
6 Appendix

A Influence Maximization

Definition 1 (Social Network) A social network is denoted as an edge-weighted graph G(V,E,W),
where V is the set of nodes (users), E is the set of directed edges (relationships), and W is the set of
edge-weights corresponding to each edge in E.

The objective in influence maximization (IM) is to maximize the spread of influence in a network
through activation of an initial set of b seed nodes.

Definition 2 (Seed Node) A node v ∈ V that acts as the source of information diffusion in the graph
G(V,E,W) is called a seed node. The set of seed nodes is denoted by S.

Definition 3 (Active Node) A node v ∈ V is deemed active if either (1) It is a seed node (v ∈ S) or
(2) It is influenced by a previously active node u ∈ Va. Once activated, the node v is added to the set
of active nodes Va.

Initially, the set of active nodes Va is the seed nodes S. The spread of influence is guided by the
Independent Cascade (IC) model.

Definition 4 (Independent Cascade [14]) Under the IC model, time unfolds in discrete steps. At
any time-step i, each newly activated node u ∈ Va gets one independent attempt to activate each
of its outgoing neighbors v with a probability p(u,v) = W (u, v). The spreading process terminates
when in two consecutive time steps the set of active nodes remain unchanged.

Definition 5 (Spread) The spread Γ(S) of a set of seed nodes S is defined as the total proportion of
nodes that are active at the end of the information diffusion process. Mathematically, Γ(S) = |Va|

|V | .

Since the information diffusion is a stochastic process, the measure of interest is the expected value of
spread. The expected value of spread f(·) = E[Γ(·)] is computed by simulating the spread function a
large number of times. The goal in IM, is therefore to solve the following problem.

Influence Maximization (IM) Problem [14]: Given a budget b, a social network G, and a in-
formation diffusion modelM, select a set S∗ of b nodes such that the expected diffusion spread
f(S∗) = E[Γ(S∗)] is maximized.

B The greedy approach

Greedy provides an 1− 1
e -approximation for all three NP-hard problems of MCP, MVC, and IM[14].

Algorithm 1 presents the pseudocode. The input to the algorithm is a graph G = (V,E), an
optimization function f(S) and the budget b. Starting from an empty solution set S, Algorithm 1
iteratively builds the solution by adding the “best” node to S in each iteration (lines 3-5). The best
node v∗ ∈ V \S is the one that provides the highest marginal gain on the optimization function (line
4). The process ends after b iterations.

Limitations of greedy: Greedy itself has scalability challenges depending on the nature of the
problem. Specifically, in Alg. 1 there are two expensive computations. First, computing the opti-
mization function f(·) itself may be expensive. For instance, computing the expected spread in IM is
#P -hard [2]. Second, even if f(·) is efficiently computable, computing the marginal gain is often
expensive. To elaborate, in MCP, computing the marginal gain involves a setminus operation on the
neighborhood lists of all nodes v 6∈ S with the neighborhood of all nodes u ∈ S, where S is the set of
solution nodes till now. Each setminus operation consumes O(d) time where d is the average degree
of nodes, resulting in a total complexity of O(bd|V |). In IM, the cost is even higher with a complexity
of O(b|V |2). In GCOMB, we overcome these scalability bottlenecks without compromising on the
quality. GCOMB utilizes GCN [10] to solve the first bottleneck of predicting f(·). Next, a deep
Q-learning network is designed to estimate marginal gains efficiently. With this unique combination,
GCOMB can scale to billion-sized graphs.

