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Abstract

We improve the effectiveness of propagation- and linear-optimization-based neural
network verification algorithms with a new tightened convex relaxation for ReLU
neurons. Unlike previous single-neuron relaxations which focus only on the
univariate input space of the ReLU, our method considers the multivariate input
space of the affine pre-activation function preceding the ReLU. Using results from
submodularity and convex geometry, we derive an explicit description of the tightest
possible convex relaxation when this multivariate input is over a box domain. We
show that our convex relaxation is significantly stronger than the commonly used
univariate-input relaxation which has been proposed as a natural convex relaxation
barrier for verification. While our description of the relaxation may require an
exponential number of inequalities, we show that they can be separated in linear
time and hence can be efficiently incorporated into optimization algorithms on an
as-needed basis. Based on this novel relaxation, we design two polynomial-time
algorithms for neural network verification: a linear-programming-based algorithm
that leverages the full power of our relaxation, and a fast propagation algorithm
that generalizes existing approaches. In both cases, we show that for a modest
increase in computational effort, our strengthened relaxation enables us to verify a
significantly larger number of instances compared to similar algorithms.

1 Introduction

A fundamental problem in deep neural networks is to verify or certify that a trained network is
robust, i.e. not susceptible to adversarial attacks [11, 29, 39]. Current approaches for neural
network verification can be divided into exact (complete) methods and relaxed (incomplete) methods.
Exact verifiers are often based on mixed integer programming (MIP) or more generally branch-
and-bound [3, 4, 9, 10, 12, 14, 17, 24, 25, 31, 41, 48] or satisfiability modulo theories (SMT)
[16, 19, 20, 27, 33] and, per their name, exactly solve the problem, with no false negatives or false
positives. However, exact verifiers are typically based on solving NP-hard optimization problems
[20] which can significantly limit their scalability. In contrast, relaxed verifiers are often based on
polynomially-solvable optimization problems such as convex optimization or linear programming
(LP) [2, 8, 15, 23, 26, 30, 32, 34, 47, 50], which in turn lend themselves to faster propagation-based
methods where bounds are computed by a series of variable substitutions in a backwards pass through

˚This work was completed while this author was at Google Research.
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the network [36, 44, 45, 46, 49]. Unfortunately, relaxed verifiers achieve this speed and scalability by
trading off effectiveness (i.e. increased false negative rates), possibly failing to certify robustness
when robustness is, in fact, present. As might be expected, the success of relaxed methods hinges on
their tightness, or how closely they approximate the object which they are relaxing.

As producing the tightest possible relaxation for an entire neural network is no easier than the original
verification problem, most relaxation approaches turn their attention instead to simpler substructures,
such as individual neurons. For example, the commonly used ∆-relaxation2[16] is simple and offers
the tightest possible relaxation for the univariate ReLU function, and as a result is the foundation for
many relaxed verification methods. Recently, Salman et al. [32] characterized the convex relaxation
barrier, showing that the effectiveness of all existing propagation-based fast verifiers is fundamentally
limited by the tightness of this ∆-relaxation. Unfortunately, they show computationally that this
convex barrier can be a severe limitation on the effectiveness of relaxed verifiers based upon it.
While the convex relaxation barrier can be bypassed in various ways (e.g. considering relaxations for
multiple neurons [34]), as noted in [32, Appendix A] all existing approaches that achieve this do so
by trading off clarity and speed.

In this paper we improve the effectiveness of propagation- and LP-based relaxed verifiers with a
new tightened convex relaxation for ReLU neurons. Unlike the ∆-relaxation which focuses only on
the univariate input space of the ReLU, our relaxation considers the multivariate input space of the
affine pre-activation function preceding the ReLU. By doing this, we are able to bypass the convex
barrier from [32] while remaining in the realm of single-neuron relaxations that can be utilized by
fast propagation- and LP-based verifiers.

More specifically, our contributions are as follows.

1. Using results from submodularity and convex geometry, we derive an explicit linear in-
equality description for the tightest possible convex relaxation of a single neuron, where,
in the spirit of [3, 4], we take this to encompass the ReLU activation function, the affine
pre-activation function preceding it, and known bounds on each input to this affine function.
We show that this new convex relaxation is significantly stronger than the ∆-relaxation,
and hence bypasses the convex barrier from [32] without the need to consider multi-neuron
interactions as in, e.g. [34].

2. We show that this description, while requiring an exponential number of inequalities in
the worst case, admits an efficient separation routine. In particular, we present a linear
time algorithm that, given a point, either asserts that this point lies within the relaxation, or
returns an inequality that is not satisfied by this point. Using this routine, we develop two
verification algorithms that incorporate our tighter inequalities into the relaxation.

(a) OptC2V: We develop a polynomial-time LP-based algorithm that harnesses the full
power of our new relaxation.

(b) FastC2V: We develop a fast propagation-based algorithm that generalizes existing
approaches (e.g. Fast-Lin [44] and DeepPoly [36]) by dynamically adapting the
relaxation using our new inequalities.

3. Computational experiments on verification problems using networks from the ERAN
dataset [38] demonstrate that leveraging these inequalities yields a substantial improve-
ment in verification capability. In particular, our fast propagation-based algorithm surpasses
the strongest possible algorithm restricted by the convex barrier (i.e. optimizing over the
∆-relaxation at every neuron). We also show that our methods are competitive with more
expensive state-of-the-art methods such as RefineZono [37] and kPoly [34], certifying
more images than them in several cases.

2 Verification via mathematical optimization

Consider a neural network f : Rm Ñ Rr described in terms of N neurons in a linear order.3 The
first m neurons are the input neurons, while the remaining intermediate neurons are indexed by

2Sometimes also called the triangle relaxation [22, 34].
3This allows us to consider feedforward networks, including those that skip layers (e.g. see [32, 50]).
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i “ m` 1, . . . , N . Given some input x P Rm, the relationship fpxq “ y can be described as

xi “ zi @i “ 1, . . . ,m (the inputs) (1a)

ẑi “
ÿi´1

j“1
wi,jzj ` bi @i “ m` 1, . . . , N (the pre-activation value) (1b)

zi “ σpẑiq @i “ m` 1, . . . , N (the post-activation value) (1c)

yi “
ÿN

j“1
wi,jzj ` bi @i “ N ` 1, . . . , N ` r (the outputs). (1d)

Here the constants w and b are the weights and biases, respectively, learned during training, while
σpvq

def
“ maxt0, vu is the ReLU activation function. Appropriately, for each neuron i we dub the

variable ẑi the pre-activation variable and zi the post-activation variable.

Given a trained network (i.e. fixed architecture, weights, and biases), we study a verification problem
of the following form: given constant c P Rr, polyhedron X Ď Rm, β P R, and

γpc,Xq
def
“ maxxPX c ¨ fpxq ” maxx,y,ẑ,z t c ¨ y | x P X, (1) u , (2)

does γpc,Xq ď β? Unfortunately, this problem is NP-hard [20]. Moreover, one is typically not
content with solving just one problem of this form, but would like to query for many reasonable
choices of c and X to be convinced that the network is robust to adversarial perturbations.

A promising approach to approximately solving the verification problem is to replace the intractable
optimization problem defining γ in (2) with a tractable relaxation. In particular, we aim to identify a
tractable optimization problem whose optimal objective value γRpc,Xq satisfies γpc,Xq ď γRpc,Xq,
for all parameters c and X of interest. Then, if γRpc,Xq ď β, we have answered the verification
problem in the affirmative. However, note that it may well be the case that, by relaxing the problem,
we may fail to verify a network that is, in fact, verifiable (i.e. γpc,Xq ď β ă γRpc,Xq). Therefore,
the strength of our relaxation is crucial for reducing the false negative rate of our verification method.

2.1 The ∆-relaxation and its convex relaxation barrier

Salman et al. [32] note that many relaxation approaches for ReLU networks are based on the single-
activation-function set Ai def

“ tpẑi, ziq P R
2 | L̂i ď ẑi ď Ûi, zi “ σjpẑiqu, where the pre-activation

bounds L̂i, Ûi P R are taken so that L̂i ď ẑi ď Ûi for any point that satisfies x P X and (1). The
∆-relaxation Ci∆

def
“ ConvpAiq is optimal in the sense that it describes the convex hull of Ai, with

three simple linear inequalities: zi ě 0, zi ě ẑi, and zi ď Ûi
Ûi´L̂i

pẑi ´ L̂iq.

The simplicity and small size of the ∆-relaxation is appealing, as it leads to the relaxation

γ∆pc,Xq
def
“ max
x,y,ẑ,z

 

c ¨ y
ˇ

ˇ x P X, (1a), (1b), (1d), pẑi, ziq P C
i
∆ @i “ m` 1, . . . , N

(

. (3)

This is a small4 Linear Programming (LP) problem than is theoretically tractable and relatively easy
to solve in practice. Moreover, a plethora of fast propagation-based algorithms [35, 36, 43, 44, 45, 49]
center on an approach that can be interpreted as further relaxing γ∆, where inequalities describing the
sets Ci∆ are judiciously dropped from the description in such a way that this LP becomes much easier
to solve. Unfortunately, Salman et al. [32] observe that the quality of the verification bounds obtained
through the ∆-relaxation are intrinsically limited; a phenomenon they call the convex relaxation
barrier. Nonetheless, this LP, along with faster propagation algorithms that utilize the inequalities
defining Ci∆, have been frequently applied to the verification task, often with substantial success.

2.2 Our approach: Eliding pre-activation variables

In this paper, we show that we can significantly improve over the accuracy of ∆-relaxation verifiers
with only a minimal trade-off in simplicity and speed. The key for this result is the observation
that pre-activation variables are a “devil in disguise” in the context of convex relaxations. For a
neuron i, the pre-activation variable ẑi and the post-activation variable zi form the minimal set of
variables needed to capture (and relax) the nonlinearity introduced by the ReLU. However, this

4Here, “small” means the number of variables and constraints is Op# of neuronsq.
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approach ignores the inputs to the pre-activation variable ẑi, i.e. the preceding post-activation
variables z1:i´1

def
“ pz1, . . . , zi´1q.

Our approach captures these relationships by instead turning our attention to the i-dimensional
set5 Si

def
“

!

z P Ri
ˇ

ˇ

ˇ
L ď z1:i´1 ď U, zi “ σ

´

ři´1
j“1 wi,jzj ` bi

¯ )

, where the post-activation

bounds L,U P Ri´1 are such that Lj ď zj ď Uj for each point satisfying x P X and (1). Note
that no pre-activation variables appear in this description; we elide them completely, substituting the
affine function describing them inside of the activation function.

z2

z1

z3

z2

z1

z3

Figure 1: A simple neural network with m “ 2 dimensional input and one intermediate neuron
(N “ 3). (Left) The feasible region for γ∆, and (Right) The feasible region for γElide. The x, y, and
ẑ variables, which depend affinely on the others, are projected out.

This immediately gives a single-neuron relaxation of the form

γElidepc,Xq
def
“ max

x,y,z

 

c ¨ y
ˇ

ˇ x P X, (1a), (1d), z1:i P C
i
Elide @i “ m` 1, . . . , N

(

, (4)

where CiElide
def
“ ConvpSiq is the convex hull of Si, as shown in Figure 1 (adapted from [3]), which

contrasts it with the convex barrier and ∆-relaxation. We will show that, unsurprisingly, CiElide will
require exponentially many inequalities to describe in the worst case. However, we show that this
need not be a barrier to incorporating this tighter relaxation into verification algorithms.

