
Supplementary Material — MuSCLE: Multi Sweep
Compression of LiDAR using Deep Entropy Models

Sourav Biswas1,2 Jerry Liu1 Kelvin Wong1,3 Shenlong Wang1,3 Raquel Urtasun1,3

1Uber Advanced Technologies Group 2University of Waterloo 3University of Toronto
{souravb,jerryl,kelvin.wong,slwang,urtasun}@uber.com

Abstract

In our supplementary material, we provide additional experimental results that
further validate the design and performance of our algorithm (Sec. 1). We first
describe additional architecture details for our occupancy and intensity entropy
models, as well as their ablation variants (Sec. 2). We also provide additional exper-
imental details with respect to our metrics and downstream perception experiments
(Sec. 3). Furthermore, we exhibit an extensive collection of qualitative results in Se-
manticKITTI and UrbanCity that showcases the performance of our method versus
prior state-of-the-art (Sec. 4). Finally, we attach a video (supp_vid_export.mp4)
that provides an overview of our approach as well as additional qualitative results.

1 Additional Experiments

1.1 Compression of Leaf Offsets

We mention in Sec. 2.1 of the main paper that we do not attempt to compress the leaf offsets from the
octree. The reason is that we experimented with a few compression baselines and were not able to
obtain a bitrate improvement over the uncompressed leaf offsets. We experiment with the zlib [1],
LZMA [2], and bzip2 [3] compression algorithms on the leaf offset stream from UrbanCity. The
results are shown in Tab. 1; we surprisingly found that in all cases the compressed string was longer
than the uncompressed one.

Uncompressed zlib [1] LZMA [2] bzip2 [3]
Avg. Bytes / Sweep 102429.31 102468.93 102493.84 103242.28

Table 1: Comparison of compression algorithms on leaf offsets from UrbanCity, in terms of average bytes per
sweep.

There can be room for future work in entropy modeling the leaf offsets, but our current hypothesis
is that since the intermediate octree nodes already encode the shared bits between points, the leaf
offsets represent residual bits that can be considered “higher-frequency” artifacts (similar to residual
frames in video compression), and are therefore harder to compress.

1.2 Using a Range Image Representation

We mention in Sec. 3.1 of the main paper that we designed a range image-based compression
baseline. Towards this goal, we first converted point cloud streams in UrbanCity and KITTI into
range image representations, which store LiDAR packet data into a 2D matrix. We consider two
possible range image representations. The first contains dimensions Hlid ×Wazm, where the height
dimension represents the separate laser ID’s of the LiDAR sensor, and the width dimension represents
the discretized azimuth bins between -180◦and 180◦. Each pixel value represents the distance

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
0)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

Po
in

t-t
o-

Po
in

t C
ha

m
fe

r D
ist

an
ce

Bitrate v. D1 CD (UrbanCity)
Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

60

80

100

Po
in

t-t
o-

Pl
an

e P
SN

R

Bitrate v. D2 PSNR (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
0)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

0.0

0.2

0.4

0.6

Po
in

t-t
o-

Po
in

t C
ha

m
fe

r D
ist

an
ce

Bitrate v. D1 CD (KITTI)
Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

60

80

100

Po
in

t-t
o-

Pl
an

e P
SN

R

Bitrate v. D2 PSNR (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

Figure 1: Bitrate vs. reconstruction quality curves on UrbanCity (top) and KITTI (bottom). From left-to-right:
F1 with τgeo = 10cm and τint = 0 (↑), point-to-point chamfer distance (↓), point-to-plane PSNR (↑).

returned by the laser ID at the specific azimuth angle. Such a representation requires sufficient
auxiliary calibration and vehicle information in order to reconstruct the points in Euclidean space—
for instance, a separate transform matrix per laser and velocity information to compensate for rolling
shutter effects. We use this representation for UrbanCity because we have access to most required
information; unfortunately, not every log contains detailed calibration or precise velocity information,
requiring us to use approximations.