13

Algorithm 1 The greedy approach
Require: G = (V,E), optimization function f(.), budget b
Ensure: solution set S, |S| = b

1: S ← ∅
2: i← 0
3: while (i < b) do
4: v∗ ← arg max∀v∈V \S{f(S ∪ {v})− f(S)}
5: S ← S ∪ {v∗}, i← i+ 1
6: Return S

Algorithm 2 The probabilistic greedy approach
Require: G = (V,E), optimization function f(.), convergence threshold ∆
Ensure: solution set S, |S| = b

1: S ← ∅
2: while (gain > ∆) do
3: v ← Choose with probability f(S∪{v})−f(S)∑

∀v′∈V \S f(S∪{v′})−f(S)

4: gain← f(S ∪ {v})− f(S)
5: S ← S ∪ {v}
6: Return S

B.1 Training the GCN:

For each node v, and its score(v), which is generated using probabilistic greedy algorithm, we learn
embeddings to predict this score via a Graph Convolutional Network (GCN) [10]. The pseudocode
for this component is provided in Alg. 3.

From the given set of training graphs {G1, · · · , Gt}, we sample a graph Gi and a normalized budget

b from the range of budgets (0, bimax], where bimax = maxmj=0

{
|Si

j |
|Vi|

}
. To recall, Sij denotes the jth

solution set constructed by probabilistic greedy on graph Gi. Further, quantity rbmax is computed
from the set of training graphs and their probabilistic greedy solutions as described in § 3.2. It is used
to determine the nodes which are non-noisy for the budget b.

For a sampled training graph Gi and budget b, only those nodes that have a realistic chance of being
in the solution set are used to train the GCN (line 2). Each iteration in the outer loop represents
the depth (line 4). In the inner loop, we iterate over all nodes which are non-noisy and in their
K-hop neighborhood (line 5). While iterating over node v, we fetch the current representations of v’s
neighbors and aggregate them through a MEANPOOL layer (lines 6-7). Specifically, for dimension
i, we have: hkN (v)i = 1

|N(v)|
∑
∀u∈N(v) h

k−1
ui

. The aggregated vector is next concatenated with the
representation of v, which is then fed through a fully connected layer with ReLU activation function
(line 8), where ReLU is the rectified linear unit (ReLU(z) = max(0, z)). The output of this layer
becomes the input to the next iteration of the outer loop. Intuitively, in each iteration of the outer loop,
nodes aggregate information from their local neighbors, and with more iterations, nodes incrementally
receive information from neighbors of higher depth (i.e., distance).

At depth 0, the embedding of each node v is h0v = xv, while the final embedding is µv = hKv (line
9). In hidden layers, Alg. 3 requires the parameter set W = {Wk, k = 1, 2, · · · ,K} to compute
the node representations (line 8). Intuitively, Wk is used to propagate information across different
depths of the model. To train the parameter set W and obtain predictive representations, the final
representations are passed through another fully connected layer to obtain their predicted value
score′(v) (line 10). Further, the inclusion of 1-hop neighbors(V g,1) of V g in line 9 and line 10 is
only for the importance sampling procedure. The parameters ΘG for the proposed framework are
therefore the weight matrices W and the weight vector w. We draw multiple samples of graphs and
budget and minimize the next equation using Adam optimizer [15] to learn the GCN parameters, ΘG.

J(ΘG) =
∑
∼〈Gi,b〉

1

|V gi |
∑
∀v∈V g

i

(score(v)− score′(v))2 (4)

14

Algorithm 3 Graph Convolutional Network (GCN)
Require: G = (V,E), {score(v), input features xv ∀v ∈ V }, budget b, noisy-node cut off rbmax,

depth K, weight matrices Wk, ∀k ∈ [1, k] and weight vector w, dimension size mG.
Ensure: Quality score score′(v) for good nodes and nodes in their 1-hop neighbors

1: h0
v ← xv, ∀v ∈ V

2: V g ← {v ∈ V | rank(v,G) < rbmax}
3: V g,K ← K-hop neighborhood of V g
4: for k ∈ [1,K] do
5: for v ∈ V g ∪ V g,K do
6: N(v)← {u|(v, u) ∈ E}
7: hkN (v)← MEANPOOL

({
hk−1u ,∀u ∈ N(v)

})
8: hkv ← ReLU

(
Wk · CONCAT

(
hkN (v), hk−1v

))
9: µv ← hKv , ∀v ∈ V g ∪ V g,1

10: score′(v)← wT · µv ,∀v ∈ V g ∪ V g,1

In the above equation, V gi denotes the set of good nodes for budget b in graph Gi.