3 An exact convex relaxation for a single ReLU neuron

Let w P Rn, b P R, fpxq def
“ w ¨ x` b, and L,U P Rn be such that L ă U . For ease of exposition,

we rewrite the single-neuron set Si in the generic form

S
def
“ t px, yq P rL,U s ˆR | y “ σpfpxqq u . (5)

Notationally, take JnK def
“ t1, . . . , nu, L̆i

def
“

"

Li wi ě 0

Ui o.w.
and Ŭi

def
“

"

Ui wi ě 0

Li o.w.
for each i P JnK,

`pIq
def
“
ř

iPI wiL̆i `
ř

iRI wiŬi ` b, and

J def
“

!

pI, hq P 2JnK ˆ JnK
ˇ

ˇ

ˇ
`pIq ě 0, `pI Y thuq ă 0, wi ‰ 0 @i P I

)

.

Our main technical result uses results from submodularity and convex geometry [1, 6, 28, 40] to give
the following closed-form characterization of ConvpSq. For a proof of Theorem 1, see Appendix A.
Theorem 1. If `pJnKq ě 0, then ConvpSq “ S “ t px, yq P rL,U s ˆR | y “ fpxq u. Alternatively,
if `pHq ă 0, then ConvpSq “ S “ rL,U s ˆ t 0 u. Otherwise, ConvpSq is equal to the set of all
px, yq P Rn ˆR satisfying

y ě w ¨ x` b, y ě 0, L ď x ď U (6a)

y ď
ÿ

iPI
wipxi ´ L̆iq `

`pIq

Ŭh ´ L̆h
pxh ´ L̆hq @pI, hq P J . (6b)

Furthermore, if d def
“ |t i P JnK | wi ‰ 0 u|, then d ď |J | ď r 1

2ds
`

d
r 1
2ds

˘

and for each of these
inequalities (and each d P JnK) there exist data that makes it hold at equality.

5The effective dimension of this set can be much smaller if wi,¨ is sparse. This is the case with a feedforward
network, where the number of nonzeros is (at most) the number of neurons in the preceding layer.
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Note that this is the tightest possible relaxation when x P rL,U s. Moreover, we observe that the
relaxation offered by ConvpSq can be arbitrarily tighter than that derived from the ∆-relaxation.
Proposition 1. For any input dimension n, there exists a point x̃ P Rn, and a problem in-
stance given by the affine function f , the ∆-relaxation C∆, and the single neuron set S such
that

`

maxy:pfpx̃q,yqPC∆
y
˘

´
`

maxy:px̃,yqPConvpSq y
˘

“ Ωpnq.

Although the family of upper-bounding constraints (6b) may be exponentially large, the structure of
the inequalities is remarkably simple. As a result, the separation problem can be solved efficiently:
given px, yq, either verify that px, yq P ConvpSq, or produce an inequality from the description (6)
which is violated at px, yq. For instance, we can solve in Opn log nq time the optimization problem

υpxq
def
“ min

"

ÿ

iPI
wipxi ´ L̆iq `

`pIq

Ŭh ´ L̆h
pxh ´ L̆hq

ˇ

ˇ

ˇ

ˇ

pI, hq P J
*

, (7)

by sorting the indices with wi ‰ 0 in nondecreasing order of values pxi´ L̆iq{pŬi´ L̆iq, then adding
them to I in this order so long as `pIq ě 0 (note that adding to I can only decrease `pIq), and then
letting h be the index that triggered the stopping condition `pI Y thuq ă 0. For more details, see the
proof of Proposition 2 in Appendix B.

Then, to check if px, yq P ConvpSq, we first check if the point satisfies (6a), which can be ac-
complished in Opnq time. If so, we compute υpxq in Opn log nq time. If y ď υpxq, then
px, yq P ConvpSq. Otherwise, an optimal solution to (7) yields an inequality from (6b) that is
most violated at px, yq. In addition, we can also solve (7) slightly faster.
Proposition 2. The optimization problem (7) can be solved in Opnq time.

Together with the ellipsoid algorithm [18], Proposition 2 shows that the single-neuron relaxation
γElide can be efficiently solved (at least in a theoretical sense).
Corollary 1. If the weights w and biases b describing the neural network are rational, then the
single-neuron relaxation (4) can be solved in polynomial time on the encoding sizes of w and b.

For proofs of Proposition 1, Proposition 2 and Corollary 1, see Appendix B.

Connections with Anderson et al. [3, 4] Anderson et al. [3, 4] have previously presented a MIP
formulation that exactly models the set S in (5). This formulation is ideal so, in particular, its
LP relaxation offers a lifted LP formulation with one auxiliary variable whose projection onto the
original variables x and y is exactly ConvpSq. Indeed, in Appendix A.2 we provide an alternative
derivation for Theorem 1 using the machinery presented in [3]. This lifted LP can be used in lieu
of our new formulation (6), though it offers no greater strength and requires an additional N ´m
variables if applied for each neuron in the network. Moreover, it is not clear how to incorporate the
lifted LP into propagation-based algorithms to be presented in the following section, which naturally
work in the original variable space.

4 A propagation-based algorithm

We now present a technique to use the new family of strong inequalities (6b) to generate strong post-
activation bounds for a trained neural network. A step-by-step example of this method is available in
Appendix D. To properly define the algorithm, we begin by restating a generic propagation-based
bound generation framework under which various algorithms from the literature are special cases
(partially or completely) [35, 36, 43, 44, 45, 49].

4.1 A generic framework for computing post-activation bounds

Consider a bounded input domain X Ď Rm, along with a single output (i.e. r “ 1) to be maximized,
which we name Cpzq “ řη

i“1 cizi ` b for some η ď N . In this section, our goal is produce efficient
algorithms for producing valid upper bounds for C. First, let zipxq denote the unique value of zi
(post-activation variable i) implied by the equalities (1b–1c) when we set z1:m “ x for some x P X .
Next, assume that for each intermediate neuron i “ m ` 1, . . . , η we have affine functions of the
form Lipz1:i´1q “

ři´1
j“1 w

l
ijzj ` b

l
i and Uipz1:i´1q “

ři´1
j“1 w

u
ijzj ` b

u
i , such that

Lipz1:i´1pxqq ď zipxq ď Uipz1:i´1pxqq @x P X, i “ 1, . . . , η. (8)
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We consider how to construct these functions in the next subsection. Then, given these functions we
can compute a bound on C pz1:η pxqq through the following optimization problem:

B pC, ηq def
“ max

z
Cpzq ”

ÿη

i“1
cizi ` b (9a)

s.t. z1:m P X (9b)
Lipz1:i´1q ď zi ď Uipz1:i´1q @i “ m` 1, . . . , η. (9c)

Proposition 3. The optimal value of (9) is no less than maxxPX C pz1:η pxqq.

The optimal value B pC, ηq can be quickly computed through propagation methods without explicitly
computing an optimal solution to (9) [32, 49]. Such methods perform a backward pass to sequentially
eliminate (project out) the intermediate variables zN , . . . , zm`1, which can be interpreted as applying
Fourier-Motzkin elimination [7, Chapter 2.8]. In a nutshell, for i “ η, . . . ,m` 1, the elimination
step for variable zi uses its objective coefficient (which may be changing throughout the algorithm)
to determine which one of the bounds from (9c) will be binding at the optimal solution and replaces
zi by the expression Lipz1:i´1q or Uipz1:i´1q accordingly. The procedure ends with a smaller LP
that only involves the input variables z1:m and can be quickly solved with an appropriate method.
For instance, when X is a box, as is common in verification problems, this final LP can be trivially
solved by considering each variable individually. For more details, see Algorithm 1 in Appendix C.

4.2 Selecting the bounding functions

The framework described in the previous section required as input the family of bounding functions
tLi,Uiuηi“m`1. A typical approach to generate these will proceed sequentially, deriving the i-th pair
of functions using scalar bounds L̂i, Ûi P R on the i-th pre-activation variables ẑi, which by (1b) is
equal to

ři´1
j“1 wi,jzj ` bi. Hence, these scalar bounds must satisfy

L̂i ď
ÿi´1

j“1
wi,jzjpxq ` bi ď Ûi @x P X. (10)

These bounds can then be used as a basis to linearize the nonlinear equation

zi “ σ
´

ÿi´1

j“1
wi,jzj ` bi

¯

(11)

implied by (1b-1c). If Ûi ď 0 or L̂i ě 0, then (11) behaves linearly when (10) holds, and so we
can let Lipz1:i´1q “ Uipz1:i´1q “

ři´1
j“1 wi,jzj ` bi or Lipz1:i´1q “ Uipz1:i´1q “ 0, respectively.

Otherwise, we can construct non-trivial bounds such as

Lipz1:i´1q “
Ûi

Ûi ´ L̂i

˜

i´1
ÿ

j“1

wi,jzj ` bi

¸

and Uipz1:i´1q “
Ûi

Ûi ´ L̂i

˜

i´1
ÿ

j“1

wi,jzj ` bi ´ L̂i

¸

,

which can be derived from the ∆-relaxation: Uipz1:i´1q is the single upper-bounding inequality
present on the left side of Figure 1, and Lipz1:i´1q is a shifted down version of this inequality.6 This
pair is used by algorithms such as Fast-Lin [44], DeepZ [35], Neurify [43], and that of Wong and
Kolter [45]. Algorithms such as DeepPoly [36] and CROWN-Ada [49] can be derived by selecting
the same Uipz1:i´1q as above and Lipz1:i´1q “ 0 if |L̂i| ě |Ûi| or Lipz1:i´1q “

ři´1
j“1 wi,jzj ` bi

otherwise (i.e. whichever yields the smallest area of the relaxation). In the next subsection, we
propose using (6b) for Uipz1:i´1q.

Scalar bounds satisfying (10) for the i-th pre-activation variable can be computed by let-
ting CU,i

`

z1:pi´1q

˘

“
ři´1
j“1 wi,jzj ` bi and then setting L̂i “ ´B

`

CL,i, i´ 1
˘

and Ûi “

B
`

CU,i, i´ 1
˘

. Therefore, to reach a final bound for η “ N , we can iteratively compute L̂i
and Ûi for i “ m` 1, . . . , N by solving (9) each time, since each of these problems requires only
affine bounding functions up to intermediate neuron i´ 1. See Algorithm 4 in Appendix C for details.
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(a) An inequality from the ∆-
relaxation.

(b) An inequality from (6b). (c) Another inequality from (6b).

Figure 2: Possible choices of upper bounding functions Ui for a single ReLU. The black point depicts
a solution z1:N that we would like to separate (projected to the input-output space of the ReLU),
which is cut off by the inequality in (b). A full example involving these particular inequalities can be
found in Appendix D.

4.3 Our contribution: Tighter bounds by dynamically updating bounding functions

In Theorem 1 we have derived a family of inequalities, (6b), which can be applied to yield valid upper
bounding affine functions for each intermediate neuron in a network. As there may be exponentially
many such inequalities, it is not clear a priori which to select as input to the algorithm from Section 4.1.
Therefore, we present a simple iterative scheme in which we apply a small number of solves of (9),
incrementally updating the set of affine bounding functions used at each iteration.

Our goal is to update the upper bounding function Ui with one of the inequalities from (6b) as
illustrated in Figure 2 via the separation procedure of Proposition 2, which requires an optimal
solution z1:N for (9). However, the backward pass of the propagation algorithm described in
Section 4.1 only computes the optimal value B pC, ηq and a partial solution z1:m. For this reason, we
first extend the propagation algorithm with a forward pass that completes the partial solution z1:m by
propagating the values for zm`1, . . . , zN through the network. This propagation uses the same affine
bounding functions from (9c) that were used to eliminate variables in the backward pass. For more
details, see Algorithm 2 in Appendix C.