The second representation simply projects the spatial coordinates of the point cloud sweep into the
coordinate frame of the sensor, and does not require a map between laser ID and Euclidean space.
Such an image contains dimensions Hpitch × Wazm, where the height dimension now represents
discretized pitch angles; each pixel value now represents the distance of a given point from the sensor
frame at a given pitch and azimuth bin. We use this representation for our KITTI point clouds, since
the dataset does not provide detailed laser calibration information.

We explore both geometry-only and geometry + intensity representations. Spatial positions are
encoded in the 8-bit R,G channels of the png image (16 bits total). If intensity is encoded, it is
encoded in the B channel. We run H.264 on the png image sequence as our compression algorithm.
We evaluate on the same reconstruction metrics: point-to-point Chamfer distance and point-to-plane
PSNR (geometry), and F1 score (geometry + intensity).

We show here in Fig. 1, that the results were uncompetitive—the range image representation under-
performs other baselines and our approach on every evaluation metric. We observe that even the
“lossless” representation (the right-most point on the curves) does not yield perfect reconstruction
metrics. This can be surprising for the laser ID representation in UrbanCity. But we hypothesize
that the errors come from approximations of the true calibration values (which are not obtainable
for every log), as well as the velocity used in rolling shutter compensation—we found that small
perturbations in these calibration values yield a large variance in reconstruction quality and metrics.

2 Additional Architecture Details

In this section we provide additional architecture details of our octree occupancy and intensity entropy
models (Secs. 2.3 and 2.4 in main paper). We also provide architecture details of the models used in
the ablation studies of the occupancy and intensity model (Tab. 1, Tab. 2 in main paper).

2.1 Occupancy Entropy Model

Ancestral Node Dependence: The context feature ci consists of the octree level of the current
node (1– 16), spatial location of the node’s octant (x, y, z), octant index of the node relative to its

2

parent (0–8), and parent occupancy byte (0–255), as well as occupancy byte in the corresponding
node in the previous octree (0–255 if exists, 0 otherwise). The initial feature extractor is a 4-layer
MLP with fully-connected (fc) layers and intermediate ReLU activations. The hidden layer dimension
is 128. Then, every aggregation round consists of a 2-layer fc/ReLU MLP with a 256-dimensional
input (concatenating with the ancestor feature), and a hidden dimension of 128. We set the number of
aggregation rounds, Kans, to 4.

Temporal Octree Dependence: The top-down pass to generate h
(t−1)
j has essentially the same

architecture as the ancestral node dependence module above. The one difference is that each context
feature additionally includes the “ground-truth” occupancy byte of each node, since each node in
sweep t− 1 has already been decoded. Moreover, each hidden dimension is 64 instead of 128.

Next, recall that the bottom-up aggregation pass has the following formulation:

g
(t−1)
j = fagg,1(h

(t−1)
j +

∑
c∈child(j)

fagg,2(g(t−1)
c))

Here, fagg,2 is a 2-layer fc/ReLU MLP taking a 64-dim input and outputting a 32-dim intermediate
embedding. fagg,1 is a 2-layer fc/ReLU MLP taking a (32 + 64)-dim embedding (child embedding +
top-down embedding), and outputting a 64-dim embedding for the current node j. The bottom-up
pass is run starting from the lowest level D (where there are no children) back up to level 0.

Spatio-Temporal Aggregation and Entropy Header: Recall that the continuous convolution
layer has the formulation

hi =
∑

j∈N (i)

σ(pj − pi)hj

where N (i) is the i-th node’s k-nearest neighbors in sweep t− 1, at the same octree level as node i,
and pi is the 3D position of each node. Here, σ is a learned kernel function, and it is parameterized
by an MLP, inspired by [4]. The MLP contains 3 fc/ReLU layers (no ReLU in last layer), with output
dimensions 16, 32, and 64 respectively. The continuous conv layer produces the warped feature g

(t)
i,st.

The warped feature g
(t)
i,st and ancestral feature h

(t)
i are aggregated through a final, 4-layer fc/ReLU

MLP with hidden dim 128. The prediction header outputs a softmaxed, 256-dim vector of occupancy
predictions.

