d2×c and every i ∈ [d1] and j ∈ [d2], where Σ(h−1)(x, x) is defined

as per Eq. (98) and Eq. (99). The base of induction trivially holds for h = 1 because by definition
of N (1)(x) and Eq. (98) we have,

N
(1)
i,j (x) =

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

c∑
l=1

|xi+a,j+b,l|2 ≡ Σ
(0)
i,j,i,j(x, x).

To prove the inductive step, suppose that the inductive hypothesis N (h−1)
i,j (x) = Σ

(h−2)
i,j,i,j (x, x) holds

for some h ≥ 2. Now we show that conditioned on the inductive hypothesis, the inductive claim
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holds. By Eq. (99), we have,

Σ
(h−1)
i,j,i,j (x, x) =

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

Γ
(h−1)
i+a,j+b,i+a,j+b(x, x)

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

E
(u,v)∼N

(
0,Λ

(h−1)
i+a,j+b,i+a,j+b(x,x)

) [σ(u) · σ(v)]

q2 · Ew∼N (0,1) [|σ(w)|2]

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

E
u∼N

(
0,Σ

(h−2)
i+a,j+b,i+a,j+b(x,x)

) [|max(0, u)|2
]

q2 · Ew∼N (0,1) [|max(0, w)|2]

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

1

q2
· Σ(h−2)

i+a,j+b,i+a,j+b(x, x)

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

1

q2
·N (h−1)

i+a,j+b(x) ≡ N (h)
i,j (x). (by Eq. (103))

Therefore, this proves that N (h)
i,j (x) ≡ Σ

(h−1)
i,j,i,j (x, x) for every x and every integer h ≥ 1.

Now, note that the 2× 2 covariance matrix Λ
(h)
i,j,i′,j′(y, z), defined in Eq. (99), can be decomposed

as Λ
(h)
i,j,i′,j′(y, z) =

(
f>

g>

)
· (f g), where f, g ∈ R2. Also note that ‖f‖22 = Σ

(h−1)
i,j,i,j (y, y) and

‖g‖22 = Σ
(h−1)
i′,j′,i′,j′(z, z), hence, by what we proved above, we have,

‖f‖22 = N
(h)
i,j (y), and ‖g‖22 = N

(h)
i′,j′(z).

Therefore, by Eq. (21), we can write:

Γ
(h)
i,j,i′,j′(y, z) =

1

q2 · Ew∼N (0,1) [|σ(w)|2]
· E

(u,v)∼N
(

0,Λ
(h)

i,j,i′,j′ (y,z)
) [σ(u) · σ(v)]

=
1

q2 · Ew∼N (0,1) [|σ(w)|2]
· Eu∼N (0,Id)

[
σ(u>f) · σ(u>g)

]
=

2 · ‖f‖2 · ‖g‖2
q2 · κ1(1)

· 1

2
· κ1

( 〈f, g〉
‖f‖2 · ‖g‖2

)

=

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
· κ1

 Σ
(h−1)
i,j,i′,j′(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)



=

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
· κ1


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i′+a,j′+b(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)

 ,

where the third line follows from Eq. (21) and fourth line follows because we have 〈f, g〉 =

Σ
(h−1)
i,j,i′,j′(y, z). The fifth line above follows from Eq. (99). This proves the equivalence between the

tensor covariance defined in Eq. (99) and the one defined in Eq. (104) of Definition 2. Similarly, by
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using Eq. (21), we can prove the statement of the lemma about Γ̇
(h)
i,j,i′,j′(y, z) as follows,

Γ̇
(h)
i,j,i′,j′(y, z) =

1

q2 · Ew∼N (0,1) [|σ(w)|2]
· E

(u,v)∼N
(

0,Λ
(h)

i,j,i′,j′ (y,z)
) [σ̇(u) · σ̇(v)]

=
1

q2 · Ew∼N (0,1) [|σ(w)|2]
· Eu∼N (0,Id)

[
σ̇(u>f) · σ̇(u>g)

]
=

2

q2 · κ1(1)
· 1

2
· κ0

( 〈f, g〉
‖f‖2 · ‖g‖2

)

=
1

q2
· κ0

 Σ
(h−1)
i,j,i′,j′(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)



=
1

q2
· κ0


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i′+a,j′+b(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)

 .

This completes the proof of Lemma 10.
Corollary 1 (Consequence of Lemma 10). Consider the preconditions of Lemma 10. For every

x ∈ Rd1×d2×c, N (h)
i,j (x) ≡∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i+a,j+b(x, x).

We describe some of the basic properties of the function Γ(h)(y, z) defined in Eq. (104) in the
following lemma,

Lemma 11 (Properties of Γ(h)(y, z)). For every images y, z ∈ Rd1×d2×c, every integer h ≥ 0 and
every i, i′ ∈ [d1] and j, j′ ∈ [d2] the following properties are satisfied by functions Γ(h) and N (h)

defined in Eq. (104) and Eq. (103) of Definition 2:

1. Cauchy–Schwarz inequality:
∣∣∣Γ(h)
i,j,i′,j′(y, z)

∣∣∣ ≤ √
N

(h)
i,j (y)·N(h)

i′,j′ (z)

q2 .

2. Norm value: Γ
(h)
i,j,i,j(y, y) =

N
(h)
i,j (y)

q2 ≥ 0.

Proof of Lemma 11: We prove the lemma by induction on h. The base of induction corresponds to
h = 0. In the base case, by Eq. (103) and Eq. (104) and Cauchy–Schwarz inequality, we have∣∣∣Γ(0)

i,j,i′,j′(y, z)
∣∣∣ ≡ ∣∣∣∣∣

c∑
l=1

yi,j,l · zi′,j′,l
∣∣∣∣∣

≤

√√√√ c∑
l=1

|yi,j,l|2 ·
c∑
l=1

|zi′,j′,l|2

=

√
N

(0)
i,j (y) ·N (0)

i′,j′(z)

q2
.

This proves the base for the first statement. Additionally we have, Γ
(0)
i,j,i,j(y, y) =

∑c
l=1 y

2
i,j,l =

N
(0)
i,j (y)

q2 ≥ 0 which proves the base for the second statement of the lemma. Now, in order to prove the
inductive step, suppose that statements of the lemma hold for h− 1, where h ≥ 1. Then, conditioned
on this, we prove that the lemma holds for h. First note that by conditioning on the inductive
hypothesis, applying Cauchy–Schwarz inequality, and using the definition of N (h) in Eq. (103), we
can write∣∣∣∣∣∣∣
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b(y, z)√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

∣∣∣∣∣∣∣ ≤
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

√
N

(h−1)
i+a,j+b

(y)

q2
·
N

(h−1)

i′+a,j′+b(z)

q2√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

≤ 1.
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Thus, by monotonicity of the function κ1 : [−1, 1]→ R, we can write,

∣∣∣Γ(h)
i,j,i′,j′(y, z)

∣∣∣ ≡
√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
· κ1


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i′+a,j′+b(y, z)√

N
(h)
i,j (y) ·N (h)

i′,j′(z)


≤

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
· κ1(1)

=

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
,

where the second line above follows because of the fact that κ1(·) is a monotonically increasing
function. This completes the inductive step for the first statement of lemma. Now we prove the
inductive step for the second statement as follows,

Γ
(h)
i,j,i,j(y, y) ≡

N
(h)
i,j (y)

q2
· κ1


∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i+a,j+b(y, y)

N
(h)
i,j (y)


=
N

(h)
i,j (y)

q2
· κ1(1)

=
N

(h)
i,j (y)

q2
≥ 0,

where we used Corollary 1 to conclude that
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)
i+a,j+b,i+a,j+b(y, y) = N

(h)
i,j (y)

and then used the fact that N (h)
i,j (y) is non-negative. This completes the inductive proof of the lemma.

This completes the proof of Lemma 11.

We also describe some of the main properties of the function Γ̇(h)(y, z) defined in Eq. (105) in the
following lemma,

Lemma 12 (Properties of Γ̇(h)(y, z)). For every images y, z ∈ Rd1×d2×c, every integer h ≥ 0 and
every i, i′ ∈ [d1] and j, j′ ∈ [d2] the following properties are satisfied by function Γ̇(h) defined in
Eq. (105) of Definition 2:

1. Cauchy–Schwarz inequality:
∣∣∣Γ̇(h)
i,j,i′,j′(y, z)

∣∣∣ ≤ 1
q2 .