In essence, our complete dynamic algorithm initializes with a set of bounding functions (e.g. from
Fast-Lin or DeepPoly), applies a backward pass to solve the bounding problem, and then a forward
pass to reconstruct the full solution. It then takes that full solution, and at each intermediate neuron i
applies the separation procedure of Proposition 2 to produce an inequality from the family (6b). If this
inequality is violated, it replaces the upper bounding function Ui with this inequality from (6b). We
repeat for as many iterations as desired and take the best bound produced across all iterations. In this
way, we use separation to help us select from a large family just one inequality that will (hopefully)
be most beneficial for improving the bound. For more details, see Algorithm 3 in Appendix C.

5 Computational experiments

5.1 Computational setup

We evaluate two methods: the propagation-based algorithm from Section 4.3 and a method based
on partially solving the LP from Theorem 1 by treating the inequalities (6b) as cutting planes,
i.e. inequalities that are dynamically added to tighten a relaxation. To focus on the benefit of
incorporating the inequalities (6b) into verification algorithms, we implement simple versions of the
algorithms, devoid of extraneous features and fine-tuning. We name this framework “Cut-to-Verify”
(C2V), and the propagation-based and LP-based algorithms FastC2V and OptC2V, respectively. See
https://github.com/google-research/tf-opt for the implementation.

The overall framework in both methods is the same: we compute scalar bounds for the pre-activation
variables of all neurons as we move forward in the network, using those bounds to produce the
subsequent affine bounding functions and LP formulations as discussed in Section 4.2. Below, we
describe the bounds computation for each individual neuron.

6Note that these functions satisfy (8) only when Ûi ą 0 and L̂i ă 0.
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Propagation-based algorithm (FastC2V). We implement the algorithm described in Section 4.3,
using the initial affine bounding functions tLi,UiuNi“m`1 from DeepPoly [36] and CROWN-Ada [49],
as described in Section 4.1.7 In this implementation, we run a single iteration of the algorithm.

LP-based algorithm (OptC2V). Each bound is generated by solving a series of LPs where our
upper bounding inequalities are dynamically generated and added as cutting planes. We start with the
standard ∆-relaxation LP, solve it to optimality, and then for every neuron preceding the one we are
bounding, we add the most violated inequality with respect to the LP optimum by solving (7). This
can be repeated multiple times. In this implementation, we perform three rounds of separation. We
generate new cuts from scratch for each bound that we compute.

In both methods, at each neuron we take the best between the bound produced by the method and the
trivial interval arithmetic bound. Appendix E contains other implementation details.

We compare each of our novel algorithms against their natural baselines: DeepPoly for our
propagation-based method, and the standard ∆-relaxation LP for our cutting plane method. Our
implementation of DeepPoly is slightly different from the one in [36] in that we take the best of
interval arithmetic and the result of DeepPoly at each neuron. Moreover, our implementation is
sequential, even though operations in the same layer could be parallelized (for each of the algo-
rithms implemented in this work). The LP method simply solves the ∆-relaxation LP to generate
bounds at each neuron. In addition, we compare them with RefineZono [37] and kPoly [34], two
state-of-the-art incomplete verification methods.

Verification problem. We consider the following verification problem: given a correctly labeled
target image, certify that the neural network returns the same label for each input within L8-distance
at most ε of that target image. More precisely, given an image x̂ P r0, 1sm correctly labeled as t,
a neural network where fkpxq returns its logit for class k P K, and a distance ε ą 0, the image x̂
is verified to be robust if maxxPrL̂,ÛsmaxkPKtfkpxq ´ ftpxqu ă 0, where L̂i “ maxt0, x̂i ´ εu

and Ûi “ mint1, x̂i ` εu for all i “ 1, . . . ,m. For propagation-based methods, the inner max term
can be handled by computing bounds for fkpxq ´ ftpxq for every class k ‰ t and checking if the
maximum bound is negative, although we only need to compute pre-activation bounds throughout the
network once. For LP-based methods, this inner term can be incorporated directly into the model.

To facilitate the comparison with existing algorithms, our experimental setup closely follows that of
Singh et al. [34]. We experiment on a subset of trained neural networks from the publicly available
ERAN dataset [38]. We examine the following networks: the fully connected ReLU networks 6x100
(ε “ 0.026), 9x100 (ε “ 0.026), 6x200 (ε “ 0.015), 9x200 (ε “ 0.015), all trained on MNIST
without adversarial training; the ReLU convolutional networks ConvSmall for MNIST (ε “ 0.12),
with 3 layers and trained without adversarial training; the ReLU network ConvBig for MNIST
(ε “ 0.3), with 6 layers and trained with DiffAI; and the ReLU network ConvSmall for CIFAR-10
(ε “ 2{255), with 3 layers and trained with PGD. These ε values are the ones used in [34] and they
are cited as being challenging. For more details on these networks, see Appendix E or [38]. For
each network, we verify the first 1000 images from their respective test sets except those that are
incorrectly classified.

Due to numerical issues with LPs, we zero out small values in the convolutional networks for the
LP-based algorithms (see Appendix E). Other than this, we do not perform any tuning according to
instance. Our implementation is in C++ and we perform our experiments in an Intel Xeon E5-2699
2.3Ghz machine with 128GB of RAM. We use Gurobi 8.1 as the LP solver, take advantage of
incremental solves, and set the LP algorithm to dual simplex, as we find it to be faster for these LPs
in practice. This means that our LP implementation does not run in polynomial time, even though it
could in theory by using a different LP algorithm (see Corollary 1).

To contextualize the results, we include an upper bound on the number of verifiable images. This
is computed with a standard implementation of gradient descent with learning rate 0.01 and 20
steps. For each image, we take 100 random initializations (10 for MNIST ConvBig and CIFAR-10
ConvSmall) and check if the adversarial example produced by gradient descent is valid. The upper
bound is the number of images for which we were unable to produce an adversarial example.

7Our framework supports initializing from the Fast-Lin inequalities as well, but it has been observed that
the inequalities from DeepPoly perform better computationally.
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Table 1: Number of images verified and average verification times per image for a set of networks
from the ERAN dataset [38]. ConvS and ConvB denote ConvSmall and ConvBig, respectively.
Results for RefineZono and kPoly are taken from [34].

MNIST CIFAR-10

Method 6x100 9x100 6x200 9x200 ConvS ConvB ConvS

DeepPoly #verified 160 182 292 259 162 652 359
Time (s) 0.7 1.4 2.4 5.6 0.9 7.4 2.8

FastC2V #verified 279 269 477 392 274 691 390
Time (s) 8.7 19.3 25.2 57.2 5.3 16.3 15.3

LP #verified 201 223 344 307 242 743 373
Time (s) 50.5 385.6 218.2 2824.7 23.1 24.9 38.1

OptC2V #verified 429 384 601 528 436 771 398
Time (s) 136.7 759.4 402.8 3450.7 55.4 102.0 104.8

RefineZono #verified 312 304 341 316 179 648 347
kPoly #verified 441 369 574 506 347 736 399

Upper bound #verified 842 820 901 911 746 831 482

5.2 Computational results

The computational results in Table 1 demonstrate that adding the upper bounding inequalities proposed
in this paper significantly improves the number of images verified compared to their base counterparts.
While on average FastC2V spends an order of magnitude more time than DeepPoly to achieve this,
it still takes below one minute on average for all instances examined. OptC2V takes approximately
1.2 to 2.7 times of a pure LP method to generate bounds in the problems examined. Since we start
from the LP basis of the previous solve, subsequent LPs after adding cuts are generally faster.

Interestingly, we observe that FastC2V verifies more images than LP in almost all cases in much
less time. This indicates that, in practice, a two-inequality relaxation with a single (carefully chosen)
tighter inequality from (6b) can often be stronger than the three-inequality ∆-relaxation.

When compared to other state-of-the-art incomplete verifiers, we observe that for the larger networks,
improving DeepPoly with our inequalities enables it to verify more images than RefineZono [37],
a highly fine-tuned method that combines MIP, LP, and DeepPoly, but without the expensive
computation and the parameter tuning needs from RefineZono. In addition, we find that adding
our inequalities to LPs is competitive with kPoly, surpassing it for some of the networks. While
the timings in [34] may not be comparable to our timings, the authors report average times for
RefineZono and kPoly within the range of 4 to 15 minutes and 40 seconds to 8 minutes, respectively.

Appendix F contains additional computational results where we consider multiple trained networks
and distances ε from the base image.

Outlook: Our methods as subroutines The scope of our computational experiments is to demon-
strate the practicality and strength of our full-neuron relaxation applied to simple methods, rather
than to engineer full-blown state-of-the-art verification methods. Towards such a goal, we remark
that both RefineZono and kPoly rely on LP and other faster verification methods as building blocks
to a stronger method, and either of our methods could be plugged into them. For example, we could
consider a hybrid approach similar to RefineZono that uses the stronger, but slower OptC2V in the
earlier layers (where it can have the most impact) and then switches to FastC2V, which could result
in verification times closer to FastC2V with an effectiveness closer to OptC2V. In addition, kPoly
exploits the correlation between multiple neurons in the same layer, whereas our approach does
not, suggesting that there is room to combine approaches. Finally, we note that solving time can be
controlled with a more careful management of the inequalities to be added and parallelizing bound
computation of neurons in the same layer.
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Broader Impact

In a world where deep learning is impacting our lives in ever more tangible ways, verification is an
essential task to ensure that these black box systems behave as we expect them to. Our fast, simple
algorithms have the potential to make a positive impact by verifying a larger number of inputs to be
robust within a short time-frame, often required in several applications. Of course, we should be
cautious that although our algorithms provide a mathematical certificate of an instance being robust,
failure to use the system correctly, such as modeling the verification problem in a way that does
not reflect real-world concerns, can still lead to unreliable neural networks. We also highlight that
our version of the verification problem, while accurately capturing a reasonable formal specification
of robustness, clearly does not perfectly coincide with “robustness” as may be used in a colloquial
sense. Therefore, we highlight the importance of understanding the strengths and limitations of the
mathematical model of verification used, so that a false sense of complacency does not set in.
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A Proof of Theorem 1

We provide two different proofs for Theorem 1. The first proof is based on classical machinery
from submodular and convex optimization. The alternative proof is based on projecting down an
extended MIP formulation built using disjunctive programming. We include them both since each
proof provides unique insights on our new relaxation.

We first state a lemma that is used by both proofs for bounding the number of inequalities. Notationally,
we will take 0d and 1d as the length d vectors of all zeros and all ones, respectively, and epiq P Rn
for i P JnK as the i-th canonical unit vector, where the length will be implicitly determined by the
context of its use. In some cases it will be convenient to refer to the 0-th canonical vector ep0q “ 0n.

Lemma 1. If u, v P t0, 1ud are such that
řd
i“1 |ui ´ vi| “ 1, then we say that uv is an edge of

r0, 1sd. For w P Rd and b P R, we say the hyperplane w ¨ x ` b “ 0 cuts edge uv of r0, 1sd if
w ¨ u ` b ă 0 and w ¨ v ` b ě 0. If b ă 0 and

řd
i“1 wi ` b ě 0, then the number of edges cut by

one such hyperplane is lower-bounded by d and upper-bounded by r 1
2ds

`

d
r 1
2ds

˘

. For each bound there

exists a hyperplane with w P Rd` such that the bounds holds at equality.

Proof. Consider the graph G “ pV,Eq with V “ t0, 1ud and E equal to the edges of r0, 1sd. Let
s “ 0d and t “ 1d. Then w ¨s`b ă 0 and w ¨ t`b ě 0, so the edges of r0, 1sd cut by the hyperplane
form a s´ t graph-cut in G (note that this does not have the same meaning as the definition of cut for
an edge given in the Lemma statement). Hence, the number of edges cut by the hyperplane are lower
bounded by d (e.g. follows by Menger’s theorem by noting that there are d disjoint paths in G from s
to t). An example of a hyperplane that achieves this lower bound is w “ 1d and b “ ´1{2.