2.2 Intensity Entropy Model

The input to the intensity entropy MLP consists of the k-nearest neighbor intensities in sweep t− 1:
{r(t−1)j }j∈N (i). We set k = 5. In addition to the raw intensity value, we include the following

features per r(t−1)j : spatial (x, y, z) position ∈ R3, delta vector to current point ∈ R3, and 1-D
distance value. Hence each point contains an 8-dimensional feature.

Each feature per r(t−1)j is then independently given to a 4-layer MLP, consisting of fc layers and
ReLU activations. The dimension of each hidden layer is 128. Then, the k output features are input to
a continuous convolution layer to produce a single 128-dimensional embedding. The kernel function
σ of the continuous conv. is parameterized with the same MLP as the one used in spatio-temporal
aggregation in the occupancy model. The final predictor is a fc layer and softmax with a 256-dim.
output.

2.3 Ablation Study Architectures

We first describe the architectures of the occupancy ablation in Tab. 1 of the main paper.

• O uses the past occupancy byte to model temporal dependence. The byte is taken from the
corresponding node in the previous octree if it exists; if it does not, the feature is zeroed
out. This past occupancy byte is then appended to the context feature ci (along with parent
occupancy byte, octree level, etc.) and fed to the ancestral dependence module. There is
no temporal octree dependence module or spatio-temporal aggregation; the final prediction
header is directly attached to the ancestral feature.

3

• O,T includes the temporal octree dependence module, but removes the bottom-up pass.
Hence the final feature produced from this module is h(t−1)

j (as opposed to g
(t−1)
j). There

does not exist a spatio-temporal aggregation module using continuous convolutions to
produce an embedding for every node i. Instead, we use a simpler “exact matching” heuristic
similar to including the occupancy bytes—h

(t−1)
j will only be included as a feature for node

i in sweep t, if node j corresponds to the same octant in sweep (t− 1) as node i in sweep t.
If there is no exact correspondence, the feature is zeroed out.

• O,T,B includes the full temporal octree dependence module, including the bottom-up pass
to produce g

(t−1)
j . As with the above, we do not include our spatio-temporal aggregation

module but rather use the exact matching heuristic to include g
(t−1)
j in the corresponding

nodes i in sweep t only if the correspondence exists.

• O,T,B,CC includes our full model, including using spatio-temporal aggregation with
continuous convolutions to produce an embedding feature for every node i.

We now describe the architectures of the intensity ablation in Tab. 2 of the main paper.

• MLP only utilizes context from one neighbor in sweep t− 1. First, the nearest neighbor to
node i is obtained in sweep t− 1. We take the neighbor’s corresponding intensity, the delta
vector to the current position ∈ R3, and 1-D distance value as inputs, and feed it through a
4-layer fc/ReLU MLP and a final softmax predictor head to output 256-dim probabilities.

• CC contains the full intensity model with continuous convolutions. For architecture details
see 2.2.

3 Additional Experiment Details

3.1 Reconstruction Metrics

In Sec. 3.3 of the main text, we report reconstruction quality in terms of three metrics: F1 score,
point-to-point Chamfer Distance [5], and point-to-plane PSNR [6]. In the following, we explain each
metric in detail. Let P = {(pi, ri)}Ni=1 be an input LiDAR point cloud, where each pi ∈ R3 denotes
a point’s spatial coordinates and ri ∈ {0, . . . , 255} its intensity. Furthermore, let P̂ = {(p̂j , r̂j)}Mj=1

be its reconstruction, where p̂j and r̂j are similarly defined.