2. Norm value: Γ̇
(h)
i,j,i,j(y, y) = 1

q2 ≥ 0.

Proof of Lemma 12: First, note that by Lemma 11 and the definition of N (h) in Eq. (103) we have,∣∣∣∣∣∣∣
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b(y, z)√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

∣∣∣∣∣∣∣ ≤
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

√
N

(h−1)
i+a,j+b

(y)

q2
·
N

(h−1)

i′+a,j′+b(z)

q2√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

≤ 1.

Thus, by monotonicity of function κ0 : [−1, 1] → R and using Eq. (105), we can write,
Γ̇

(h)
i,j,i′,j′(y, z) ≤ 1

q2 · κ0(1) = 1
q2 . Moreover, the equality is achieved when y = z and i = i′

and j = j′. This proves both statements of the lemma.

We also need to use some properties of Π(h)(y, z) defined in Eq. (106) and Eq. (107). We present
these propertied in the next lemma,

Lemma 13 (Properties of Π(h)). For every images y, z ∈ Rd1×d2×c, every integer h ≥ 0 and every
i ∈ [d1] and j ∈ [d2] the following properties are satisfied by the function Π(h) defined in Eq. (106)
and Eq. (107) of Definition 2:
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1. Cauchy–Schwarz inequality: Π
(h)
i,j,i′,j′(y, z) ≤

√
Π

(h)
i,j,i,j(y, y) ·Π(h)

i′,j′,i′,j′(z, z).

2. Norm value: Π
(h)
i,j,i,j(y, y) =

{
h ·N (h+1)

i,j (y) if h < L
L−1
q2 ·N

(L)
i,j (y) if h = L

.

Proof of Lemma 13: The proof is by induction on h. The base of induction corresponds to h = 0. By
definition of Π

(0)
i,j,i,j ≡ 0 in Eq. (106), the base of induction for both statements of the lemma follow

immediately.

Now we prove the inductive hypothesis. Suppose that the lemma statement holds for h− 1. We prove
that conditioned on this, the statements of the lemma hold for h. There are two cases. The first case
corresponds to h < L. In this case, by definition of Π

(h)
i,j,i,j(x, x) in Eq. (106) and using Lemma 11

and Lemma 12 we can write,

∣∣∣Π(h)

i,j,i′,j′(y, z)
∣∣∣ ≡

∣∣∣∣∣∣∣
q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[
Π(h−1)(y, z)� Γ̇(h)(y, z) + Γ(h)(y, z)

]
i+a,j+b,i′+a,j′+b

∣∣∣∣∣∣∣
≤

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

√
Π

(h−1)
i+a,j+b,i+a,j+b(y, y) ·Π(h−1)

i′+a,j′+b,i′+a,j′+b(z, z)

q2
+

√
N

(h)
i+a,j+b(y) ·N (h)

i′+a,j′+b(z)

q2

≤

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

√
Π

(h−1)
i+a,j+b,i+a,j+b(y, y) +N

(h)
i+a,j+b(y)

q2
·

√
Π

(h−1)

i′+a,j′+b,i′+a,j′+b(z, z) +N
(h)

i′+a,j′+b(z)

q2

≤
√

Π
(h)
i,j,i,j(y, y) ·

√
Π

(h)

i′,j′,i′,j′(z, z),

where the second line above follows from inductive hypothesis along with Lemma 11 and Lemma 12.
The third and fourth lines above follow by Cauchy–Schwarz inequality. The second case corresponds
to h = L. In this case, by definition of Π

(L)
i,j,i′,j′(y, z) in Eq. (107) and using Lemma 11 and Lemma 12

along with the inductive hypothesis we can write,∣∣∣Π(L)

i,j,i′,j′(y, z)
∣∣∣ ≡ ∣∣∣Π(L−1)

i,j,i′,j′(y, z) · Γ̇
(L)

i,j,i′,j′(y, z)
∣∣∣

≤

√
Π

(L−1)
i,j,i,j (y, y) ·Π(L−1)

i′,j′,i′,j′(z, z)

q2

=

√
Π

(L)
i,j,i,j(y, y) ·

√
Π

(L)

i′,j′,i′,j′(z, z),

where the second line above follows from inductive hypothesis along with Lemma 12. This completes
the inductive step and in turn proves the first statement of the lemma.

To prove the inductive step for the second statement of lemma we consider two cases again. The first
case is h < L. In this case, note that by using inductive hypothesis together with Lemma 11 and
Lemma 12 we can write,

Π
(h)
i,j,i,j(y, y) ≡

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[
Π(h−1)(y, y)� Γ̇(h)(y, y) + Γ(h)(y, y)

]
i+a,j+b,i+a,j+b

=

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

(h− 1) ·N (h)
i+a,j+b(y)

q2
+
N

(h)
i+a,j+b(y)

q2

= h ·
q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

N
(h)
i+a,j+b(y)

q2

= h ·N (h+1)
i,j (y),
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where the last line above follows from definition of N (h) in Eq. (103). The second case corresponds
to h = L. In this case, by inductive hypothesis together with Lemma 11 and Lemma 12 we can write,

Π
(L)
i,j,i,j(y, y) ≡ Π

(L−1)
i,j,i,j (y, y) · Γ̇(L)

i,j,i,j(y, y)

=
(L− 1) ·N (L)

i,j (y)

q2
.

This completes the inductive step for the second statement and in turn proves the second statement of
the lemma. This completes the proof of Lemma 13.

G CNTK Sketch: Algorithm, Claims and Invariants

In this section we give our sketching algorithm for the CNTK kernel and prove our main theorem
for this algorithm, i.e., Theorem 4. We start by introducing our CNTKSKETCH algorithm in the
following definition:
Definition 3 (CNTKSKETCH Algorithm). For every image x ∈ Rd1×d2×c, we compute the CN-
TKSKETCH , Ψ

(L)
cntk(x), recursively as follows,

• Let s = Õ
(
L2

ε2

)
, r = Õ

(
L6

ε4

)
, n1 = Õ

(
L4

ε4

)
, m = Õ

(
L8

ε16/3

)
, and s∗ = O( 1

ε2 log 1
δ ) and

P
(p)
relu(α) =

∑2p+2
l=0 cl · αl and Ṗ (p′)

relu(α) =
∑2p′+1
l=0 bl · αl be the polynomials defined in Eq. (6).

1. For every i ∈ [d1], j ∈ [d2], and h = 0, 1, 2, . . . L compute N (h)
i,j (x) as per Eq. (103) of

Definition 2.

2. Let S ∈ Rr×c be an SRHT. For every i ∈ [d1] and j ∈ [d2], compute φ(0)
i,j (x) ∈ Rr as,

φ
(0)
i,j (x)← S · x(i,j,:). (109)

3. Let Q2p+2 ∈ Rm×(q2r)
2p+2

be a degree-2p + 2 POLYSKETCH , and T ∈ Rr×(2p+3)·m be an
SRHT. For every h ∈ [L], every i ∈ [d1] and j ∈ [d2], and l = 0, 1, 2, . . . 2p+ 2 compute:

µ
(h)
i,j (x)←

q−1
2⊕

a=− q−1
2

q−1
2⊕

b=− q−1
2

φ
(h−1)
i+a,j+b(x)√
N

(h)
i,j (x)

,

[
Z

(h)
i,j (x)

]
l
← Q2p+2 ·

([
µ

(h)
i,j (x)

]⊗l
⊗ e⊗2p+2−l

1

)
,

φ
(h)
i,j (x)←

√
N

(h)
i,j (x)

q
· T ·

(
2p+2⊕
l=0

√
cl

[
Z

(h)
i,j (x)

]
l

)
.

(110)

4. Let Q2p′+1 ∈ Rn1×(q2r)
2p′+1

be a degree-2p′ + 1 POLYSKETCH , and W ∈ Rs×(2p′+2)·n1 be
an SRHT. For every h ∈ [L], i ∈ [d1], j ∈ [d2], and l = 0, 1, . . . 2p′ + 1 compute:[

Y
(h)
i,j (x)

]
l
← Q2p′+1

([
µ

(h)
i,j (x)

]⊗l
⊗ e⊗2p′+1−l

1

)
,

φ̇
(h)
i,j (x)← 1

q
·W

2p′+1⊕
l=0

√
bl

[
Y

(h)
i,j (x)

]
l

 .