The tight upper bound follows from a simple adaptation of the proof of a result from [28].8 An
example of a hyperplane that achieves this upper bound is w “ 1d and b “ ´r 1

2ds.

A.1 A proof using submodularity

We start with an example.

A.1.1 Illustrative example and definitions

Example 1. Consider the set from (5) for n “ 2, w “ p1, 1q, b “ p´1.5q, L “ p0, 0q and U “ p0, 0q,
which corresponds to

S “
 

px, yq P r0, 1s2 ˆR
ˇ

ˇ y “ gpxq
(

for gpxq def
“ max t 0, x1 ` x2 ´ 1.5 u. Set S is depicted in Figure 3 and we can check that ConvpSq

is described by

x P r0, 1s2 (12a)
y ě gpxq (12b)

y ď r1pxq, y ď r2pxq (12c)

for r1pxq
def
“ 0.5x2 and r2pxq

def
“ 0.5x1. Inequality (12b) is obtained by relaxing the equation

describing S to an inequality and using the fact that gpxq is convex. Functions r1 and r2 from
inequality (12c) are depicted in Figures 3a and 3b, respectively. These functions can be obtained
through the following interpolation procedure.

First, consider the subdivision of r0, 1s2 into the triangles T1 and T2 depicted in Figures 3a and
3b, respectively. As depicted Figure 3a, the vertices of T1 are obtained by incrementally adding
the canonical vectors to p0, 0q, in order, until we obtain p1, 1q. That is, the vertices of T1 are
ep0q “ p0, 0q, ep0q ` ep1q “ ep1q “ p0, 1q and ep0q ` ep1q ` ep2q “ p1, 1q. In contrast, as depicted
in Figure 3b, the vertices of T2 are obtained by incrementally adding the canonical vectors in reverse
order (i.e. the vertices of T2 are ep0q “ p0, 0q, ep0q`ep2q “ p1, 0q and ep0q`ep2q`ep1q “ p1, 1q).

8See also [5, Theorem 7.9]: the proof of [28, Lemma 2] can be readily adapted to accommodate non-strict,
rather than strict, linear inequalities.
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Second, we obtain r1 and r2 by constructing the unique affine interpolation of g on T1 and T2,
respectively. That is, as depicted in Figure 3a, r1pxq “ α1 ¨ x` β1, where α1 P R2 and β1 P R are
such that r1 is equal to g for the three vertices p0, 0q, p1, 0q and p1, 1q of T1:

˜

0 0
1 0
1 1

¸

α1 ` β1 “

˜

gp0, 0q
gp1, 0q
gp1, 1q

¸

“

˜

0
0

0.5

¸

.

The unique solution of this system is α1 “ p0, 0.5q and β1 “ 0, which yields r1pxq “ 0.5x2. Function
r2 is obtained by a similar procedure using the vertices of T2 as illustrated Figure 3b.

x2

x1

y

ep1q

ep2qT1

(a) Constructing r1 using T1.

x2

x1

y

ep1q

ep2q

ep2q

ep1q

T2

(b) Constructing r2 using T2.

x2

x1

y

ep1q

ep2qT1

(c) Checking membership in
ConvpSq.

Figure 3: Using interpolation on triangles to construct ConvpSq for Example 1.

The subdivision of r0, 1s2 into T1 and T2 can be extended to r0, 1sn by considering all n! possible
orders in which we can obtain 1n from 0n by incrementally adding the canonical vectors. We
represent these orders using the set of all permutations of JnK. In Example 1, this set is given by
S2

def
“ t π1, π2 u, where πi : J2K Ñ J2K for each i P J2K, π1p1q “ 1, π1p2q “ 2, π2p1q “ 2, and

π2p2q “ 1. Then, under the notation of Definition 1 below, we have T1 “ Tπ1 and T2 “ Tπ2 .

Definition 1. Let Sn be the set of all permutations of JnK. Then for every π P Sn, we define

Vπ “

!

řj
i“0 e pπ piqq

)n

j“0
and

Tπ “ conv pVπq “
 

x P Rn
ˇ

ˇ 1 ě xπp1q ě xπp2q ě . . . ě xπpnq ě 0
(

. (13)

The collection of simplices tTπ uπPSn , whose union is r0, 1sn, is known as the Kuhn triangulation
of r0, 1sn [42].

The number of simplices in the Kuhn triangulation is exponential, so an n-dimensional generalization
of Example 1 could contain an exponential number of inequalities in (12c). Fortunately, as illustrated
in the following example, the characterization of Tπ in the right hand side of (13) allow us to easily
filter for relevant inequalities.

Example 1 continued. Consider the point px˚, y˚q “ p0.6, 0.3, 0.5q depicted as a red star in
Figure 3c. To check if px˚, y˚q P ConvpSq we can first verify that y˚ ě g px˚q and x˚ P r0, 1s2. It
then only remains to check that px˚, y˚q satisfies all inequalities in (12c). However, we can instead
exploit the fact that if x P T1, then r1pxq “ min t r1pxq, r2pxq u. As illustrated in Figure 3c we
can use the fact that x˚1 ě x˚2 to conclude that x˚ (depicted as a red circle in Figure 3c) belongs
to T1. Finally, we can check that r1 px

˚q “ 0.3 ă 0.5 to conclude that px˚, y˚q R ConvpSq (Point
px˚, 0.3q is depicted as a red diamond in Figure 3c).

To show that the ideas in Example 1 can be generalized, we will exploit properties of submodular
functions. For that we connect functions from r0, 1sn with set-functions. We pick one specific
connection that simplifies the statement and proof of Theorem 1.
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Definition 2. A set-function H : 2JnK Ñ R is submodular if

HpSq `HpT q ě HpS Y T q `HpS X T q @S, T Ď JnK .

For any h : r0, 1sn Ñ R we define the set-function H : 2JnK Ñ R given by HpIq “ h
´

ř

iRI epiq
¯

for each I Ď JnK. In particular, H pJnKq “ h p0nq andH pHq “ h p1nq. In general, for any function
from r0, 1sn to R defined as a lower case letter (e.g. h), we let the associated set-function be defined
by the upper case version of this letter (e.g. H).

A.1.2 Proof of Theorem 1

Our proof has three steps. First, we formalize the idea in Example 1 for arbitrary dimensions
(Theorem 2). Then, we reduce the number of inequalities by characterizing which of the simplices
Tπ lead to identical inequalities (Lemma 2). Finally, to complete the proof of Theorem 1, we describe
the explicit form of these inequalities.

Corollary 3.14 in [40] gives us a precise description of Conv pQq where Q is a normalized version of
S from (5) that also considers any convex activation function. We include a submodularity-based
proof of the corollary for completeness, adapted to our context.
Theorem 2. Let w P Rn` and b P R, fpxq “ w ¨ x ` b, ρ : R Ñ R be any convex function,
gpxq “ ρpfpxqq and Q “ t px, yq P r0, 1sn ˆR | y “ ρpfpxqq u.

For each π P Sn let rπ : r0, 1sn Ñ R be the unique affine interpolation9 of g on Tπ such that
rπ pvq “ gpvq for all v P Vπ . Then ConvpQq equals the set of all px, yq P Rn ˆR satisfying

y ě gpxq (14a)
y ď rπ pxq @π P Sn (14b)
0 ď xi ď 1 @i P JnK (14c)

Proof. Let h : r0, 1sn Ñ R be such that hpxq “ ´gpxq “ ´ρpfpxqq for all x P r0, 1sn. In
addition, let h and h respectively be the convex and concave envelopes of h (i.e. the largest con-
vex underestimator of h, which is well-defined because the pointwise maximum of convex func-
tions lying below h is a convex function, and the smallest concave overestimator of h, which
is similarly well-defined). Then Q “ t px, yq P r0, 1sn ˆR | ´y “ hpxq u and Conv pQq “
 

px, yq P r0, 1sn ˆR
ˇ

ˇ hpxq ď ´y ď hpxq
(

(e.g. [32, Proposition B.1]). Function h is concave
and hence h “ h, so it only remains to describe h.

To describe h, we define a set function H based on h (see Definition 2), which is submodular
because ´ρ is concave and w is non-negative (e.g. see [1, Section 3.1]). Submodularity allows us
to describe the lower convex envelope of the continuous function h through the Lovász extension
of the set function H . This extension is the piecewise affine function from r0, 1sn to R defined
over the pieces tTπ : π P Snu, which equals maxπPSnp´rπq by convexity (e.g. see [6] for further
details). Therefore the constraint required for convpQq is hpxq ď ´y ðñ y ď minπPSn rπpxq
which completes the derivation of inequalities (14b) in the theorem statement.

Note that even though there are exponentially many inequalities in (14b), the tightest constraint on
y at any given point x P r0, 1sn can be efficiently found, by sorting the coordinates of x to find the
simplex Tπ to which x belongs. Moreover, going from r0, 1sn to rL,U s and eliminating the sign
restriction on w can be achieved with standard variable transformations (e.g. see the comments before
[40, Corollary 3.14]).

Before demonstrating the variable transformations, we first further refine Theorem 2 for the case
when ρ is equal to the ReLU activation function σ. In particular, we generally have that each one
of the n! inequalities in (14b) is facet-defining because they hold at equality over the n` 1 affinely
independent points t pv, gpvqq uvPVπ

. Hence, they are all needed to describe ConvpRq. However,
because it may happen that rπ “ rπ1 for π ‰ π1, the number of inequalities in (14b) after removing
duplicates may be much smaller. The following lemma shows that this is indeed the case when ρ
is equal to the ReLU activation function σ. The lemma also gives a closed form expression for the
interpolating functions rπ in this case.

9 Such an affine interpolation exists and is unique because Vπ is a set of n` 1 affinely independent points.
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Lemma 2. Let w P Rn` and ´
řn
i“1 wi ď b ă 0, fpxq “ w ¨ x ` b, and gpxq “ σpfpxqq. If

t rπ uπPSn are the affine interpolation functions from Theorem 2, then
 

px, yq P Rn`1
ˇ

ˇ y ď rπ pxq @π P Sn
(

“
 

px, yq P Rn`1
ˇ

ˇ y ď rI,h pxq @ pI, hq P I
(

where I def
“

 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ F pIq ě 0, F pI Y thuq ă 0
(

, rI,h pxq
def
“ F pIqxh `

ř

iPI wixi,
and F : 2JnK Ñ R is the set-function associated to f as defined in Definition 2.

Proof. Fix π P Sn and for each j P JnK let Ipjq def
“ t πpiq u

n
i“j`1.