Our first metric is an F1 score that measures reconstruction quality in terms of both geometry and
intensity:

F1(P, P̂) =
2× # true positives

2× # true positives + # false positives + # false negatives
(1)

where a reconstructed point (p̂j , r̂j) ∈ P̂ is a true positive if and only if there exists a point
(pi, ri) ∈ P such that ‖pi − p̂j‖2 ≤ τgeo and |ri − r̂j | ≤ τint. False positives are the reconstructed
points in P̂ that are not true positives, and false negatives are the original points in P for which no
reconstructed point is a true positive. In our experiments, we use τgeo = 10cm and τint = 0, and we
report F1 as a function of overall bitrates; i.e., the number of bits to store p and r. We further report
the F1 score for τgeo ∈ {5cm, 10cm, 15cm} and τint ∈ {0, 5, 10} in Fig. 2.

Following the MPEG standards, we also use two standard metrics that measure reconstruction quality
in terms of geometry only [7]. We report these metrics as a function of spatial bitrates; i.e., the
number of bits to store p. The first such metric measures the point-to-point error between the original
point cloud P and the reconstructed point cloud P̂; this metric is often called the D1 error in the
MPEG standards. In our paper, we report this metric as a symmetric Chamfer distance:

CDsym(P, P̂) = max
{

CD(P, P̂),CD(P̂,P)
}

(2)

where CD(P, P̂) =
1

|P|
∑
pi∈P

min
p̂j∈P̂

‖pi − p̂j‖2 (3)

4

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

5c
m

,
in

t=
0)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

5c
m

,
in

t=
5)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

5c
m

,
in

t=
10

) Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
0)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
5)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
10

) Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
0)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
5)

Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
10

) Bitrate v. F1 (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

5c
m

,
in

t=
0)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

5c
m

,
in

t=
5)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re
 (

ge
o

=
5c

m
,

in
t=

10
) Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
0)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
5)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

10
cm

,
in

t=
10

) Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
0)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
5)

Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 10 20 30
Overall Bits Per Point

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

 (
ge

o
=

15
cm

,
in

t=
10

) Bitrate v. F1 (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

Figure 2: Bitrate vs. F1 curves on UrbanCity (top three rows) and KITTI (bottom three rows). We report F1

across various spatial and intensity thresholds: τgeo ∈ {5cm, 10cm, 15cm} and τint ∈ {0, 5, 10}.

5

The second metric measures the point-to-place error between the original point cloud P and the
reconstructed point cloud P̂; this metric is often called the D2 error in the MPEG standards. In our
paper, we report this metric in terms of its peak signal-to-noise ratio (PSNR):

PSNR(P, P̂) = 10 log10

3r2

max{MSE(P, P̂),MSE(P, P̂)}
(4)

where MSE(P, P̂) = 1
|P|

∑
i((pi − p̂i) · n̂i)

2 is the mean squared point-to-plane distance, n̂i is

the normal vector on p̂i, p̂i = argminp̂∈P̂‖pi − p̂‖22 is pi’s nearest neighbor point in P̂ , and r
is the peak constant value. We estimate the normal ni at each point pi ∈ P using the Open3D
function estimate_normals with k = 12 nearest neighbors [8], and we compute the normal n̂i

corresponding to each point p̂i ∈ P̂ by taking the normal of its nearest neighbor in the original point
cloud P . Following the MPEG standard, for each dataset, we compute r as the maximum nearest
neighbor distance among all point clouds in the dataset:

r = max
P

max
pi∈P

min
j 6=i
‖pi − pj‖2 (5)

For UrbanCity, we use r = 98.69 and for SemanticKITTI, we use r = 59.70.

For completeness, we also report the point-to-point error in terms of its peak signal-to-noise ratio and
the point-to-plane error as a symmetric Chamfer distance in Fig. 3.

3.2 Downstream Experiment Details

In this section, we provide additional details for our downstream perception experiments.

3.2.1 Semantic Segmentation

We use a modified version of the LiDAR semantic segmentation model described in [5].

Input Representation: Our model takes as input T bird’s eye view (“BEV”) occupancy grids of
the past T input LiDAR point clouds {P(t−T+1), . . . ,P(t)}, stacked along the height dimension
(i.e., the z-axis). By treating the height dimension as multi-dimensional input features, we have a
compact input representation on which we can use 2D convolutions [9]. Each voxel in the occupancy
grids store the average intensity value of the points occupying its volume, or 0 if it contains no
points. We use a region of interest of 160m × 160m × 5m centered on the ego-vehicle, T = 5
past LiDAR point clouds, and a voxel resolution of 0.15625cm, yielding an input volume x of size
(T × Z)×W ×H = 160× 1024× 1024.