(111)

5. Let Q2 ∈ Rs×s2 be a degree-2 POLYSKETCH , and R ∈ Rs×q2(s+r) be an SRHT. Let ψ(0)
i,j (x)←

0 and for every h ∈ [L− 1], and i ∈ [d1], j ∈ [d2], compute ψ(h)
i,j (x) ∈ Rs as:

η
(h)
i,j (x)← Q2

(
ψ

(h−1)
i,j (x)⊗ φ̇(h)

i,j (x)
)
⊕ φ(h)

i,j (x),

ψ
(h)
i,j (x)← R

 q−1
2⊕

a=− q−1
2

q−1
2⊕

b=− q−1
2

η
(h)
i+a,j+b(x)

 .
(112)
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(For h = L:) ψ
(L)
i,j (x)← Q2 ·

(
ψ

(L−1)
i,j (x)⊗ φ̇(L)

i,j (x)
)
. (113)

6. Let G ∈ Rs∗×s be a random matrix of i.i.d. normal entries with distribution N (0, 1/s∗). The
CNTKSKETCH is the following:

Ψ
(L)
cntk(y, z) :=

1

d1d2
·G ·

∑
i∈[d1]

∑
j∈[d2]

ψ
(L)
i,j (x)

 . (114)

In the following lemma, we analyze the correctness of the CNTKSKETCH algorithm by giving the
invariants that the algorithm maintains at all times,

Lemma 14 (Invariants of the CNTKSKETCH ). For every positive integers d1, d2, c, and L,
every ε, δ > 0, every images y, z ∈ Rd1×d2×c , if we let N (h) : Rd1×d2×c → Rd1×d2 ,
Γ(h)(y, z) ∈ Rd1×d2×d1×d2 and Π(h)(y, z) ∈ Rd1×d2×d1×d2 be the tensor functions defined in
Eq. (103), Eq. (104), Eq. (106), and Eq. (107) of Definition 2, respectively, then with probability at
least 1− δ the following invariants are maintained simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2]
and every h = 0, 1, 2, . . . L:

1. The mapping φ(h)
i,j (·) computed by the CNTK Sketch algorithm in Eq. (109) and Eq. (110) of

Definition 3 satisfy the following,

∣∣∣〈φ(h)
i,j (y), φ

(h)
i′,j′(z)

〉
− Γ

(h)
i,j,i′,j′ (y, z)

∣∣∣ ≤ (h+ 1) · ε2

60L3
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
.

2. The mapping ψ(h)
i,j (·) computed by the CNTK Sketch algorithm in Eq. (112) and Eq. (113) of

Definition 3 satisfy the following,

∣∣∣〈ψ(h)
i,j (y), ψ

(h)
i′,j′(z)

〉
−Π

(h)
i,j,i′,j′ (y, z)

∣∣∣ ≤
 ε

10 · h2

L+1 ·
√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z) if h < L

ε
10 · L−1

q2 ·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z) if h = L
.

Proof of Lemma 14: The proof is by induction on the value of h = 0, 1, 2, . . . L. More formally,
consider the following statements for every h = 0, 1, 2, . . . L:

P1(h) : Simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2]:

∣∣∣〈φ(h)
i,j (y), φ

(h)
i′,j′(z)

〉
− Γ

(h)
i,j,i′,j′ (y, z)

∣∣∣ ≤ (h+ 1) · ε2

60L3
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
,∣∣∣∣∥∥∥φ(h)

i,j (y)
∥∥∥2

2
− Γ

(h)
i,j,i,j (y, y)

∣∣∣∣ ≤ (h+ 1) · ε2

60L3
·
N

(h)
i,j (y)

q2
,∣∣∣∣∥∥∥φ(h)

i′,j′(z)
∥∥∥2

2
− Γ

(h)
i′,j′,i′,j′ (z, z)

∣∣∣∣ ≤ (h+ 1) · ε2

60L3
·
N

(h)
i′,j′(z)

q2
.

P2(h) : Simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2]:

∣∣∣〈ψ(h)
i,j (y), ψ

(h)
i′,j′(z)

〉
−Π

(h)
i,j,i′,j′ (y, z)

∣∣∣ ≤
 ε

10 · h2

L+1 ·
√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z) if h < L

ε
10 · L−1

q2 ·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z) if h = L
,

(only for h < L) :

∣∣∣∣∥∥∥ψ(h)
i,j (y)

∥∥∥2

2
−Π

(h)
i,j,i,j (y, y)

∣∣∣∣ ≤ ε

10
· h2

L+ 1
·N (h+1)

i,j (y),

(only for h < L) :

∣∣∣∣∥∥∥ψ(h)
i′,j′(z)

∥∥∥2

2
−Π

(h)
i′,j′,i′,j′ (z, z)

∣∣∣∣ ≤ ε

10
· h2

L+ 1
·N (h+1)

i′,j′ (z).
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We prove that probabilities Pr[P1(0)] and Pr[P2(0)|P1(0)] are both greater than 1−O(δ/L). Addi-
tionally, for every h = 1, 2, . . . L, we prove that the conditional probabilities Pr[P1(h)|P1(h− 1)]
and Pr[P2(h)|P2(h− 1), P1(h), P1(h− 1)] are greater than 1−O(δ/L).

The base of induction corresponds to h = 0. By Eq. (109), φ(0)
i,j (y) = S · y(i,j,:) and φ(0)

i′,j′(z) =
S · z(i′,j′,:), thus, Lemma 2 implies the following

Pr
[∣∣∣〈φ(0)

i,j (y), φ
(0)
i′,j′(z)

〉
−
〈
y(i,j,:), z(i′,j′,:)

〉∣∣∣ ≤ O (ε2/L3
)
· ‖y(i,j,:)‖2‖z(i′,j′,:)‖2

]
≥ 1−O

(
δ

d2
1d

2
2L

)
,

therefore, by using Eq. (103) and Eq. (104) we have

Pr

∣∣∣〈φ(0)
i,j (y), φ

(0)

i′,j′(z)
〉
− Γ

(0)

i,j,i′,j′(y, z)
∣∣∣ ≤ O (ε2/L3) ·

√
N

(0)
i,j (y) ·N (0)

i′,j′(z)

q2

 ≥ 1−O
(

δ

d21d
2
2L

)
.

Similarly, we can prove that with probability at least 1−O
(

δ
d21d

2
2L

)
, the following hold∣∣∣∣∥∥∥φ(0)

i,j (y)
∥∥∥2
2
− Γ

(0)
i,j,i,j (y, y)

∣∣∣∣ ≤ O (ε2/L3) · N (0)
i,j (y)

q2
,∣∣∣∣∥∥∥φ(0)

i′,j′(z)
∥∥∥2
2
− Γ

(0)

i′,j′,i′,j′ (z, z)

∣∣∣∣ ≤ O (ε2/L3) · N (0)

i′,j′(z)

q2
.

By union bounding over all i, i′ ∈ [d1] and j, j′ ∈ [d2], this proves the base of induction for statement
P1(h), i.e., Pr[P1(0)] ≥ 1−O(δ/L).

Moreover, by Eq. (112), we have that ψ(0)
i,j (y) = 0 and ψ(0)

i′,j′(z) = 0, thus, by Eq. (106), it trivially
holds that Pr[P2(0)|P1(0)] = 1 ≥ 1−O(δ/L). This completes the base of induction.

Now, we proceed to prove the inductive step. That is, by assuming the inductive hypothesis for
h − 1, we prove that statements P1(h) and P2(h) hold. More precisely, first we condition on the
statement P1(h− 1) being true for some h ≥ 1, and then prove that P1(h) holds with probability at
least 1−O(δ/L). Next we show that conditioned on statements P2(h− 1), P1(h), P1(h− 1) being
true, P2(h) holds with probability at least 1−O(δ/L). This will complete the induction.