Defining xv: The initial feature vector xv at depth 0 should have the raw features that are relevant
with respect to the combinatorial problem being solved. For example, in Influence Maximization
(IM), the summation of the outgoing edge weights of a node is an indicator of its own spread.

C Q-learning

The pseudocode of the Q-learning component is provided in Algorithm 4.

Exploration vs. Exploitation: In the initial phases of the training procedure, the prediction may be
inaccurate as the model has not yet received enough training data to learn the parameters. Thus, with
ε = max{0.05, 0.9t} probability we select a random node from Ct. Otherwise, we trust the model
and choose the predicted best node. Since ε decays exponentially with t, as more training samples
are observed, the likelihood to trust the prediction goes up. This policy is commonly used in practice
and inspired from bandit learning [7].

n-step Q-learning: n-step Q-learning incorporates delayed rewards, where the final reward of
interest is received later in the future during an episode (lines 6-9 in Alg. 4). The key idea here is to
wait for n steps before the approximator’s parameters are updated and therefore, more accurately
estimate future rewards.

FittedQ-learning: For efficient learning of the parameters, we perform fittedQ-iteration [28], which
results in faster convergence using a neural network as a function approximator [25]. Specifically,
instead of updating the Q-function sample-by-sample, fitted Q-iteration uses experience replay with
a batch of samples. Note that the training process in Alg. 4 is independent of budget. The Q-learning
component learns the best action to take under a given circumstance (state space).

D Complexity Analysis of the Test Phase

For this analysis, we assume the following terminologies. d denotes the average degree of a node. mG

and mQ denote the embedding dimensions in the GCN and Q-learning neural network respectively.
As already introduced earlier, b denotes the budget and V is the set of all nodes.

D.1 Time Complexity

In the test phase, a forward pass through the GCN is performed. Although the GCN’s loss function
only minimizes the prediction with respect to the good nodes, due to message passing from neighbors,
in a K-layered GCN , we need the K-hop neighbors of the good nodes (we will denote this set as
V g,K). Each node in V g,K draws messages from its neighbors on which first we perform MEANPOOL
and then dot products are computed to embed in a mG-dimensional space. Applying MEANPOOL
consumes O(dmG) time since we need to make a linear pass over d vectors of mG dimensions. Next,
we perform mG dot-products on vectors of mG dimensions. Consequently, this consumes O(m2

G)
time. Finally, this operation is repeated in each of the K layers of the GCN. Since K is typically 1 or
2, we ignore this factor. Thus, the total time complexity of a forward pass is O(|V g,K |(dmG +m2

G)).

15

Algorithm 4 Learning Q-function
Require: ∀v ∈ V g, score′(v), hyper-parameters M , N relayed to fitted Q-learning, number of

episodes L and sample size T .
Ensure: Learn parameter set ΘQ

1: Initialize experience replay memory M to capacity N
2: for episode e← 1 to L do
3: for step t← 1 to T do

4: vt ←
{

random node v 6∈ St with probability ε = max{0.05, 0.9t}
argmaxv 6∈St

Q′n(St, v,ΘQ) otherwise
5: St+1 ← St ∪ {vt}
6: if t ≥ n then
7: Add tuple (St−n, vt−n,

∑t
i=t−n r(Si, vi), St) to M

8: Sample random batch B from M
9: Update ΘQ by Adam optimizer for B

10: return ΘQ

The budget (b) number of forward passes are made in the Q-learning component over only V g (the set
of good non-noisy nodes). In each pass, we compute locality and the predicted reward. To compute
locality, we store the neighborhood as a hashmap, which consumes O(d) time per node. Computing
predicted reward involves dot products among vectors of O(mQ) dimensions. Thus, the total time
complexity of the Q-learning component is O(|V g|b(d+mQ)).