Architecture Details: Our model architecture consists of two components: (1) a backbone feature
extractor; and (2) a semantic segmentation head. The backbone feature extractor CNNBEV is a
feature pyramid network based on the backbone architecture of [10]:

fBEV = CNNBEV(x) (6)

where fBEV ∈ RCBEV×W/4×H/4 and CBEV = 256.

The semantic segmentation head CNNsem consists of four 2D convolution blocks with 128 hidden
channels 1, followed by a 1× 1 convolution layer:

f sem = CNNsem(fBEV) (7)

where f sem ∈ R(K×Z)×W/4×H/4 and K is the number of classes plus an additional ignore class.
To extract per-point predictions, we first reshape f sem into a K × Z ×W/4 ×H/4 logits tensor,
then use trilinear interpolation to extract per-point K-dimensional logits, and finally apply softmax.

Training Details: We use the cross-entropy loss to train our semantic segmentation model. For
SemanticKITTI, we follow [12] and reweight the loss at each point by the inverse of the frequency of
its ground truth class; this helps to counteract the effects of severe class imbalance. Moreover, we use
data augmentation by randomly scaling the point cloud by s ∼ Uniform(0.95, 1.05), rotating it by
θ ∼ Uniform(−π/4, π/4), and reflecting it along the x and y-axes. We use the Adam optimizer [13]
with a learning rate of 4e−4 and a batch size of 12, and we train until convergence.

1Each 2D convolution block consists of a 3× 3 convolution, GroupNorm [11], and ReLU.

6

0 5 10 15 20
Spatial Bits Per Point

0.0

0.2

0.4

0.6

0.8

1.0

Po
in

t-t
o-

Po
in

t C
ha

m
fe

r D
ist

an
ce

Bitrate v. D1 CD (UrbanCity)
Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

40

60

80

100

Po
in

t-t
o-

Po
in

t P
SN

R

Bitrate v. D1 PSNR (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

0.0

0.2

0.4

0.6
Po

in
t-t

o-
Pl

an
e C

ha
m

fe
r D

ist
an

ce
Bitrate v. D2 CD (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

60

80

100

Po
in

t-t
o-

Pl
an

e P
SN

R

Bitrate v. D2 PSNR (UrbanCity)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

0.0

0.2

0.4

0.6

Po
in

t-t
o-

Po
in

t C
ha

m
fe

r D
ist

an
ce

Bitrate v. D1 CD (KITTI)
Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

40

60

80

100

Po
in

t-t
o-

Po
in

t P
SN

R

Bitrate v. D1 PSNR (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

0.0

0.1

0.2

0.3

Po
in

t-t
o-

Pl
an

e C
ha

m
fe

r D
ist

an
ce

Bitrate v. D2 CD (KITTI)
Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

0 5 10 15 20
Spatial Bits Per Point

60

80

100

Po
in

t-t
o-

Pl
an

e P
SN

R

Bitrate v. D2 PSNR (KITTI)

Ours
OctSqueeze
Octree
Draco
MPEG Anchor
MPEG TMC13
MPEG Range

Figure 3: Bitrate vs. reconstruction curves on UrbanCity (top two rows) and KITTI (bottom two rows). We
report point-to-point (D1) and point-to-plane (D2) errors in terms of Chamfer distances (left) and PSNR (right).

3.2.2 Object Detection

We use a modified version of the LiDAR object detection model described in [5]. It largely follows
the same architecture as our semantic segmentation model, with a few modifications to adapt it for
object detection. We describe these modifications below.