First, note that by Lemma 2, union bound, and using Eq. (110), the following holds simultaneously
for all i, i′ ∈ [d1] and all j, j′ ∈ [d2], with probability at least 1−O

(
δ
L

)
,∣∣∣∣∣∣

〈
φ
(h)
i,j (y), φ

(h)

i′,j′(z)
〉
−

√
N

(h)
i,j (y)N

(h)

i′,j′(z)

q2
·
2p+2∑
l=0

cl
〈[
Z

(h)
i,j (y)

]
l
,
[
Z

(h)

i′,j′(z)
]
l

〉∣∣∣∣∣∣ ≤ O
(
ε2

L3

)
·A, (115)

where A :=

√
N

(h)
i,j (y)N

(h)

i′,j′ (z)

q2 ·
√∑2p+2

l=0 cl

∥∥∥[Z(h)
i,j (y)

]
l

∥∥∥2

2
·
√∑2p+2

l=0 cl

∥∥∥[Z(h)
i′,j′(z)

]
l

∥∥∥2

2
and the

collection of vectors
{[
Z

(h)
i,j (y)

]
l

}2p+2

l=0
and

{[
Z

(h)
i′,j′(z)

]
l

}2p+2

l=0
and coefficients c0, c1, c2, . . . c2p+2

are defined as per Eq. (110) and Eq. (6), respectively. Additionally, by Lemma 1 and union bound,
the following inequalities hold, with probability at least 1 − O

(
δ
L

)
, simultaneously for all l =

0, 1, 2, . . . 2p+ 2, all i, i′ ∈ [d1] and all j, j′ ∈ [d2]:∣∣∣∣〈[Z(h)
i,j (y)

]
l
,
[
Z

(h)
i′,j′(z)

]
l

〉
−
〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉l∣∣∣∣ ≤ O( ε2

L3

)∥∥∥µ(h)
i,j (y)

∥∥∥l
2

∥∥∥µ(h)
i′,j′(z)

∥∥∥l
2∥∥∥[Z(h)

i,j (y)
]
l

∥∥∥2

2
≤ 11

10
·
∥∥∥µ(h)

i,j (y)
∥∥∥2l

2
(116)∥∥∥[Z(h)

i′,j′(z)
]
l

∥∥∥2

2
≤ 11

10
·
∥∥∥µ(h)

i′,j′(z)
∥∥∥2l

2

Therefore, by plugging Eq. (116) back to Eq. (115) and using union bound and triangle inequality as
well as Cauchy–Schwarz inequality, we find that with probability at least 1−O

(
δ
L

)
, the following

holds simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2]∣∣∣∣∣∣
〈
φ
(h)
i,j (y), φ

(h)

i′,j′(z)
〉
−

√
N

(h)
i,j (y)N

(h)

i′,j′(z)

q2
· P (p)

relu

(〈
µ
(h)
i,j (y), µ

(h)

i′,j′(z)
〉)∣∣∣∣∣∣ ≤ O

(
ε2

L3

)
·B, (117)
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where B :=

√
N

(h)
i,j (y)N

(h)

i′,j′ (z)

q2 ·
√
P

(p)
relu

(
‖µ(h)

i,j (y)‖22
)
· P (p)

relu

(
‖µ(h)

i′,j′(z)‖22
)

and P
(p)
relu(α) =∑2p+2

l=0 cl · αl is the polynomial defined in Eq. (6). By using the definition of µ(h)
i,j (·) in Eq. (110) we

have,

〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉
=

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

〈
φ

(h−1)
i+a,j+b(y), φ

(h−1)
i′+a,j′+b(z)

〉
√
N

(h)
i,j (y)N

(h)
i′,j′(z)

,

∥∥∥µ(h)
i,j (y)

∥∥∥2

2
=

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

∥∥∥φ(h−1)
i+a,j+b(y)

∥∥∥2

2

N
(h)
i,j (y)

,

∥∥∥µ(h)
i′,j′(z)

∥∥∥2

2
=

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

∥∥∥φ(h−1)
i′+a,j′+b(z)

∥∥∥2

2

N
(h)
i,j (z)

.

(118)

Hence, by conditioning on the inductive hypothesis P1(h− 1) and using Eq. (118) and Corollary 1
we have, ∣∣∣∣∥∥∥µ(h)

i,j (y)
∥∥∥2

2
− 1

∣∣∣∣ ≤ h · ε2

60L3
, and

∣∣∣∣∥∥∥µ(h)
i′,j′(z)

∥∥∥2

2
− 1

∣∣∣∣ ≤ h · ε2

60L3
.

Therefore, by invoking Lemma 4, it follows that
∣∣∣P (p)

relu

(
‖µ(h)

i,j (y)‖22
)
− P (p)

relu(1)
∣∣∣ ≤ h · ε2

60L3 and∣∣∣P (p)
relu

(
‖µ(h)

i′,j′(z)‖22
)
− P (p)

relu(1)
∣∣∣ ≤ h · ε2

60L3 . Consequently, because P (p)
relu(1) ≤ P

(+∞)
relu (1) = 1,

we find that

B ≤ 11

10
·

√
N

(h)
i,j (y)N

(h)
i′,j′(z)

q2
.

For shorthand we use the notation β :=

√
N

(h)
i,j (y)N

(h)

i′,j′ (z)

q2 . By plugging this into Eq. (117) and using
the notation β, we find that the following holds simultaneously for all i, i′ ∈ [d1] and all j, j′ ∈ [d2],
with probability at least 1−O

(
δ
L

)
,∣∣∣〈φ(h)

i,j (y), φ
(h)
i′,j′(z)

〉
− β · P (p)

relu

(〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉)∣∣∣ ≤ O( ε2

L3

)
· β. (119)

Furthermore, by conditioning on the inductive hypothesis P1(h− 1) and combining it with Eq. (118)
and applying Cauchy–Schwarz inequality and invoking Corollary 1 we find that,∣∣∣∣∣∣∣

〈
µ
(h)
i,j (y), µ

(h)

i′,j′(z)
〉
−

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b (y, z)√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

∣∣∣∣∣∣∣
≤

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

√
N

(h−1)
i+a,j+b(y) ·N (h−1)

i′+a,j′+b(z)

q2 ·
√
N

(h)
i,j (y) ·N (h)

i′,j′(z)
· h · ε2

60L3

≤

√∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

N
(h−1)
i+a,j+b

(y)

q2
·

√∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

N
(h−1)

i′+a,j′+b(z)

q2√
N

(h)
i,j (y) ·N (h)

i′,j′(z)
· h · ε

2

60L3

= h · ε2

60L3
,

(120)

where the last line follows from Eq. (103).

For shorthand, we use the notation γ :=

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b(y,z)√
N

(h)
i,j (y)·N(h)

i′,j′ (z)
. Note that by

Lemma 11 and Eq. (103), −1 ≤ γ ≤ 1. Hence, we can invoke Lemma 4 and use Eq. (120) to find
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that, ∣∣∣P (p)
relu

(〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉)
− P (p)

relu (γ)
∣∣∣ ≤ h · ε2

60L3
.

By incorporating the above inequality into Eq. (119) using triangle inequality we find that, with
probability at least 1−O

(
δ
L

)
, the following holds simultaneously for all i, i′ ∈ [d1] and all j, j′ ∈ [d2]:∣∣∣〈φ(h)

i,j (y), φ
(h)
i′,j′(z)

〉
− β · P (p)

relu (γ)
∣∣∣ ≤ (O( ε2

L3

)
+
h · ε2

60L3

)
· β. (121)

Additionally, since −1 ≤ γ ≤ 1, we can invoke Lemma 3 and use the fact that p =
⌈
2L2/ε4/3

⌉
to

conclude, ∣∣∣P (p)
relu (γ)− κ1(γ)

∣∣∣ ≤ ε2

76L3
.

By combining the above inequality with Eq. (121) via triangle inequality and using the fact that,
by Eq. (104), β · κ1(γ) ≡ Γ

(h)
i,j,i′,j′(y, z) we get the following inequality, with probability at least

1−O
(
δ
L

)
,

∣∣∣〈φ(h)
i,j (y), φ

(h)
i′,j′(z)

〉
− Γ

(h)
i,j,i′,j′(y, z)

∣∣∣ ≤ (h+ 1) · ε2

60L3
·

√
N

(h)
i,j (y)N

(h)
i′,j′(z)

q2
.