For noise predictor, we need to identify the top-l nodes based on xv (typically the out-degree weight).
l is determined by the noise predictor as a function of b. This consumes |V |log(l) time through the
use of a min-Heap.

Combining all three components, the total time complexity of GCOMB is O(|V |log(l) +
|V g,K |(dmG + m2

G) + |V g|b(d + mQ)). Typically, l << |V | (See Fig. 8a) and may be ignored.
Thus, the total time complexity is ≈ O(|V |+ |V g,K |(dmG +m2

G) + |V g|b(d+mQ)).

D.2 Space Complexity

During testing, the entire graph is loaded in memory and is represented in linked list form which takes
O(|V |+ |E|) space. The memory required for K layer GCN is O(Km2

G). Overall space complexity
for GCN phase is O(|V |+ |E|+Km2

G).

For the Q-learning component, entire graph is required for importance sampling purpose. It requires
O(|V |+ |E|) space. Further, the space required for parameters for Q-network is O(mQ), since input
dimension for Q-network is fixed to 2. Thus, space complexity of Q-network is O(|V |+ |E|+mQ).
Therefore, total space complexity of GCOMB is O(|V |+ |E|+Km2

G +mQ).

E Number of parameters

GCN: If mG is the embedding dimension, each Wk is a matrix of dimension m2
G. Other than Wk,

we learn another parameter w in the final layer (line 10 of Alg. 3) of mG dimension. Thus, the total
parameter size is K ×m2

G +mG, where K is the number of layers in GCN.

Q-learning: If mQ is the dimension of the hidden layer in Q-learning, each of Θ1, Θ2, and Θ3 is a
matrix of dimensionmQ×2. Θ4 is a vector of dimension 3mQ. Thus, the total number of parameters
is 9mQ.

F Proof of Theorem 1

A sampling procedure is unbiased if it is possible to estimate the mean of the target population from
the sampled population, i.e., E[µ̂Nz(V g)] = µN(V g) =

∑
v∈N(V g) I(v)

|N(V g)| = 1
|N(V g)| , where µ̂Nz(V g) is

the weighted average over the samples in Nz(V g). Specifically,

µ̂(Nz(V
g)) =

1∑
v∈Nz(V g) ŵv

∑
v∈Nz(V g)

ŵv · I(v) (5)

16

where ŵv = 1
I(v) .

Lemma 1 Importance sampling is an unbiased estimate of µN(V g), i.e., E
[
µ̂Nz(V g)

]
= µN(V g), if

ŵv = 1
I(v) .

Proof 1

E[µ̂Nz(V g)] =
1

E[
∑
v∈Nz(V g) ŵv]

· E

 ∑
v∈Nz(V g)

ŵv · I(v)


If we simplify the first term, we obtain

E

 ∑
v∈Nz(V g)

ŵv

 = z × E[ŵv]

= z ×
∑

∀v∈N(V g)

ŵv · I(v) = |N(V g)| × z

From the second term, we get,

E

 ∑
v∈Nz(V g)

ŵv · I(v)

 = z × E[ŵv · I(v)] = z

Combining these two, E[µ̂Nz(V g)] = z
|N(V g)|×z = µN(V g).

Armed with an unbiased estimator, we show that a bounded number of samples provide an accurate
estimation of the locality of a node.

Lemma 2 [Theorem 1 in main draft] Given ε as the error bound, P
[
|µ̂Nz(V g) − µN(V g)| < ε

]
>

1− 1
|N(V g)|2 , where z is O

(
log |N(V g)|

ε2

)
.