Then the interpolation condition for rπ given by rπ pvq “ gpvq for all v P Vπ is equivalent to
Rπ pIpjqq “ G pIpjqq @j “ 0, 1, . . . , n (15)

where Rπ and G are the set-functions associated to rπ and g as defined in Definition 2. For j “ 0,
condition (15) implies rπ p0nq “ Rπ pJnKq “ G pJnKq “ gp0nq “ 0 and hence there exists α P Rn
such that rπ pxq “ α ¨ x (i.e. rπ is a linear function). For j P JnK, condition (15) further implies that

απpjq “ g
´

ÿj

i“0
e pπ piqq

¯

´ g
´

ÿj´1

i“0
e pπ piqq

¯

“ G pIpjqq ´G pIpj ´ 1qq @j P JnK . (16)

Now, because F pHq “ fp1nq ě 0, w P Rn`, and b ă 0, there exists a unique k P JnK such
that pIpkq, πpkqq P I. Furthermore, w P Rn`, F pI pkq Y t π pkq uq “ F pI pk ´ 1qq ă 0, and
F pI pkqq ě 0 imply

F pIpjqq ă 0 and G pIpjqq “ 0 @j “ 0, . . . , k ´ 1; (17a)
F pIpjqq ě 0 and G pIpjqq “ F pIpjqq @j “ k, . . . , n. (17b)

Equations (16) and (17a) imply απpjq “ 0 for all j P JkK or equivalently αi “ 0 for all i R
I pkq Y t π pkq u. Equations (16) and (17) imply απpkq “ G pI pkqq “ F pI pkqq. Finally, equations
(16) and (17b) imply that απpjq “ wπpjq for all j “ k ` 1, . . . , n or equivalently αi “ wi for all
i P I . Hence, rπ “ rIpkq,πpkq. The lemma follows by noting that for any pI, hq P I there exists at
least one π P Sn such that pI pkq , π pkqq “ pI, hq.

Finally, we obtain the proof of Theorem 1 recalling that fpxq “ w ¨ x` b for w P Rn and b P R, and
S “ t px, yq P rL,U s ˆR | y “ σpfpxqq u for L,U P Rn such that L ă U .
Theorem 1. If `pJnKq ě 0, then ConvpSq “ S “ t px, yq P rL,U s ˆR | y “ fpxq u. Alternatively,
if `pHq ă 0, then ConvpSq “ S “ rL,U s ˆ t 0 u. Otherwise, ConvpSq is equal to the set of all
px, yq P Rn ˆR satisfying

y ě w ¨ x` b, y ě 0, L ď x ď U (6a)

y ď
ÿ

iPI
wipxi ´ L̆iq `

`pIq

Ŭh ´ L̆h
pxh ´ L̆hq @pI, hq P J . (6b)

Furthermore, if d def
“ |t i P JnK | wi ‰ 0 u|, then d ď |J | ď r 1

2ds
`

d
r 1
2ds

˘

and for each of these
inequalities (and each d P JnK) there exist data that makes it hold at equality.

Proof. Recalling thatJ def
“
 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ `pIq ě 0, `pI Y thuq ă 0, wi ‰ 0 @i P I
(

we can assume without loss of generality that wi ‰ 0 for all i P JnK and hence d “ n (Indices i with
wi “ 0 do not affect (6b) or the definition of J and the only inequalities for S or ConvpSq in which
a given xi appears are Li ď xi ď Ui).

For the first case, the result follows because fpxq ă 0 for all x P rL,U s and hence gpxq “ 0 for all
x P rL,U s.

For the second case, the result follows because fpxq ě 0 for all x P rL,U s and hence gpxq “ fpxq
for all x P rL,U s.

For the third case, recall that L̆i “
"

Li wi ě 0

Ui o.w.
and Ŭi “

"

Ui wi ě 0

Li o.w.
, and consider the affine

variable transformation given by

x̆i
def
“
xi ´ L̆i

Ŭi ´ L̆i
and xi “ pŬi ´ L̆iqx̆i ` L̆i @i P JnK . (18)
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Let w̆i
def
“ wipŬi ´ L̆iq for each i P JnK, b̆ def

“ b `
řn
i“1 wiL̆i “ `pJnKq ă 0, and f̆px̆q def

“ w̆ ¨ x̆ ` b̆

(recall that `pIq def
“
ř

iPI wiL̆i `
ř

iRI wiŬi ` b). Then we may infer that

w̆ix̆i “ wipxi ´ L̆iq @i P JnK , (19)

that fpxq “ f̆px̆q, and finally that px, yq P S if and only if px̆, yq P S̆
def
“

!

px̆, yq P r0, 1sn ˆR

ˇ

ˇ

ˇ
y “ σpf̆px̆qq

)

.

In addition, we conclude w̆ P Rn`, using the definition of L̆ and Ŭ and the fact that L ă U . Hence,
Theorem 2 and Lemma 2 are applicable for S̆ and ğpx̆q “ σpf̆px̆qq. Then

ConvpS̆q “
!

px̆, yq P r0, 1sn ˆR`

ˇ

ˇ

ˇ
f̆ px̆q ď y ď rI,h px̆q @ pI, hq P I

)

where I “

!

pI, hq P 2JnK ˆ JnK
ˇ

ˇ

ˇ
F̆ pIq ě 0, F̆ pI Y thuq ă 0

)

and rI,hpx̆q “ F̆ pIqx̆h `
ř

iPI w̆ix̆i. Using the definitions of b̆ and w̆i we get

F̆ pIq “
ÿ

iRI

w̆i` b̆ “
ÿ

iRI

wi

´

Ŭi ´ L̆i

¯

`

˜

b`
n
ÿ

i“1

wiL̆i

¸

“
ÿ

iRI

wiŬi`
ÿ

iPI

wiL̆i` b “ ` pIq (20)

and hence I “ J “
 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ `pIq ě 0, `pI Y thuq ă 0
(

. Combining (18–20), we
get

r̆I,h px̆q “ F̆ pIq x̆h `
ÿ

iPI

w̆ix̆i “ ` pIq
xh ´ L̆h

Ŭh ´ L̆h
`
ÿ

iPI

wi

´

xi ´ L̆i

¯

.

Hence, Conv pSq is described by (6).

Finally, pI, hq P J if and only if the hyperplane
řn
i“1 wixi` b “ 0 cuts the edge uv of r0, 1sn given

by u def
“
ř

iRpIYth uq epiq and v def
“
ř

iRI epiq (with the convention that an empty sum is equal to zero).
The result on |J | then follows by Lemma 1 recalling that without loss of generality we have assumed
n “ d.

A.2 An alternative proof using mixed-integer programming and projection

We can alternatively prove Theorem 1 by connecting it to the MIP formulation from [3] for S
defined in (5). For this, first recall that that fpxq “ w ¨ x ` b for w P Rn and b P R, and
S “ t px, yq P rL,U s ˆR | y “ σpfpxqq u for L,U P Rn such that L ă U .

Corollary 2. Let

Rsharp
def
“

$

’

’

’

&

’

’

’

%

px, y, zq P rL,U s ˆR ˆ r0, 1s2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y ě 0,

y ě w ¨ x` b,

y ď f̄px, zq,

z1 ` z2 “ 1

,

/

/

/

.

/

/

/

-

,

where

f̄px, zq
def
“ max
x̃1,x̃2

$

’

&

’

%

w ¨ x̃2 ` bz2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x “ x̃1 ` x̃2,

Lzk ď x̃k ď Uzk @k P J2K

x̃1, x̃2 P Rn

,

/

.

/

-

.

Then Conv pSq “ Projx,y pRsharpq
def
“
 

px, yq P Rn`1
ˇ

ˇ Dz P R2 s.t. px, y, xq P Rsharp

(

.

Proof. Follows from [3, Proposition 5] for the case d “ 2, w1 “ 0, b1 “ 0, w2 “ w, b2 “ b.
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Lemma 3. Let

R
def
“

$

’

&

’

%

px, yq P rL,U s ˆR

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y ě 0,

y ě w ¨ x` b,

y ď f̃pxq

,

/

.

/

-

where

f̃pxq
def
“ max
x̃1,x̃2,z

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

w ¨ x̃2 ` bz2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x “ x̃1 ` x̃2,

Lzk ď x̃k ď Uzk @k P J2K

x̃1, x̃2 P Rn

z1 ` z2 “ 1

z P r0, 1s2

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

. (21)

Then Conv pSq “ R.

Proof. By Corollary 2 it suffices to show R “ Projx,ypRsharpq.

Inclusion Projx,ypRsharpq Ď R follows by noting that f̄px̂, ẑq ď f̃px̂q for any px̂, ŷ, ẑq P Rsharp.

For inclusion R Ď Projx,ypRsharpq, let px̂, ŷq P R, and let
`

x̃1, x̃2, z
˘

P R2n`2 be an optimal
solution to the optimization problem in the right hand side of (21) for x “ x̂. Such solution exists
because for x̂ P rL,U s this optimization problem is the maximization of a linear function over a
non-empty bounded polyhedron. Then, f̃px̂q “ f̄px̂, zq, and hence px̂, ŷ, zq P Rsharp.

Theorem 1. If `pJnKq ě 0, then ConvpSq “ S “ t px, yq P rL,U s ˆR | y “ fpxq u. Alternatively,
if `pHq ă 0, then ConvpSq “ S “ rL,U s ˆ t 0 u. Otherwise, ConvpSq is equal to the set of all
px, yq P Rn ˆR satisfying

y ě w ¨ x` b, y ě 0, L ď x ď U (6a)

y ď
ÿ

iPI
wipxi ´ L̆iq `

`pIq

Ŭh ´ L̆h
pxh ´ L̆hq @pI, hq P J . (6b)

Furthermore, if d def
“ |t i P JnK | wi ‰ 0 u|, then d ď |J | ď r 1

2ds
`

d
r 1
2ds

˘

and for each of these
inequalities (and each d P JnK) there exist data that makes it hold at equality.

Proof. Recalling thatJ def
“
 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ `pIq ě 0, `pI Y thuq ă 0, wi ‰ 0 @i P I
(

we can assume without loss of generality that wi ‰ 0 for all i P JnK and hence d “ n (Indices i with
wi “ 0 do not affect (6b) or the definition of J and the only inequalities for S or ConvpSq in which
xi appear for such index are Li ď xi ď Ui).

For the first case, the result follows because fpxq ă 0 for all x P rL,U s and hence gpxq “ 0 for all
x P rL,U s.

For the second case, the result follows because fpxq ě 0 for all x P rL,U s and hence gpxq “ fpxq
for all x P rL,U s.

For the third case, it suffices to show that

f̃pxq “ min
pI,hqPJ

#

ÿ

iPI

wipxi ´ L̆iq `
`pIq

Ŭh ´ L̆h
pxh ´ L̆hq

+

, (22)

in which case, set R from Lemma 3 is exactly the set described by (6). To show (22) we first simplify
the optimization problem defining f̃pxq by applying the simple substitutions x̃ def

“ x̃2 “ x´ x̃1 and
z

def
“ z2 “ 1´ z1:

f̃pxq “ max
x̃,z

$

&

%

w ¨ x̃` bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Lp1´ zq ď x´ x̃ ď Up1´ zq,

Lz ď x̃ ď Uz,

z P r0, 1s

,

.

-

.
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This optimization problem is feasible and bounded when L ď x ď U , and thus we may assume an
optimal solution exists.

Consider some i P JnK. If wi ą 0, then x̃i ě Liz and xi ´ x̃i ď Uip1 ´ zq hold at any optimal
solution, since we are maximizing the problem and each constraint involves only a single xi and
z. Analogously, if wi ă 0, then x̃i ď Uiz and xi ´ x̃i ě Lip1 ´ zq are implied as well. To
unify these two cases into one as a simplification, observe that these constraints can be expressed as
wix̃i ě wiL̆iz and wipxi ´ x̃iq ď wiŬip1´ zq respectively (recall that wi ‰ 0 by assumption, and
that L̆i “ Li if wi ě 0, or Ui otherwise, and Ŭi “ Ui if wi ě 0, or Li otherwise). Therefore, we can
drop these constraints and keep the remaining ones:

f̃pxq “ max
x̃,z

$

’

&

’

%

w ¨ x̃` bz

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wipxi ´ x̃iq ě wiL̆ip1´ zq @i P JnK,

wix̃i ď wiŬiz @i P JnK
z P r0, 1s

,

/

.

/

-

.