Similarly, we can prove that with probability at least 1−O
(
δ
L

)
the following hold, simultaneously

for all i, i′ ∈ [d1] and j, j′ ∈ [d2],∣∣∣∣∥∥∥φ(h)
i,j (y)

∥∥∥2
2
− Γ

(h)
i,j,i,j(y, y)

∣∣∣∣ ≤ (h+ 1)ε2

60L3
·
N

(h)
i,j (y)

q2
,∣∣∣∣∥∥∥φ(h)

i′,j′(z)
∥∥∥2
2
− Γ

(h)

i′,j′,i′,j′(z, z)

∣∣∣∣ ≤ (h+ 1)ε2

60L3
·
N

(h)

i′,j′(z)

q2
.

This is sufficient to prove the inductive step for statement P1(h), i.e., Pr[P1(h)|P1(h − 1)] ≥
1−O(δ/L).

Now we prove the inductive step for statement P2(h). That is, we prove that conditioned on
P2(h− 1), P1(h), and P1(h− 1), P2(h) holds with probability at least 1−O(δ/L). First, note that
by Lemma 2 and using Eq. (111) and union bound, we have the following simultaneously for all
i, i′ ∈ [d1] and all j, j′ ∈ [d2], with probability at least 1−O

(
δ
L

)
,∣∣∣∣∣∣

〈
φ̇

(h)
i,j (y), φ̇

(h)
i′,j′(z)

〉
− 1

q2

2p′+1∑
l=0

bl

〈[
Y

(h)
i,j (y)

]
l
,
[
Y

(h)
i′,j′(z)

]
l

〉∣∣∣∣∣∣ ≤ O
( ε
L

)
Â, (122)

where Â := 1
q2 ·

√∑2p′+1
l=0 bl

∥∥∥[Y (h)
i,j (y)

]
l

∥∥∥2

2
·
√∑2p′+1

l=0 bl

∥∥∥[Y (h)
i′,j′(z)

]
l

∥∥∥2

2
and the collection of

vectors
{[
Y

(h)
i,j (y)

]
l

}2p′+1

l=0
and

{[
Y

(h)
i′,j′(z)

]
l

}2p′+1

l=0
and coefficients b0, b1, b2, . . . b2p′+1 are defined

as per Eq. (111) and Eq. (6), respectively. By Lemma 1 and union bound, with probability at least
1−O

(
δ
L

)
, the following inequalities hold true simultaneously for all l ∈ {0, 1, 2, . . . 2p′ + 1}, all

i, i′ ∈ [d1] and all j, j′ ∈ [d2],∣∣∣∣〈[Y (h)
i,j (y)

]
l
,
[
Y

(h)
i′,j′(z)

]
l

〉
−
〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉l∣∣∣∣ ≤ O ( εL) · ∥∥∥µ(h)
i,j (y)

∥∥∥l
2

∥∥∥µ(h)
i′,j′(z)

∥∥∥l
2∥∥∥[Y (h)

i,j (y)
]
l

∥∥∥2

2
≤ 11

10
·
∥∥∥µ(h)

i,j (y)
∥∥∥2l

2
(123)∥∥∥[Y (h)

i′,j′(z)
]
l

∥∥∥2

2
≤ 11

10
·
∥∥∥µ(h)

i′,j′(z)
∥∥∥2l

2

Therefore, by plugging Eq. (123) into Eq. (122) and using union bound and triangle inequality as
well as Cauchy–Schwarz inequality, we find that with probability at least 1−O

(
δ
L

)
, the following

holds simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2]∣∣∣∣〈φ̇(h)
i,j (y), φ̇

(h)
i′,j′(z)

〉
− 1

q2
· Ṗ (p′)

relu

(〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉)∣∣∣∣ ≤ O ( εL) · B̂, (124)

45



where B̂ := 1
q2 ·

√
Ṗ

(p′)
relu

(
‖µ(h)

i,j (y)‖22
)
· Ṗ (p′)

relu

(
‖µ(h)

i′,j′(z)‖22
)

and Ṗ (p)
relu(α) =

∑2p′+1
l=0 bl · αl is

the polynomial defined in Eq. (6). By conditioning on the inductive hypothesis P1(h − 1) and

using Eq. (118) and Corollary 1 we have
∣∣∣∣∥∥∥µ(h)

i,j (y)
∥∥∥2

2
− 1

∣∣∣∣ ≤ h · ε2

60L3 and
∣∣∣∣∥∥∥µ(h)

i′,j′(z)
∥∥∥2

2
− 1

∣∣∣∣ ≤
h · ε2

60L3 . Therefore, using the fact that p′ =
⌈
9L2/ε2

⌉
and by invoking Lemma 4, it follows that∣∣∣Ṗ (p′)

relu

(
‖µ(h)

i,j (y)‖22
)
− Ṗ (p′)

relu(1)
∣∣∣ ≤ h·ε

20L2 and
∣∣∣Ṗ (p′)

relu

(
‖µ(h)

i′,j′(z)‖22
)
− Ṗ (p′)

relu(1)
∣∣∣ ≤ h·ε

20L2 . Conse-

quently, because Ṗ (p′)
relu(1) ≤ Ṗ (+∞)

relu (1) = 1, we find that

B̂ ≤ 11

10 · q2
.

By plugging this into Eq. (124) we get the following, with probability at least 1−O
(
δ
L

)
,∣∣∣∣〈φ̇(h)

i,j (y), φ̇
(h)
i′,j′(z)

〉
− 1

q2
· Ṗ (p′)

relu

(〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉)∣∣∣∣ ≤ O( ε

q2 · L

)
. (125)

Furthermore, recall the notation γ =

∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

Γ
(h−1)

i+a,j+b,i′+a,j′+b(y,z)√
N

(h)
i,j (y)·N(h)

i′,j′ (z)
and note that by

Lemma 11 and Eq. (103), −1 ≤ γ ≤ 1. Hence, we can invoke Lemma 4 and use the fact that
p′ = d9L2/ε2e to find that Eq. (120) implies the following,∣∣∣Ṗ (p′)

relu

(〈
µ

(h)
i,j (y), µ

(h)
i′,j′(z)

〉)
− Ṗ (p′)

relu (γ)
∣∣∣ ≤ h · ε

20L2
.

By incorporating the above inequality into Eq. (125) using triangle inequality, we find that, with
probability at least 1−O

(
δ
L

)
, the following holds simultaneously for all i, i′ ∈ [d1] and all j, j′ ∈ [d2]:∣∣∣∣〈φ̇(h)

i,j (y), φ̇
(h)
i′,j′(z)

〉
− 1

q2
· Ṗ (p′)

relu (γ)

∣∣∣∣ ≤ O( ε

q2L2

)
+
h

q2
· ε

20L2
. (126)

Since −1 ≤ γ ≤ 1, we can invoke Lemma 3 and use the fact that p′ =
⌈
9L2/ε2

⌉
to conclude,∣∣∣Ṗ (p′)

relu (γ)− κ0 (γ)
∣∣∣ ≤ ε

15L
.

By combining above inequality with Eq. (126) via triangle inequality and using the fact that, by
Eq. (105), 1

q2 · κ0(γ) ≡ Γ̇
(h)
i,j,i′,j′(y, z) we get the following bound simultaneously for all i, i′ ∈ [d1]

and all j, j′ ∈ [d2], with probability at least 1−O
(
δ
L

)
:∣∣∣〈φ̇(h)

i,j (y), φ̇
(h)
i′,j′(z)

〉
− Γ̇

(h)
i,j,i′,j′(y, z)

∣∣∣ ≤ 1

q2
· ε

8L
. (127)

Similarly we can prove that with probability at least 1−O
(
δ
L

)
, the following hold simultaneously

for all i, i′ ∈ [d1] and all j, j′ ∈ [d2],∣∣∣∣∥∥∥φ̇(h)
i,j (y)

∥∥∥2

2
− Γ̇

(h)
i,j,i,j(y, y)

∣∣∣∣ ≤ 1

q2
· ε

8L
, and

∣∣∣∣∥∥∥φ̇(h)
i′,j′(z)

∥∥∥2

2
− Γ̇

(h)
i′,j′,i′,j′(z, z)

∣∣∣∣ ≤ 1

q2
· ε

8L
. (128)

We will use Eq. (127) and Eq. (128) to prove the inductive step for P2(h).