Architecture Details: Our object detection model consists of two components: (1) a backbone
feature extractor; and (2) an object detection head. The backbone feature extractor here shares an
identical architecture to that of the semantic segmentation model. The object detection head consists
of four 2D convolution blocks with 128 hidden channels followed by a 1 × 1 convolution layer
to predict a bounding box bi,k and detection score αi,k for every BEV pixel i and class k. Each
bounding box bi,k is parameterized by (∆x,∆y, logw, log h, sin θ, cos θ), where (∆x,∆y) are the
position offsets to the object’s center, (w, h) are the width and height of its bounding box, and θ is its
heading angle. To remove duplicate bounding boxes predictions, we use non-maximum suppression.

Training Details: We use a combination of classification and regression losses to train our de-
tection model. In particular, for object classification, we use a binary cross-entropy loss with
online hard negative mining, where positive and negative BEV pixels are determined based on
their distance to an object center [14]. For bounding box regression, we use a smooth `1 loss on

7

∆x,∆y, logw, log h, sin θ, cos θ. We use the Adam optimizer [13] with a learning rate of 4e−4 and
a batch size of 12, and we train until convergence.

4 Additional Qualitative Results

In Fig. 4 and 5, we compare the reconstruction quality of our method versus Draco [15] and MPEG
anchor [16]. Then, in Figs. 6, 7, and 8, we visualize results from semantic segmentation and object
detection on SemanticKITTI and UrbanCity. As shown in these figures, our compression algorithm
yields the best reconstruction quality at comparable or lower bitrates than the competing methods.

References

[1] Jean loup Gailly and Mark Adler. zlib. https://github.com/madler/zlib, 1995.
[2] Igor Pavlov. Lzma. https://sourceforge.net/p/scoremanager/discussion/457976/

thread/c262da00/, 1998.
[3] Julian Seward. bzip2. https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/

source/src/util/compress/bzip2/README, 1996.
[4] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep

parametric continuous convolutional neural networks. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, 2018.

[5] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. Octsqueeze: Octree-
structured entropy model for lidar compression. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR, 2020.

[6] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro. Geometric distortion metrics for point
cloud compression. In 2017 IEEE International Conference on Image Processing (ICIP), 2017.

[7] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen, M. Kri-
vokuća, S. Lasserre, Z. Li, J. Llach, K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan,
A. Tabatabai, A. M. Tourapis, and V. Zakharchenko. Emerging mpeg standards for point cloud
compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019.

[8] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

[9] Chris Zhang, Wenjie Luo, and Raquel Urtasun. Efficient convolutions for real-time semantic
segmentation of 3d point clouds. In 2018 International Conference on 3D Vision, 3DV 2018,
Verona, Italy, September 5-8, 2018, pages 399–408. IEEE Computer Society, 2018.

[10] Ming Liang, Bin Yang, Wenyuan Zeng, Yun Chen, Rui Hu, Sergio Casas, and Raquel Urtasun.
Pnpnet: End-to-end perception and prediction with tracking in the loop, 2020.

[11] Yuxin Wu and Kaiming He. Group normalization. CoRR, abs/1803.08494, 2018.
[12] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and

Jurgen Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In
IEEE International Conference on Computer Vision, ICCV), 2019.

[13] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[14] Bin Yang, Wenjie Luo, and Raquel Urtasun. PIXOR: real-time 3d object detection from point
clouds. CoRR, abs/1902.06326, 2019.

[15] Google. Draco 3d data compresison. https://github.com/google/draco, 2017.
[16] Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, implementation and evaluation of a point

cloud codec for tele-immersive video. In IEEE IEEE Transactions on Circuits and Systems for
Video Technology, 2016.

8

https://github.com/madler/zlib
https://sourceforge.net/p/scoremanager/discussion/457976/thread/c262da00/
https://sourceforge.net/p/scoremanager/discussion/457976/thread/c262da00/
https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util/compress/bzip2/README
https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util/compress/bzip2/README
https://github.com/google/draco

Oracle (UrbanCity): Bitrate 104.0 Ours: F1 100.0 Bitrate 16.5

Draco: F1 100.0 Bitrate 20.0 MPEG: F1 94.6 Bitrate 20.6

Oracle (UrbanCity): Bitrate 104.0 Ours: F1 93.7 Bitrate 10.8

Draco: F1 93.3 Bitrate 13.9 MPEG: F1 76.6 Bitrate 14.8

Oracle (UrbanCity): Bitrate 104.0 Ours: F1 92.9 Bitrate 10.0

Draco: F1 85.1 Bitrate 10.9 MPEG: F1 53.4 Bitrate 10.4

Figure 4: Qualitative results on UrbanCity. Points are colored by intensity.