Define γi
def
“ wipŬiz ´ x̃iq for all i P JnK. We can then rewrite the problem as:

f̃pxq “ max
γ,z

$

’

&

’

%

pw ¨ Ŭ ` bqz ´
n
ÿ

i“1

γi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

wipŬi ´ L̆iqz ´ γi ď wipxi ´ L̆iq @i P JnK
γ ě 0,

z P r0, 1s

,

/

.

/

-

.

We next take the dual of this problem. By strong duality, the following holds:

f̃pxq “ min
α,β

$

’

’

’

&

’

’

’

%

n
ÿ

i“1

wipxi ´ L̆iqαi ` β

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

wipŬi ´ L̆iqαi ` β ě
n
ÿ

i“1

wiŬi ` b,

α P r0, 1sn,

β ě 0

,

/

/

/

.

/

/

/

-

.

To conclude the proof, we describe the optimal solutions of the optimization problem above. Note that
it is a minimization variant of a fractional knapsack problem and it can be solved by a greedy algorithm,
in which we order the indices of α by xi´L̆i

Ŭi´L̆i
and maximally select those with the smallest ratios, until

the knapsack constraint is satisfied at equality. We also need to consider β in the knapsack, but since
the ratios for αi are in r0, 1s and the ratio for β is 1, β would only be picked last. Moreover, under the
assumptions of our current third case, we have `pJnKq “

řn
i“1 wiL̆i ` b ă 0, and thus that we can

satisfy the knapsack constraint by choosing from α’s (recall that `pIq “
ř

iPI wiL̆i`
ř

iRI wiŬi` b).
Therefore we may set β “ 0.

Let I be the set of indices in which αi “ 1 for the optimal solution and h be the next index to be
considered by the greedy procedure after the elements in I . Then

αh “

´

řn
i“1 wiŬi ` b

¯

´

´

ř

iPI wipŬi ´ L̆iq
¯

Ŭh ´ L̆h
“

`pIq

Ŭh ´ L̆h
P r0, 1q.

Observe that `pIq ě 0 is equivalent to stating that the items in I are below the knapsack capacity,
since `pIq equals the capacity of the knapsack minus the total weight of the items in I . Therefore,
`pIq ě 0 and `pI Y thuq ă 0 (i.e. the items in I fit but we can only add h partially). Hence, we can
write the optimization problem defining f̃pxq as finding the optimal I and h:

f̃pxq “ min
I,hRI

#

ÿ

iPI

wipxi ´ L̆iq `
`pIq

Ŭh ´ L̆h
pxh ´ L̆hq | `pIq ě 0, `pI Y thuq ă 0

+

.

We obtain (22) by recalling that J “
 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ `pIq ě 0, `pI Y thuq ă 0
(

.

Finally, pI, hq P J if and only if the hyperplane
řn
i“1 wixi` b “ 0 cuts the edge uv of r0, 1sn given

by u def
“
ř

iRpIYth uq epiq and v def
“
ř

iRI epiq (with the convention that an empty sum is equal to zero).
The result on |J | then follows by Lemma 1 recalling that without loss of generality we have assumed
n “ d.
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B Proofs of other results from Section 3

Proposition 1. For any input dimension n, there exists a point x̃ P Rn, and a problem in-
stance given by the affine function f , the ∆-relaxation C∆, and the single neuron set S such
that

`

maxy:pfpx̃q,yqPC∆
y
˘

´
`

maxy:px̃,yqPConvpSq y
˘

“ Ωpnq.

Proof. This follows as a straightforward extension of [3, Example 2], as the ∆-relaxation is equal to
the projection of the big-M formulation presented in that work.

The following proposition shows how the additional structure in Lemma 2 allows increasing the speed
of checking for violated inequalities from Opn logpnqq, achievable by sorting the input components,
to Opnq.
Proposition 2. The optimization problem (7) can be solved in Opnq time.

Proof. Recall that J def
“

 

pI, hq P 2JnK ˆ JnK
ˇ

ˇ `pIq ě 0, `pI Y thuq ă 0, wi ‰ 0 @i P I
(

,

`pIq
def
“
ř

iPI wiL̆i `
ř

iRI wiŬi ` b, L̆i
def
“

"

Li wi ě 0

Ui o.w.
and Ŭi

def
“

"

Ui wi ě 0

Li o.w.
for each i P JnK,

and (7) is the optimization problem given by

υpxq
def
“ min

"

ÿ

iPI
wipxi ´ L̆iq `

`pIq

Ŭh ´ L̆h
pxh ´ L̆hq

ˇ

ˇ

ˇ

ˇ

pI, hq P J
*

.

First, we can check in Opnq time if `pJnKq ě 0 or `pHq ă 0, in which case J “ H and (7) is
infeasible. Otherwise, `pJnKq ă 0, `pHq ě 0, and J ‰ H.

We can also remove in Opnq time all i P JnK such that wi “ 0. Then without loss of generality we
may assume that wi ‰ 0 for all i P JnK and hence L ă U implies that

wipŬi ´ L̆iq ą 0 @i P JnK . (23)

We will show that (7) is equivalent to the linear programming problem

ωpxq
def
“ min

v

n
ÿ

i“1

wipxi ´ L̆iqvi (24a)

s.t.
n
ÿ

i“1

wipŬi ´ L̆iqvi “
n
ÿ

i“1

wiŬi ` b, (24b)

0 ď v ď 1. (24c)

Note that the set of basic feasible solutions for the linear programming problem is exactly the set of
all feasible points with at most one fractional component (see, e.g., [7, Chapter 3]). That is, all basic
feasible solutions of (24) are elements of V def

“ t v P r0, 1sn | |t i P JnK | vi P p0, 1q u| ď 1 u.

To prove that ωpxq ď υpxq, consider the mapping Φ : J Ñ V given by

Φ ppI, hqqi “

$

’

&

’

%

1 i P I
`pIq

whpŬh´L̆hq
i “ h

0 o.w.
@i P JnK.

Let pĪ , h̄q P J be an optimal solution for (7) and let v̄ “ Φ
``

Ī , h̄
˘˘

. Then

n
ÿ

i“1

wipŬi ´ L̆iqv̄i “
ÿ

iPĪ

wipŬi ´ L̆iq ` wh̄pŬh̄ ´ L̆h̄q
`pĪq

wh̄pŬh̄ ´ L̆h̄q
“

n
ÿ

i“1

wiŬi ` b,

and hence v̄ satisfies (24b). Algebraic manipulation shows that

whpŬh ´ L̆hq “ `pIq ´ `pI Y thuq @I Ď JnK , h P JnK zI. (25)
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In addition, pĪ , h̄q P J implies `pĪq ě 0 and `pĪ Y th̄uq ă 0. Combining this with (25) gives the
inequality `pĪq ă wh̄pŬh̄´ L̆h̄q. Therefore, v̄h P r0, 1q, and hence v̄h is feasible for (24). In addition,
for any pI, hq P J we have that

n
ÿ

i“1

wipxi ´ L̆iqv̄i “
ÿ

iPI

wipxi ´ L̆iq ` whpŬh ´ L̆hq
`pIq

whpxh ´ L̆hq

and hence the objective value of v̄h for (24) is the same as the objective value of pI, hq for (7).

To prove ωpxq ě υpxq we will show that, through Φ, the greedy procedure to solve (7) described in
the main text just before the statement of Proposition 2, becomes the standard greedy procedure for
(24) and hence also yields an optimal basic feasible solution to (24). For simplicity, assume without
loss of generality that we have re-ordered the indices in JnK so that

x1 ´ L̆1

Ŭ1 ´ L̆1

ď
x2 ´ L̆2

Ŭ2 ´ L̆2

ď ¨ ¨ ¨ ď
xn ´ L̆n

Ŭn ´ L̆n
. (26)

Then the greedy procedure that incrementally grows I terminates with some pI, hq P J where
I “ Jh´ 1K. Then v “ Φ ppJh´ 1K , hqq is a basic feasible solution for (24) with the same objective
value as the objective value of pI, hq for (7). To conclude that ωpxq ě υpxq, we claim that v is
an optimal solution for (24) since the standard greedy procedure for (24) is known to generate the
optimal solution for this problem. For completeness, we give the following self contained proof of the
claim. Assume for a contradiction that ω pxq ă

řn
i“1 wipxi´ L̆iqvi and let v1 be an optimal solution

to (24). Because v1 ‰ v and both v and v1 satisfy (24b), (23) implies there must exists j1, j2 P JnK
such that j1 ă j2, j1 ď h, v1j1 ă vj1 , j2 ě h and v1j2 ą vj2 . Let ε ą 0 be the largest value such that
v1j1 `

ε
wj1 pŬj1´L̆j1 q

ď vj1 and v1j2 ´
ε

wj2 pŬj2´L̆j2 q
ě vj2 , and let

v2
def
“ v1 `

ε

wj1pŬj1 ´ L̆j1q
epj1q ´

ε

wj2pŬj2 ´ L̆j2q
epj2q.

By (26) we either have

xj1 ´ L̆j1

Ŭj1 ´ L̆j1
“
xj2 ´ L̆j2

Ŭj2 ´ L̆j2
or

xj1 ´ L̆j1

Ŭj1 ´ L̆j1
ă
xj2 ´ L̆j2

Ŭj2 ´ L̆j2
. (27)

In the first case v2 is a feasible solution to (24) that has fewer different components with v and has
the same objective value as v1. Hence, by repeating this procedure we will eventually have the second
case in which v2 is a feasible solution to (24) that has an objective value strictly smaller than that of
v1, which contradicts the optimality of v1.

The greedy procedure to solve (7) and (24) can be executed in Opn logpnqq time through the sorting
required to get (26). However, an optimal basic feasible solution α̂ to (24) can also be obtained
in Opnq time by solving a weighted median problem (e.g. [21, Chapter 17.1]). This solution
can be converted to an optimal solution to (7) in Opnq time as follows. Because α̂ is a basic
feasible solution to (24), it has at most one fractional component (see, e.g., [7, Chapter 3]). Take
Î “ t i P JnK | α̂i “ 1 u. If v̂ has one fractional component, take ĥ to be this component. Then,
because α̂ satisfies (24b) we have

wĥpŬĥ ´ L̆ĥqα̂ĥ “
n
ÿ

i“1

wiŬi ` b´
ÿ

iPÎ

wipŬi ´ L̆iq “ `pÎq (28)

Together with α̂ĥ P p0, 1q, (25) for I “ Î and h “ ĥ, and (23) for i “ ĥ, we have `pÎq ą 0 and

`pÎq ´ `pÎ Y tĥuq ą `pÎq.

Then `pÎ Y tĥuq ă 0 and pÎ , ĥq P J . Finally, (28) implies that the objective value of α̂ for (24) is
the same as the objective value of pÎ , ĥq for (7).

If, on the other hand, v̂ has no fractional component, then α̂ satisfying (24b) implies

0 “
n
ÿ

i“1

wiŬi ` b´
ÿ

iPÎ

wipŬi ´ L̆iq “ `pÎq. (29)
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Then, `pJnKq ă 0 implies that there exists ĥ P JnK zÎ such that `pÎ Y tĥuq ă 0 and pÎ , ĥq P J .
Finally, (29) implies that the objective value of α̂ for (24) is the same as the objective value of pÎ , ĥq
for (7). This conversion of an optimal basic feasible solution for (24) to a solution to (7) also gives an
alternate proof to ωpxq ě υpxq.

Corollary 1. If the weights w and biases b describing the neural network are rational, then the
single-neuron relaxation (4) can be solved in polynomial time on the encoding sizes of w and b.

Proof. Ifw and b are rational, then the coefficients of the inequalities in (6b) are also rational numbers
with sizes that are polynomial in the sizes of w and b. Then the result follows from Proposition 2 and
[13, Theorem 7.26].