Next, we consider two cases for the value of h. When h < L, the vectors ψ(h)
i,j (y), ψ

(h)
i′,j′(z) are

defined in Eq. (112) and when h = L, these vectors are defined differently in Eq. (113). First we
consider the case of h < L. Note that in this case, if we let η(h)

i,j (y) and η(h)
i′,j′(z) be the vectors

defined in Eq. (112), then by Lemma 2 and union bound, the following holds simultaneously for all
i, i′ ∈ [d1] and all j, j′ ∈ [d2], with probability at least 1−O

(
δ
L

)
:∣∣∣∣∣∣

〈
ψ

(h)
i,j (y), ψ

(h)
i′,j′(z)

〉
−

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

〈
η

(h)
i+a,j+b(y), η

(h)
i′+a,j′+b(z)

〉∣∣∣∣∣∣ ≤ O (ε/L) ·D, (129)
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where D :=

√∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

‖η(h)
i+a,j+b(y)‖22 ·

√∑ q−1
2

a=− q−1
2

∑ q−1
2

b=− q−1
2

‖η(h)
i′+a,j′+b(z)‖22.

Now, if we let fi,j := ψ
(h−1)
i,j (y)⊗ φ̇(h)

i,j (y) and gi′,j′ := ψ
(h−1)
i′,j′ (z)⊗ φ̇(h)

i′,j′(z), then by Eq. (112),

η
(h)
i,j (y) =

(
Q2 · fi,j

)
⊕ φ(h)

i,j (y) and η(h)
i′,j′(z) =

(
Q2 · gi′,j′

)
⊕ φ(h)

i′,j′(z). Thus by Lemma 1 and
union bound, with probability at least 1−O

(
δ
L

)
, we have the following inequalities simultaneously

for all i, i′ ∈ [d1] and j, j′ ∈ [d2]:∣∣∣〈η(h)
i,j (y), η

(h)
i′,j′(z)

〉
− 〈fi,j , gi′,j′〉 −

〈
φ

(h)
i,j (y), φ

(h)
i′,j′(z)

〉∣∣∣ ≤ O ( ε
L

)
· ‖fi,j‖2 ‖gi′,j′‖2∥∥∥η(h)

i,j (y)
∥∥∥2

2
≤ 11

10
· ‖fi,j‖22 +

∥∥∥φ(h)
i,j (y)

∥∥∥2

2
(130)∥∥∥η(h)

i′,j′(z)
∥∥∥2

2
≤ 11

10
· ‖gi′,j′‖22 +

∥∥∥φ(h)
i′,j′(z)

∥∥∥2

2

Therefore, if we condition on inductive hypotheses P1(h) and P2(h− 1), then by using Corollary 1,
Lemma 13, the inequality Eq. (128) and Lemma 12 along with the fact that ‖fi,j‖22 = ‖ψ(h−1)

i,j (y)‖22 ·
‖φ̇(h)

i,j (y)‖22, we have:

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

‖η(h)i+a,j+b(y)‖22

≤

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

11

10
‖fi+a,j+b‖22 + Γ

(h)
i+a,j+b,i+a,j+b(y, y) +

N
(h)
i+a,j+b(y)

10q2

=
11

10
·

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

‖ψ(h−1)
i+a,j+b(y)‖22 · ‖φ̇

(h)
i+a,j+b(y)‖22 + Γ

(h)
i+a,j+b,i+a,j+b(y, y)

≤ 12

10

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

Π
(h−1)
i+a,j+b,i+a,j+b(y, y) · Γ̇(h)

i+a,j+b,i+a,j+b(y, y) + Γ
(h)
i+a,j+b,i+a,j+b(y, y)

=
12

10
·Π(h)

i,j,i,j(y, y) =
12

10
· h ·N (h+1)

i,j (y),

where the fourth line above follows from the inductive hypothesis P2(h− 1) along with Eq. (128)
and Lemma 12 and Lemma 13. The last line above follows from Eq. (106) and Lemma 13. Similarly

we can prove,
∑ q−1

2

a=− q−1
2

∑ q−1
2

b=− q−1
2

‖η(h)
i′+a,j′+b(z)‖22 ≤ 12

10 · h · N
(h+1)
i′,j′ (z), thus conditioned on

P2(h− 1), P1(h), P1(h− 1), with probability at least 1−O
(
δ
L

)
:

D ≤ 12

10
· h ·

√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z).

By incorporating this into Eq. (129) it follows that if we condition on P2(h− 1), P1(h), P1(h− 1),
then, with probability at least 1−O

(
δ
L

)
, the following holds simultaneously for all i, i′ ∈ [d1] and

all j, j′ ∈ [d2],∣∣∣∣∣∣
〈
ψ

(h)
i,j (y), ψ

(h)
i′,j′(z)

〉
−

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

〈
η

(h)
i+a,j+b(y), η

(h)
i′+a,j′+b(z)

〉∣∣∣∣∣∣
≤ O (εh/L) ·

√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z).

(131)

Now we bound the term
∣∣∣〈η(h)

i,j (y), η
(h)
i′,j′(z)

〉
− 〈fi,j , gi′,j′〉 −

〈
φ

(h)
i,j (y), φ

(h)
i′,j′(z)

〉∣∣∣ using Eq. (130),
Eq. (128), and Lemma 12 along with inductive hypotheses P2(h−1) and Lemma 13. With probability
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at least 1−O
(
δ
L

)
the following holds simultaneously for all i, i′ ∈ [d1] and all j, j′ ∈ [d2]:∣∣∣〈η(h)i,j (y), η

(h)

i′,j′(z)
〉
− 〈fi,j , gi′,j′〉 −

〈
φ
(h)
i,j (y), φ

(h)

i′,j′(z)
〉∣∣∣

≤ O
( ε
L

)
·
√

Π
(h−1)
i,j,i,j (y, y) · Γ̇(h)

i,j,i,j(y, y) ·Π(h−1)

i′,j′,i′,j′(z, z) · Γ̇
(h)

i′,j′,i′,j′(z, z)

= O
(
ε · h
L

)
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
,

where the last line above follows from Lemma 13 together with the fact that Γ̇
(h)
i,j,i,j(y, y) =

Γ̇
(h)
i′,j′,i′,j′(z, z) = 1

q2 .

By combining the above with inductive hypotheses P1(h), P2(h − 1) and Eq. (127) via triangle
inequality and invoking Lemma 13 we get that the following holds simultaneously for all i, i′ ∈ [d1]
and all j, j′ ∈ [d2], with probability at least 1−O

(
δ
L

)
,∣∣∣〈η(h)i,j (y), η

(h)

i′,j′(z)
〉
−Π

(h−1)

i,j,i′,j′(y, z) · Γ̇
(h)

i,j,i′,j′(y, z)− Γ
(h)

i,j,i′,j′(y, z)
∣∣∣

≤ ε

10
· (h− 1)2

L+ 1
·
√
N

(h)
i,j (y) ·N (h)

i′,j′(z) ·
(∣∣∣Γ̇(h)

i,j,i′,j′(y, z)
∣∣∣+

1

q2
· ε

8L

)
+

1

q2
· ε

8L
·
∣∣∣Π(h−1)

i,j,i′,j′(y, z)
∣∣∣

+
(h+ 1) · ε2

60L3
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
+O

(
ε · h
L

)
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2

≤ ε

10
· (h− 1)2

L+ 1
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
·
(

1 +
ε

8L

)
+
h− 1

q2
· ε

8L
·
√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

+

(
(h+ 1) · ε2

60L3
+O

(
ε · h
L

))
·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2

≤ ε

10
· h

2 − h/2
L+ 1

·

√
N

(h)
i,j (y) ·N (h)

i′,j′(z)

q2
.

By plugging the above bound into Eq. (131) using triangle inequality and using Eq. (106) we get the
following, with probability at least 1−O

(
δ
L

)
:∣∣∣〈ψ(h)

i,j (y), ψ
(h)
i′,j′(z)

〉
−Π

(h)
i,j,i′,j′(y, z)

∣∣∣
≤ O (εh/L) ·

√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z)

+
ε

10
· h

2 − h/2
L+ 1

·
q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

√
N

(h)
i+a,j+b(y) ·N (h)

i′+a,j′+b(z)

q2

≤ O (εh/L) ·
√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z)

+
ε

10
· h

2 − h/2
L+ 1

·

√√√√√ q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

N
(h)
i+a,j+b(y)

q2
·

√√√√√ q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

N
(h)
i′+a,j′+b(z)

q2

≤ ε

10
· h2

L+ 1
·
√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z).