9

Oracle (KITTI): Bitrate 104.0 Ours: F1 100.0 Bitrate 16.4

Draco: F1 100.0 Bitrate 17.0 MPEG: F1 96.1 Bitrate 16.8

Oracle (KITTI): Bitrate 104.0 Ours: F1 91.4 Bitrate 6.6

Draco: F1 90.6 Bitrate 6.8 MPEG: F1 70.2 Bitrate 11.6

Oracle (KITTI): Bitrate 104.0 Ours: F1 90.8 Bitrate 5.6

Draco: F1 89.2 Bitrate 5.8 MPEG: F1 69.2 Bitrate 11.0

Figure 5: Qualitative results on SemanticKITTI. Points are colored by intensity.

10

Oracle (KITTI): IOU 36.1 Bitrate 104.0 Ours: IOU 34.8 Bitrate 13.8

Draco: IOU 34.7 Bitrate 14.4 MPEG: IOU 31.4 Bitrate 14.5

Oracle (KITTI): IOU 31.3 Bitrate 104.0 Ours: IOU 29.5 Bitrate 6.7

Draco: IOU 29.0 Bitrate 8.4 MPEG: IOU 26.3 Bitrate 13.0

Oracle (KITTI): IOU 37.3 Bitrate 104.0 Ours: IOU 30.6 Bitrate 5.9

Draco: IOU 30.2 Bitrate 6.0 MPEG: IOU 27.6 Bitrate 10.3

Figure 6: Semantic segmentation results on SemanticKITTI. IOU is averaged over all classes.

11

Oracle (KITTI): IOU 97.2 Bitrate 104.0 Ours: IOU 94.3 Bitrate 19.8

Draco: IOU 88.3 Bitrate 20.1 MPEG: IOU 85.2 Bitrate 20.5

Oracle (KITTI): IOU 94.3 Bitrate 104.0 Ours: IOU 73.6 Bitrate 10.2

Draco: IOU 57.2 Bitrate 10.6 MPEG: IOU 59.5 Bitrate 10.3

Oracle (KITTI): IOU 96.6 Bitrate 104.0 Ours: IOU 72.8 Bitrate 8.9

Draco: IOU 54.3 Bitrate 10.9 MPEG: IOU 57.2 Bitrate 10.4

Figure 7: Semantic segmentation results on UrbanCity. IOU is averaged over all classes.

12

Oracle (KITTI): AP 92.2 Bitrate 104.0 Ours: AP 92.0 Bitrate 17.6

Draco: AP 91.6 Bitrate 19.8 MPEG: AP 92.2 Bitrate 23.6

Oracle (KITTI): AP 91.4 Bitrate 104.0 Ours: AP 91.2 Bitrate 10.0

Draco: AP 90.0 Bitrate 10.9 MPEG: AP 84.8 Bitrate 10.2

Oracle (KITTI): AP 90.6 Bitrate 104.0 Ours: AP 90.4 Bitrate 14.5

Draco: AP 89.4 Bitrate 16.6 MPEG: AP 91.2 Bitrate 17.6

Figure 8: Object detection results on UrbanCity. AP is averaged over the vehicle, pedestrian, and motorbike
classes.

13

	Additional Experiments
	Compression of Leaf Offsets
	Using a Range Image Representation

	Additional Architecture Details
	Occupancy Entropy Model
	Intensity Entropy Model
	Ablation Study Architectures

	Additional Experiment Details
	Reconstruction Metrics
	Downstream Experiment Details
	Semantic Segmentation
	Object Detection

	Additional Qualitative Results