Proof 2 The samples can be viewed as random variables associated with the selection of a node.
More specifically, the random variable, Xi, is the importance associated with the selection of the i-th
node in the importance sample Nz(V g). Since the samples provide an unbiased estimate (Lemma 1)
and are i.i.d., we can apply Hoeffding’s inequality [11] to bound the error of the mean estimates:

P
[
|µ̂Nz(V g) − µN(V g)| ≥ ε

]
≤ δ

where δ = 2 exp
(
− 2z2ε2

T

)
, T =

z∑
i=1

(bi − ai)2, and each Xi is strictly bounded by the intervals

[ai, bi]. Since we know that importance is bounded within [0, 1], [ai, bi] = [0, 1]. Thus,

δ = 2 exp

(
−2z2ε2

z

)
= 2 exp

(
−2zε2

)
By setting the number of samples z = log(2|N(V g)|2)

2ε2 , we have,

p
[
|µ̂Nz(V g) − µN(V g)| < ε

]
> 1− 1

|N(V g)|2

G Training time distribution of different phases of GCOMB

Fig. 4 shows the distribution of time spent in different phases of training of GCOMB. Prob-Greedy
refers to the phase in which probabilistic greedy algorithm is run on training graphs to obtain training
labels for GCN component. Train-GCN and Train-QL refers to the training phases of GCN and
Q-network respectively.

17

IM-TV IM-CO IM-LND MCP-BK

Problem setup

0

20

40

60

80

100

120

140

160

T
ra

in
in

g
ti
m

e
(m

in
ut

es
)

Prob-Greedy

Train-GCN

Train-QL

Figure 4: Phase-wise training time distribution of GCOMB

50 100 150 200

Budget

0

50

100

150

S
p

ee
d

-u
p

Orkut-TV

Orkut-CO

(a) Speed-up OPIM Orkut

50 100 150 200

Budget

0

5

10

15

20

25

30

S
p

ee
d-

up

Friendster-TV

(b) Speed-up OPIM Friendster

Figure 5: Speed up obtained by GCOMB over OPIM

H Parameters

GCOMB has two components: GCN and the Q-Learning part. GCN is trained for 1000 epochs with
a learning rate of 0.001, a dropout rate of 0.1 and a convolution depth (K) of 2. The embedding
dimension is set to 60. For training the n-stepQ-Learning neural network, n and discount factor γ are
set to 2 and 0.8 respectively, and a learning rate of 0.0005 is used. The raw feature xv of node v in the
first layer of GCN is set to the summation of its outgoing edge weights. For undirected, unweighted
graphs, this reduces to the degree. In each epoch of training, 8 training examples are sampled
uniformly from the Replay Memory with capacity N = 50 as described in Alg. 4. The sampling size
z, in terms of percentage, is varied at [1%, 10%, 30%, 50%, 75%, 99%] on the validation sets, and
the best performing value is used. As we will show later in Fig.8c, 10% is often enough.

For all train sets, we split into two equal halves, where the first half is used for training and the second
half is used for validation. For the cases where we have only one training graph, like BrightKite(BK)
in MCP and MVC, we randomly pick 50% of the edges for the training graph and the remaining
50% for the validation graph. The noise predictor interpolators in MCP are fitted on 10% randomly
edge-sampled subgraphs from Gowallah, Twitter-ew and YouTube. During testing, the remaining
90% subgraph is used, which is edge disjoint to the 10% of the earlier sampled subgraph.

I Extracting Subgraph from Gowalla

To extract the subgraph, we select a node proportional to its degree. Next, we initiate a breadth-first-
search from this node, which expands iteratively till X nodes are reached, where X is the target size
of the subgraph to be extracted. All of these X nodes and any edge among these nodes become part
of the subgraph.

J Comparison with OPIM on billion sized graphs

Figs. 5a- 5b present the speed-up achieved by GCOMB over OPIM on Orkut and Friendster. Speed-up
is measured as timeOPIM

timeGCOMB
where timeOPIM and timeGCOMB are the running times of OPIM and

GCOMB respectively. OPIM crashes on Friendster-CO and Twitter dataset.