(132)

Similarly, we can prove that with probability at least 1−O
(
δ
L

)
the following hold simultaneously

for all i, i′ ∈ [d1] and all j, j′ ∈ [d2],∣∣∣∣∥∥∥ψ(h)
i,j (y)

∥∥∥2

2
−Π

(h)
i,j,i,j(y, y)

∣∣∣∣ ≤ ε

10
· h2

L+ 1
·N (h+1)

i,j (y),∣∣∣∣∥∥∥ψ(h)
i′,j′(z)

∥∥∥2

2
−Π

(h)
i′,j′,i′,j′(z, z)

∣∣∣∣ ≤ ε

10
· h2

L+ 1
·N (h+1)

i′,j′ (z).
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This is sufficient to prove the inductive step for statement P2(h), in the case of h < L, i.e.,
Pr[P2(h)|P2(h− 1), P1(h), P1(h− 1)] ≥ 1−O(δ/L).

Now we prove the inductive step for P2(h) in the case of h = L. Similar to before, if we let
fi,j := ψ

(L−1)
i,j (y) ⊗ φ̇

(L)
i,j (y) and gi′,j′ := ψ

(L−1)
i′,j′ (z) ⊗ φ̇

(L)
i′,j′(z), then by Eq. (113), we have

ψ
(L)
i,j (y) = Q2 · fi,j and ψ(L)

i′,j′(z) = Q2 · gi′,j′ . Thus by Lemma 1 and union bound, we find that,
with probability at least 1−O

(
δ
L

)
, the following inequality holds simultaneously for all i, i′ ∈ [d1]

and j, j′ ∈ [d2]: ∣∣∣〈ψ(L)
i,j (y), ψ

(L)
i′,j′(z)

〉
− 〈fi,j , gi′,j′〉

∣∣∣ ≤ O ( ε
L

)
· ‖fi,j‖2 ‖gi′,j′‖2 .

Therefore, using Eq. (128) and Lemma 12 along with inductive hypotheses P2(L−1) and Lemma 13,
with probability at least 1 − O

(
δ
L

)
, the following holds simultaneously for all i, i′ ∈ [d1] and

j, j′ ∈ [d2],∣∣∣〈ψ(L)
i,j (y), ψ

(L)

i′,j′(z)
〉
− 〈fi,j , gi′,j′〉

∣∣∣ ≤ O ( ε
L

)√
Π

(L−1)
i,j,i,j (y, y) · Γ̇(L)

i,j,i,j(y, y) ·Π(L−1)

i′,j′,i′,j′(z, z) · Γ̇
(L)

i′,j′,i′,j′(z, z)

= O (ε) ·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2
.

By combining the above with inductive hypotheses P1(L), P2(L − 1) and Eq. (127) via triangle
inequality and invoking Lemma 13 and also using the definition of Π(L)(y, z) given in Eq. (107), we
get that the following holds, simultaneously for all i, i′ ∈ [d1] and j, j′ ∈ [d2], with probability at
least 1−O

(
δ
L

)
,∣∣∣〈ψ(L)

i,j (y), ψ
(L)

i′,j′(z)
〉
−Π

(L)

i,j,i′,j′(y, z)
∣∣∣

≤ ε

10
· (L− 1)2

L+ 1
·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z) ·
(∣∣∣Γ̇(L)

i,j,i′,j′(y, z)
∣∣∣+

1

q2
· ε

8L

)
+

1

q2
· ε

8L
·
∣∣∣Π(L−1)

i,j,i′,j′(y, z)
∣∣∣

+
(L+ 1) · ε2

60L3
·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2
+O (ε) ·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2

≤ ε

10
· (L− 1)2

L+ 1
·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2
·
(

1 +
ε

8L

)
+

ε

8q2
·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

+

(
(L+ 1) · ε2

60L3
+O (ε)

)
·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2

≤ ε · (L− 1)

10
·

√
N

(L)
i,j (y) ·N (L)

i′,j′(z)

q2
.

This proves the inductive step for statement P2(h), in the case of h = L, i.e., Pr[P2(L)|P2(L −
1), P1(L), P1(L− 1)] ≥ 1−O(δ/L). The induction is complete and hence the statements of lemma
are proved by union bounding over all h = 0, 1, 2, . . . L. This completes the proof of Lemma 14.

In the following lemma we analyze the runtime of the CNTK Sketch algorithm,
Lemma 15 (Runtime of the CNTK Sketch). For every positive integers d1, d2, c, and L, ev-
ery ε, δ > 0, every image x ∈ Rd1×d2×c, the time to compute the CNTK Sketch Ψ

(L)
cntk(x) ∈

Rs∗ , for s∗ = O
(

1
ε2 · log 1

δ

)
, using the procedure given in Definition 3 is bounded by

O
(
L11

ε6.7 · (d1d2) · log3 d1d2L
εδ

)
.

Proof of Lemma 15: First note that the total time to compute N (h)
i,j (x) for all i ∈ [d1] and j ∈ [d2]

and h = 0, 1, . . . L as per Eq. (103) is bounded by O
(
q2L · d1d2

)
. Besides the time to compute

N
(h)
i,j (x), there are two other main components to the runtime of this procedure. The first heavy

operation corresponds to computing vectors
[
Z

(h)
i,j (x)

]
l

= Q2p+2 ·
([
µ

(h)
i,j (x)

]⊗l
⊗ e⊗2p+2−l

1

)
for l = 0, 1, 2, . . . 2p + 2 and h = 1, 2, . . . L and all indices i ∈ [d1] and j ∈ [d2], in Eq. (110).
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By Lemma 1, the time to compute
[
Z

(h)
i,j (x)

]
l

for a fixed h, fixed i ∈ [d1] and j ∈ [d2], and all
l = 0, 1, 2, . . . 2p+ 2 is bounded by,

O
(
L10

ε20/3
· log2 L

ε
· log3 d1d2L

εδ
+ q2 · L8

ε16/3
· log3 d1d2L

εδ

)
= O

(
L10

ε6.7
· log3 d1d2L

εδ

)
.

The total time to compute vectors
[
Z

(h)
i,j (x)

]
l

for all h = 1, 2, . . . L and all l = 0, 1, 2, . . . 2p + 2

and all indices i ∈ [d1] and j ∈ [d2] is thus bounded by O
(
L11

ε6.7 · (d1d2) · log3 d1d2L
εδ

)
. The next

computationally expensive operation is computing vectors
[
Y

(h)
i,j (x)

]
l

for l = 0, 1, 2, . . . 2p′ + 1 and

h = 1, 2, . . . L, and all indices i ∈ [d1] and j ∈ [d2], in Eq. (111). By Lemma 1, the runtime of
computing

[
Y

(h)
i,j (x)

]
l

for a fixed h, fixed i ∈ [d1] and j ∈ [d2], and all l = 0, 1, 2, . . . 2p′ + 1 is
bounded by,

O
(
L6

ε6
· log2 L

ε
log3 d1d2L

εδ
+
q2 · L8

ε6
· log3 d1d2L

εδ

)
= O

(
L8

ε6
log2 L

ε
· log3 d1d2L

εδ

)
.

Hence, the total time to compute vectors
[
Y

(h)
i,j (x)

]
l

for all h = 1, 2, . . . L and l = 0, 1, 2, . . . 2p′+ 1

and all indices i ∈ [d1] and j ∈ [d2] isO
(
L9

ε6 log2 L
ε · (d1d2) · log3 d1d2L

εδ

)
. The total runtime bound

is obtained by summing up these three contributions. This completes the proof of Lemma 15.

Now we are ready to prove Theorem 4.

Theorem 4. For every positive integers d1, d2, c and L ≥ 2, and every ε, δ > 0, if we let Θ
(L)
cntk :

Rd1×d2×c × Rd1×d2×c → R be the L-layer CNTK with ReLU activation and GAP given in [5], then
there exist a randomized map Ψ

(L)
cntk : Rd1×d2×c → Rs∗ for some s∗ = O

(
1
ε2 log 1

δ

)
such that:

1. For any images y, z ∈ Rd1×d2×c:

Pr
[∣∣∣〈Ψ

(L)
cntk(y),Ψ

(L)
cntk(z)

〉
−Θ

(L)
cntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
cntk(y, z)

]
≥ 1− δ.