C Propagation algorithms

C.1 Description and analysis of algorithms

In this section, we provide pseudocode for the propagation-based algorithms described in Section 4.
In the scope of a single neuron, Algorithm 1 specifies the framework outlined in Section 4.1 and
Algorithm 3 (which requires Algorithm 2) details our new algorithm proposed in Section 4.3. Finally,
Algorithm 4 establishes how to compute bounds for the entire network, considering DeepPoly [36]
and Fast-Lin [44] as possible initial methods.

Algorithm 1 The Backwards Pass for Upper Bounds

1: Inputs:
Input domain X Ď Rm, affine functions Lipz1:i´1q “

ři´1
j“1 w

l
ijzj ` b

l
i,

Uipz1:i´1q “
ři´1
j“1 w

u
ijzj ` b

u
i for each i “ m` 1, . . . , η, and affine function

Cpzq “ řη
i“1 cizi ` b

2: Outputs:
Upper bound on Cpzq, optimal point x˚ P X , and boolean vector
pub_usedm`1, . . . , ub_usedηq

3: function PROPAGATIONBOUND(X,L,U , C)
4: ub_usedi Ð false for all i “ m` 1, . . . , η
5: QÐ t i | ci ‰ 0, i ą m u . Set of variable indices to be substituted
6: exprÐ

řη
i“1 cizi ` b . Denote by expr.w[i] the coefficient for zi in expr, @i

7: while Q is not empty do
8: iÐ pop largest value from Q, removing it
9: ub_usedi Ð pexpr.w[i] ą 0q

10: exprÐ expr´ expr.w[i]zi . Remove term from expression
11: if expr.w[i] ą 0 then
12: exprÐ expr` expr.w[i] Uipz1:i´1q

13: QÐ QY
 

j
ˇ

ˇ wuij ‰ 0, j ą m
(

14: else if expr.w[i] ă 0 then
15: exprÐ expr` expr.w[i] Lipz1:i´1q

16: QÐ QY
 

j
ˇ

ˇ wlij ‰ 0, j ą m
(

17: end if
18: end while
19: B, x˚ Ð maxxPX expr, along with an optimal solution
20: return B, x˚, ub_used
21: end function
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Algorithm 2 The Forward Pass

1: Inputs:
Partial optimal solution x˚ P X from Algorithm 1 and boolean vector
pub_usedm`1, . . . , ub_usedηq where ub_usedi “ true if the upper bound Ui
was used to substitute variable i in Algorithm 1, or false otherwise.

2: Outputs:
Optimal solution z˚1:η to (9)

3: function RECOVERCOMPLETESOLUTION(x˚, ub_used)
4: z˚i “ x˚i for i “ 1, . . . ,m
5: for i “ m` 1, . . . , η do
6: if ub_usedi “ true then
7: z˚i Ð Uipz˚1:i´1q

8: else
9: z˚i Ð Lipz˚1:i´1q

10: end if
11: end for
12: return z˚1:η
13: end function

Algorithm 3 The Iterative Algorithm

1: Inputs:
Input domain X Ď Rm, initial affine bounding functions tLinit

i u
η
i“m`1,

tU init
i u

η
i“m`1, affine function C : Rη Ñ R, and number of iterations T ě 0

2: Outputs:
An upper bound on maxxPX Cpxq

3: function TIGHTENEDPROPAGATIONBOUND(X,L,U , C, k)
4: tLi,Uiuηi“m`1 Ð tLinit

i ,U init
i u

η
i“m`1

5: B, x˚, ub_usedÐ PROPAGATIONBOUND(X, tLiuηi“m`1, tUiuηi“m`1, C)
6: for iter “ 1, . . . , T do
7: z˚1:η Ð RECOVERCOMPLETESOLUTION(x˚, ub_used)
8: for i “ m` 1, . . . , η do
9: U 1i , v Ð most violated inequality w.r.t. z˚1:η from (6b) (per Prop. 2) and its violation

10: if v ą 0 then Ui Ð U 1i end if
11: end for
12: B1, x˚, ub_usedÐ PROPAGATIONBOUND(X, tLiuηi“m`1, tUiuηi“m`1, C)
13: if B1 ă B then B Ð B1 end if
14: end for
15: return B
16: end function

Proposition 4. The solution z˚ returned by Algorithm 2 is optimal for the relaxed problem (9).

Proof. Denote by exprk def
“

ř

jPJk w
k
j zj ` bk the expression expr at the end of iteration k “

1, . . . ,K of the while loop in Algorithm 1, for some subsets J1, . . . , JK Ď JηK, and let expr0 be
the initial expr as defined in line 5, i.e. Cpzq. For each k “ 0, . . . ,K ´ 1, we obtain exprk`1

by replacing, for some i, zi by Uipz1:i´1q if wki ą 0, or by Lipz1:i´1q if if wki ă 0. Note that if
wki “ 0, we can safely ignore any substitution because it will not affect the expression. Due to the
constraints (9c), this substitution implies that exprk ď exprk`1 for any z1:m P X . This inductively
establishes that, restricting to z1:m P X ,

Cpzq “
η
ÿ

j“1

cjzj ` b ď
ÿ

jPJ1

w1
jzj ` b1 ď . . . ď

ÿ

jPJK

wKj zj ` bK , (30)

Note that JK Ď tz1, . . . , zmu since we have made all the substitutions possible for i ą m. Therefore,
the optimal value of (9) is upper-bounded by the bound corresponding to the solution returned by
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Algorithm 4 FastC2V Algorithm

1: Inputs:
A feedforward neural network as defined in (1) (with input domain X , ReLU
neurons i “ m` 1, . . . , N , and a single affine output neuron indexed by N ` 1),
initial_method P tDeepPoly, Fast-Linu, and number of iterations per
neuron T ě 0 (note that if T “ 0, we recover DeepPoly or Fast-Lin)

2: Outputs:
Lower and upper bounds tL̂i, ÛiuN`1

i“1 on the pre-activation function (if ReLU) or
output (if affine) of neuron i

3: function FASTC2V(X,W, b, initial_method, T )
4: for i “ m` 1, . . . , N ` 1 do
5: Cpz1:i´1q Ð

ři´1
j“1 wi,jzj ` bi

6: L̂i Ð ´ TIGHTENEDPROPAGATIONBOUND(X, tLjui´1
j“m`1, tUjui´1

j“m`1,´C, T )
7: Ûi Ð TIGHTENEDPROPAGATIONBOUND(X, tLjui´1

j“m`1, tUjui´1
j“m`1, C, T )

8: if i “ N ` 1 then break end if
9: . Build bounding functions Li and Ui for subsequent iterations

10: if L̂i ě 0 then . ReLU i is always active for any z1:m P X

11: Lipz1:i´1q Ð
ři´1
j“1 wi,jzj ` bi

12: Uipz1:i´1q Ð
ři´1
j“1 wi,jzj ` bi

13: else if Ûi ď 0 then . ReLU i is always inactive for any z1:m P X
14: Lipz1:i´1q Ð 0
15: Uipz1:i´1q Ð 0
16: else
17: Uipz1:i´1q Ð

Ûi
Ûi´L̂i

p
ři´1
j“1 wi,jzj ` bi ´ L̂iq

18: if initial_method “ DeepPoly then
19: if |L̂i| ě |Ûi| then Lipz1:i´1q Ð 0 else Lipz1:i´1q Ð

ři´1
j“1 wi,jzj ` bi end if

20: else . initial_method “ Fast-Lin
21: Lipz1:i´1q Ð

Ûi
Ûi´L̂i

p
ři´1
j“1 wi,jzj ` biq

22: end if
23: end if
24: end for
25: return tL̂i, ÛiuN`1

i“1
26: end function

Algorithm 1, that is,

max t Cpzq | z1:m P X, (9c) u ď max
!

ř

jPJK wKj zj ` bK
ˇ

ˇ

ˇ
z1:m P X

)

.

To see that this upper bound is achieved, observe that each inequality in (30) holds as equal-
ity if we substitute zj “ z˚j for all j, by construction of Algorithm 2 and boolean vector
pub_usedm`1, . . . , ub_usedηq. Note also that z˚ satisfies (9c) by construction. That is, we have a
feasible z˚ such that Cpz˚q is no less than the optimal value of (9), and thus z˚ must be an optimal
solution.

We would like to highlight to the interested reader that this result can also be derived from an argument
using Fourier-Motzkin elimination [7, Chapter 2.8] to project out the intermediate variables zm`1:η .
Notably, as each inequality neuron has exactly one inequality upper bounding and one inequality
lower bounding its post-activation value, this projection does not produce an “explosion” of new
inequalities as is typically observed when applying Fourier-Motzkin to an arbitrary polyhedron.

Define C def
“ | t i P JηK | ci ‰ 0 u | and suppose that we use the affine bounding inequalities from

Fast-Lin or DeepPoly. Let T be the number of iterations in Algorithm 3, optpXq be the time
required to maximize an arbitrary affine function over X , and A be the number of arcs in the network
(i.e. nonzero weights).
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r´1, 1s

ˆ

r´1, 1s h11

maxp0,´x1 ` x2 ` 1q

h12

maxp0,´x1 ` 0.5q

h21

maxp0, h12 ` 1q

h22

maxp0,´1.5h11 ` h12 ` 0.5q

y

h11 ` h12

(a) Structure and weights of the example network. (b) Output of the example network (rotated).

Figure 4: An example network with 4 ReLUs on which we simulate FastC2V.

Observation 1. Algorithm 1 runs in optpXq ` OpC ` Aq time. Algorithm 2 runs in OpAq time.
Algorithm 3 runs in pT ` 1qoptpXq `OpT pC `Aqq time.
Observation 2. Algorithm 4 takes OpNT poptpXq `Aqq time if T ě 1. If T “ 0, then Algorithm 4
takes OpNpoptpXq `Aqq time.

C.2 Proofs of other results from section 4

Proposition 3. The optimal value of (9) is no less than maxxPX C pz1:η pxqq.

Proof. For any x P X , by definition of validity in (8), setting zi Ð zipxq for all i “ 1, . . . , N yields
a feasible solution to (9) with objective value c pz1:N pxqq, completing the proof.

D An example for FastC2V

In this section, we walk through the FastC2V algorithm step-by-step for the following R2 Ñ R
network with four ReLUs, also illustrated in Figure 4:

x1 P r´1, 1s

x2 P r´1, 1s

h11 “ maxp0,´x1 ` x2 ` 1q

h12 “ maxp0,´x1 ` 0.5q

h21 “ maxp0, h12 ` 1q

h22 “ maxp0,´1.5h11 ` h12 ` 0.5q

y “ h21 ` h22

Our goal is to compute an upper bound for y using FastC2V.

Our procedure requires lower and upper bounds for each pre-activation function, and this can be
obtained by running the same algorithm for each neuron, layer by layer. For simplicity, in this
example we start from bounds computed via interval arithmetic.

Denote by ĥij the pre-activation function of hij . To apply interval arithmetic, we simply substitute
the variables by their lower or upper bounds as to minimize or maximize them (applying the ReLU
activation function when needed). For example, the interval arithmetic upper bound of ĥ11 is
´1.5ˆ p´1q ` 1` 0.5 “ 3. Starting at x1 P r´1, 1s and x2 P r´1, 1s, we have:

ĥ11 P r´1, 3s ph11 P r0, 3sq ĥ21 P r1, 2.5s ph21 P r1, 2.5sq

ĥ12 P r´0.5, 1.5s ph12 P r0, 1.5sq ĥ22 P r´4, 2s ph22 P r0, 2sq

Note that ĥ21 ě 0 for any input x P r´1, 1s2, and thus we may infer that the ReLU will always be
active. That is, we can assume h21 “ h12 ` 1. This linearization step not only can have a large
impact in bound strength, but also is required for correctness, as the formulations assume that the
lower bound is negative and the upper bound positive.
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Therefore, we drop h21 altogether and set

y “ h12 ` h22 ` 1.