2. For every image x ∈ Rd1×d2×c, time to compute Ψ
(L)
cntk(x) is O

(
L11

ε6.7 · (d1d2) · log3 d1d2L
εδ

)
.

Proof of Theorem 4: Let ψ(L) : Rd1×d2×c → Rd1×d2×s for s = O
(
L4

ε2 · log3 d1d2L
εδ

)
be the

mapping defined in Eq. (113) of Definition 3. By Eq. (114), the CNTK Sketch Ψ
(L)
cntk(x) is defined as

Ψ
(L)
ntk(x) :=

1

d1d2
·G ·

∑
i∈[d1]

∑
j∈[d2]

ψ
(L)
i,j (x)

 .

The matrix G is defined in Eq. (114) to be a matrix of i.i.d. normal entries with s∗ = C · 1
ε2 · log 1

δ

rows for large enough constant C. [15] shows that G is a JL transform and hence Ψ
(L)
cntk satisfies the

following,

Pr

∣∣∣∣∣∣
〈

Ψ
(L)
cntk(y),Ψ

(L)
cntk(z)

〉
− 1

d2
1d

2
2

·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

〈
ψ

(L)
i,j (y), ψ

(L)
i′,j′(z)

〉∣∣∣∣∣∣ ≤ O(ε) ·A

 ≥ 1−O(δ),

whereA := 1
d21d

2
2
·
∥∥∥∑i∈[d1]

∑
j∈[d2] ψ

(L)
i,j (y)

∥∥∥
2
·
∥∥∥∑i∈[d1]

∑
j∈[d2] ψ

(L)
i,j (z)

∥∥∥
2
. By triangle inequality

together with Lemma 14 and Lemma 13, the following bounds hold with probability at least 1−O(δ):∥∥∥∥∥∥
∑
i∈[d1]

∑
j∈[d2]

ψ
(L)
i,j (y)

∥∥∥∥∥∥
2

≤ 11

10
·
√
L− 1

q
·
∑
i∈[d1]

∑
j∈[d2]

√
N

(L)
i,j (y),

∥∥∥∥∥∥
∑
i∈[d1]

∑
j∈[d2]

ψ
(L)
i,j (z)

∥∥∥∥∥∥
2

≤ 11

10
·
√
L− 1

q
·
∑
i∈[d1]

∑
j∈[d2]

√
N

(L)
i,j (z),
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Therefore, by union bound we find that, with probability at least 1−O(δ):∣∣∣∣∣∣
〈

Ψ
(L)
cntk(y),Ψ

(L)
cntk(z)

〉
− 1

d2
1d

2
2

·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

〈
ψ

(L)
i,j (y), ψ

(L)
i′,j′(z)

〉∣∣∣∣∣∣
≤ O

(
εL

q2 · d2
1d

2
2

)
·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

√
N

(L)
i,j (y) ·N (L)

i′,j′(z).

Be combining the above with Lemma 14 using triangle inequality and union bound and also using
Eq. (108), the following holds with probability at least 1−O(δ):∣∣∣〈Ψ

(L)
cntk(y),Ψ

(L)
cntk(z)

〉
−Θ

(L)
cntk(y, z)

∣∣∣ ≤ ε · (L− 1)

9q2 · d21d22
·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

√
N

(L)
i,j (y) ·N (L)

i′,j′(z). (133)

Now we prove that Θ
(L)
cntk(y, z) ≥ L−1

9q2d21d
2
2
·∑i,i′∈[d1]

∑
j,j′∈[d2]

√
N

(L)
i,j (y) ·N (L)

i′,j′(z) for every

L ≥ 2. First note that, it follows from Eq. (104) that Γ
(1)
i,j,i′,j′(y, z) ≥ 0 for any i, i′, j, j′ because

the function κ1 is non-negative everywhere on [−1, 1]. This also implies that Γ
(2)
i,j,i′,j′(y, z) ≥√

N
(2)
i,j (y)·N(2)

i′,j′ (z)

π·q2 because κ1(α) ≥ 1
π for every α ∈ [0, 1]. Since, κ1(·) is a monotone increasing

function, by recursively using Eq. (103) and Eq. (104) along with Lemma 11, we can show that for

every h ≥ 1, the value of Γ
(h)
i,j,i′,j′(y, z) is lower bounded by

√
N

(h)
i,j (y)·N(h)

i′,j′ (z)

q2 · Σ(h)
relu(−1), where

Σ
(h)
relu : [−1, 1]→ R is the function defined in Eq. (3).

Furthermore, it follows from Eq. (105) that Γ̇
(1)
i,j,i′,j′(y, z) ≥ 0 for any i, i′, j, j′ because the function

κ0 is non-negative everywhere on [−1, 1]. Additionally, Γ̇
(2)
i,j,i′,j′(y, z) ≥ 1

2q2 because κ0(α) ≥ 1
2

for every α ∈ [0, 1]. By using the inequality Γ
(h)
i,j,i′,j′(y, z) ≥

√
N

(h)
i,j (y)·N(h)

i′,j′ (z)

q2 · Σ(h)
relu(−1) that we

proved above along with the fact that κ0(·) is a monotone increasing function and recursively using
Eq. (105) and Lemma 11, it follows that for every h ≥ 1, we have Γ̇

(h)
i,j,i′,j′(y, z) ≥ 1

q2 · Σ̇
(h)
relu(−1).

By using these inequalities and Definition of Π(h) in Eq. (106) together with Eq. (103), recursively, it
follows that, for every i, i′, j, j′ and h = 2, . . . L− 1:

Π
(h)
i,j,i′,j′(y, z) ≥

h

4
·
√
N

(h+1)
i,j (y) ·N (h+1)

i′,j′ (z),

Therefore, using this inequality and Eq. (107) we have that for every L ≥ 2:

Π
(L)
i,j,i′,j′(y, z) ≥

L− 1

4
·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z) ·
Σ̇

(L)
relu(−1)

q2

≥ L− 1

9q2
·
√
N

(L)
i,j (y) ·N (L)

i′,j′(z).

Now using this inequality and Eq. (108), the following holds for every L ≥ 2:

Θ
(L)
cntk(y, z) ≥

L− 1

9q2d2
1d

2
2

·
∑

i,i′∈[d1]

∑
j,j′∈[d2]

√
N

(L)
i,j (y) ·N (L)

i′,j′(z).

Therefore, by incorporating the above into Eq. (133) we get that,

Pr
[∣∣∣〈Ψ

(L)
cntk(y),Ψ

(L)
cntk(z)

〉
−Θ

(L)
cntk(y, z)

∣∣∣ ≤ ε ·Θ(L)
cntk(y, z)

]
≥ 1− δ.

Runtime analysis: By Lemma 15, time to compute the CNTK Sketch is
O
(
L11

ε6.7 · (d1d2) · log3 d1d2L
εδ

)
.

This completes the proof of Theorem 4.

51


	Introduction
	Overview of Our Contributions
	Related Works
	Preliminaries: PolySketch and TensorSRHT Transforms

	ReLU Neural Tangent Kernel
	Sketching and Random Features for NTK
	NTK Sketch
	NTK Random Features
	Spectral Approximation for NTK via Leverage Scores Sampling

	Sketching Convolutional Neural Tangent Kernel
	Experiments
	NTK Classification on MNIST
	CNTK Classification on CIFAR-10
	Regression on Large-scale UCI Datasets

	Discussion and Conclusion
	ReLU-NTK Expression
	Sketching Preliminaries: PolySketch and SRHT 
	NTK Sketch: Claims and Invariants
	NTK Random Features: Claims and Proofs
	Proof of thm:ntk-random-features-error
	Proof of Auxiliary Claims

	Spectral Approximation via Leverage Scores Sampling
	Zeroth Order Arc-Cosine Kernels
	First Order Arc-Cosine Kernels
	Proof of thm:ntkspectral
	Auxiliary Lemmas

	ReLU-CNTK: Expression and Main Properties
	CNTK Sketch: Algorithm, Claims and Invariants