Observe that interval arithmetic already gives us a simple upper bound on y of 4.5.

We begin by applying DeepPoly [36] (or CROWN-Ada [49]), following Algorithm 1. Consider briefly
a ReLU y “ maxp0, wJx` bq with pre-activation bounds rL̂, Û s. In DeepPoly, we select the lower
bounding inequality to be y ě 0 if |L̂| ě |Û |, or y ě wJx ` b otherwise. The upper bounding
inequality comes from the ∆-relaxation and can be expressed as y ď Û

Û´L̂
pwJx ` b ´ L̂q. Thus,

based on the previously computed bounds, we have:

´x1 ` x2 ` 1 ď h11 ď ´
3

4
x1 `

3

4
x2 `

3

2

´x1 `
1

2
ď h12 ď ´

3

4
x1 `

3

4

0 ď h22 ď ´
1

2
h11 `

1

3
h12 `

3

2

The next step is to maximize y over the relaxation given by the above inequalities plus bounds
(including on the input). We replace variables with the above bounding inequalities, layer by layer.
Since we are maximizing, we use the upper bounding inequality if the corresponding coefficient is
positive, or the lower bound inequality otherwise. This maintains validity of the inequality throughout
the process.

y “ h12 ` h22 ` 1 ď h12 `

ˆ

´
1

2
h11 `

1

3
h12 `

3

2

˙

` 1

“ ´
1

2
h11 `

4

3
h12 `

5

2

ď ´
1

2
p´x1 ` x2 ` 1q `

4

3

ˆ

´
3

4
x1 `

3

4

˙

`
5

2

“ ´
1

2
x1 ´

1

2
x2 ` 3

Now that we have inferred the above upper bounding inequality on y, we convert it into an upper
bound by solving the simple problem maxxPr´1,1s2 ´

1
2x1´

1
2x2`3, which yields 4, with an optimal

solution p´1,´1q. This is the resulting upper bound from the DeepPoly algorithm.

We next show how to tighten it with FastC2V. The first step is to recover an actual optimal solution
of the relaxation above. This is the forward pass described in Algorithm 2.

We first make note that we used the upper bounding inequality for h12 and h22 and the lower bounding
inequality for h11. We start from the optimal solution in the input space, p´1,´1q, and recover values
for each hij and y according to the bounding inequalities used, considering them to be equalities. For
example, h11 “ ´p´1q ` p´1q ` 1 “ 1. The result is the solution p̄ “ p´1,´1, 1, 1.5, 1.5, 4q in
the px1, x2, h11, h12, h22, yq-space.

We now perform the main step of FastC2V, which is to swap upper bounding inequalities based on p.
They are swapped to whichever inequality is violated by p, or not swapped if no inequality is violated
for a given ReLU neuron.

In this example, we skip h11 and h12 for simplicity as no swapping occurs, and we focus on h22. For
h22, the relevant values of p̄ are h̄11 “ 1, h̄12 “ 1.5, and h̄22 “ 1.5. Normally, we would solve the
separation problem at this point, but for illustrative purposes we list out all possible upper bounding
inequalities that we can swap to.

Recall Theorem 1 and compute:

`p∅q “ 2 `pt1uq “ ´2.5

`pt2uq “ 0.5 `pt1, 2uq “ ´4
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(a) Original inequality from the
∆-relaxation.

(b) Inequality (31). (c) Inequality (32).

Figure 5: Three options of upper bounding inequalities for h22. The black point depicts the solution
that we would like to separate, which is cut off by inequality (31).

Based on these values, we have J “ tp∅, 1q, pt2u, 1qu, or in other words, two possible inequalities
to swap to. By following the formulation in Theorem 1, we obtain the inequalities

h22 ď ´
2

3
h11 ` 2 (31)

h22 ď ´
1

6
h11 ` h12 `

1

2
(32)

These inequalities are illustrated in Figure 5. We observe that our point p is cut off by the inequal-
ity (31): 1.5 “ h̄22 ą ´

2
3 h̄11 ` 2 “ 4

3 « 1.333. Therefore, for this neuron, we swap the upper
bounding inequality to (31). In other words, our pair of inequalities for h22 is now:

0 ď h22 ď ´
2

3
h11 ` 2

The last step of FastC2V is to redo the backward propagation with the swapped inequalities and
recompute the bound. We obtain:

y “ h12 ` h22 ` 1 ď h12 `

ˆ

´
2

3
h11 ` 2

˙

` 1

“ ´
2

3
h11 ` h12 ` 3

ď ´
2

3
p´x1 ` x2 ` 1q `

ˆ

´
3

4
x1 `

3

4

˙

` 3

“ ´
1

12
x1 ´

2

3
x2 `

37

12

Solving maxxPr´1,1s2 ´
1
12x1 ´

2
3x2 `

37
12 gives us an improved bound of 23

6 « 3.833, completing
the FastC2V algorithm for upper bounding y. Note that this procedure is not guaranteed to improve
the initial bound, and in general we take the best between the initial bound and the new one.

Incidentally, we observe in Figure 5(a) that the big-M inequality from the ∆-relaxation is, in general,
not facet-defining for the convex hull of the feasible points depicted in blue. This explains why it can
not be directly reconstructed from our convex hull description (6).

E Implementation details

In this section, we add to the implementation details provided in Section 5.

The implementation of the propagation-based algorithm involves the following details:

• It may occur that the result of Algorithm 1 has zero coefficients for some variables xi, in
which case any feasible value for xi produces an optimal solution. For those variables, we
select the midpoint between the lower bound and upper bound to proceed with Algorithm 2.
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• We find that running more than one iteration of the propagation-based algorithm does not
yield improving results. A possible reason for this is that while these inequalities are stronger
in some portions of the input space, they are looser by themselves in others, and balancing
this can be difficult. Improving this trade-off however is outside the scope of this paper.

• We use no tolerance on violation. That is, every violated inequality is swapped in.

The implementation of the LP-based algorithm involves the following details:

• We find that the Conv networks examined are very numerically unstable for LPs due to
the presence of very small weights in the networks. Taking no action results in imprecise
solutions, sometimes resulting in infeasible LPs being constructed. To improve on this
instability, we consider as zero any weight or generated bound below 10´5. In addition, we
run DeepPoly before the LP to quickly check if the neuron can be linearized. This is applied
only to the LP-based methods. Note that the default feasibility and optimality tolerances
in Gurobi are 10´6. With this, we end up solving an approximate problem rather than the
exact problem, though arguably it is too difficult to solve these numerically unstable LPs
with high precision and reasonable time in practice.
• For separation, we implement the Opn log nq version of the algorithm based on sorting

instead of the Opnq version.
• For each bound computed, we generate new cuts from scratch. More specifically, when

solving for each bound, we make a copy of the model and its LP basis from the previous
solve, run the LP solve and cut loop, retrieve the bound, and then discard this copy of the
model.

• We add cuts whose violation exceeds a tolerance of 10´5.
• In the context of mixed-integer programming, it is well known that selecting a smaller subset

of cuts to add can be very beneficial to reduce solving time, but for simplicity, we perform
no cut selection in this method.

• An alternative to the LP-based method is to solve a MIP with analogous cutting planes
with binary variables [3], but we find that this method, free of binary variables, is more
lightweight and effective even without cut selection and all the presolve functionalities of
modern MIP solvers. The ability to solve these LPs very quickly is important since we
solve them at every neuron. In addition, this gives us more fine-grained control on the cuts,
providing a better opportunity to evaluate our inequalities.

The implementation of all algorithms involve the following details:

• We attempt to linearize each neuron with simple interval arithmetic before running a more
expensive procedure. This makes a particularly large difference in solving time for the Conv
networks, in which many neurons are linearizable.

• As done in other algorithms in the literature, we elide the last affine layer, a step that is
naturally incorporated in the framework from Section 4.1. In other words, we do not consider
the last affine layer to be a neuron but to be the objective function.

• We fully compute the bounds of all neurons in the network, including differences of logits.
We make no attempt to stop early even if we have the opportunity to infer robustness earlier.
• When solving the verification problem, scalar bounds on the intermediate neurons only need

to be computed once per input image (i.e. once per set X), and can be reused for each target
class (i.e. reused for different objectives c).

The details of the networks from the ERAN dataset [38] are the following. To simplify notation, we
denote a dense layer by Dense(size, activation) and a convolutional layer by Conv2D(number
of filters, kernel size, strides, padding, activation).

• 6x100: 5ˆ Dense(100, ReLU) followed by Dense(10, ReLU). This totals 510 units.
Trained on the MNIST dataset with no adversarial training.
• 9x100: 8ˆ Dense(100, ReLU) followed by Dense(10, ReLU). This totals 810 units.

Trained on the MNIST dataset with no adversarial training.
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Figure 6: Number of verified images by each method given various values of the allowed distance
from the base image. Lines are averages over 16 randomly initialized networks and error bands
represent standard deviation.

• 6x200: 5ˆ Dense(200, ReLU) followed by Dense(10, ReLU). This totals 1010 units.
Trained on the MNIST dataset with no adversarial training.
• 6x200: 8ˆ Dense(200, ReLU) followed by Dense(10, ReLU). This totals 1610 units.

Trained on the MNIST dataset with no adversarial training.
• MNIST ConvSmall: Conv2D(16, (4,4), (2,2), valid, ReLU), Conv2D(32,
(4,4), (2,2), valid, ReLU), Dense(100, ReLU), Dense(10, linear). This
totals 3604 units. Trained on the MNIST dataset with no adversarial training.

• MNIST ConvBig: Conv2D(32, (3,3), (1,1), same, ReLU), Conv2D(32, (4,4),
(2,2), same, ReLU), Conv2D(64, (3,3), (1,1), same, ReLU), Conv2D(64,
(4,4), (2,2), same, ReLU), Dense(512, ReLU), Dense(512, ReLU), Dense(10,
linear). This totals 48064 units. Trained on the MNIST dataset with DiffAI for adversarial
training.

• CIFAR-10 ConvSmall: Conv2D(16, (4,4), (2,2), valid, ReLU), Conv2D(32,
(4,4), (2,2), valid, ReLU), Dense(100, ReLU), Dense(10, linear). This to-
tals 4852 units. Trained on the CIFAR-10 dataset with projected gradient descent for
adversarial training.

F Supplementary computational results

We computationally examine the sensitivity of the algorithms in this paper to different training
initializations and distances from the base image.

We focus on networks for the MNIST dataset. The first two architectures 6x100 and 6x200 have 6
hidden layers of 100 and 200 ReLUs respectively, followed by a linear output layer of 10 ReLUs
(this differs slightly from the ERAN networks of the same name described in Appendix E). The
MNIST ConvSmall architecture is the same as described in Appendix E. Average test accuracies are
97.04%, 97.61%, and 98.63% respectively. For each architecture and distance, we train 16 randomly
initialized networks. Each network is trained with a learning rate of 0.001 for 10 epochs using the
Adam training algorithm, without any adversarial training.

Figure 6 illustrates the average number of verified images. The error bands represent standard
deviation over the 16 networks. We observe that OptC2V and FastC2V perform well across different
networks and distances.

In addition, Figure 7 depicts survival plots for the results from Table 1: the number of images that
can be verified given individual time budgets.
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Figure 7: Survival plots for the results in Section 5. The horizontal dashed line is the upper bound on
the number of verifiable images.
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