18

100 200

Budget

0.20

0.22

0.24

0.26

0.28

0.30

C
ov

er
ag

e

GCOMB

GCN-TreeSearch

Greedy

(a) Quality

100 200

Budget

101

102

103

104

105

R
un

ni
ng

T
im

e
(s

ec
s) GCOMB

GCN-TreeSearch

Greedy

(b) Scalability

Figure 6: MCP : Gowalla: a) Quality comparison of GCOMB and GCN-TREESEARCH against greedy.
b) Running times of GCOMB and GCN-TREESEARCH against the greedy approach.

Budget Speed-up
ε = 0.2

Coverage
Difference
ε = 0.2

Coverage
Difference
ε = 0.05

20 2 −0.09 −0.001
50 2 −0.13 −0.003
100 2 −0.16 −0.005
150 2 −0.18 −0.005
200 2 −0.20 −0.006

Table 4: Comparison with Stochastic Greedy(SG) algorithm. The ε parameter controls the accuracy
of SG. A negative number means GCOMB is better than SG.

K Results on Max Cover Problem (MCP) on Gowalla

Fig. 6a presents the impact of budget on Coverage on Gowalla dataset. The quality achieved by
GCOMB is similar to Greedy, while GCN-TREESEARCH is inferior. GCOMB is up to two orders of
magnitude faster than GCN-TREESEARCH and 10 times faster than Greedy as can be seen in Fig. 6b.

L Comparison with Stochastic Greedy (SG) on MCP

We compare the performance of GCOMB with SG on MCP. As can be seen in Table 4, GCOMB is up
to 20% better in quality at ε = 0.2 and yet 2 times faster. SG fails to match quality even at ε = 0.05,
where it is even slower. Furthermore, SG is not drastically faster than CELF in MCP due to two
reasons: (1) cost of computing marginal gain is O(Avg.degree), which is fast. (2) The additional
data structure maintenance in SG to access sampled nodes in sorted order does not substantially offset
the savings in reduced marginal gain computations.

M Results on Max Vertex Cover (MVC)

To benchmark the performance in MVC, in addition to real datasets, we also use the Barabási–Albert
(BA) graphs used in S2V-DQN [7].

Barabási–Albert (BA): In BA, the default edge density is set to 4, i.e., |E| = 4|V |. We use the
notation BA-X to denote the size of the generated graph, where X is the number of nodes.

For synthetic datasets, all three techniques are trained on BA graphs with 1k nodes. For real datasets,
the model is trained on Brightkite. Table 5 presents the coverage achieved at b = 30. Both GCOMB
and GCN-TREESEARCH produce results that are very close to each other and slightly better than
S2V-DQN. As in the case of MCP, S2V-DQN ran out of memory on graphs larger than BA-20k.

To analyze the efficiency, we next compare the prediction times of GCOMB with Greedy (Alg 1) and
GCN-TREESEARCH. Figs. 7a-7c present the prediction times against budget. Similar to the results in
MCP, GCOMB is one order of magnitude faster than Greedy and up to two orders of magnitude faster
than GCN-TREESEARCH.

19

100 200

Budget

101

102

103

104

105

R
un

ni
ng

T
im

e
(s

ec
s) GCOMB

GCN-TreeSearch

Greedy

(a) Gowalla

100 200

Budget

101

102

103

104

105

106

R
un

ni
ng

T
im

e
(s

ec
s) GCOMB

GCN-TreeSearch

Greedy

(b) YouTube

100 200

Budget

101

102

103

104

105

R
u
n
n
in

g
T

im
e

(s
ec

s) GCOMB

GCN-TreeSearch

Greedy

(c) Twitter-ego

Figure 7: MVC: Running times of GCOMB and GCN-TREESEARCH against the greedy approach in
(a) Gowalla (b) YouTube and c) Twitter-Ego.

Graph Greedy S2V-DQN GCN-TREESEARCH GCOMB
BA-10k 0.11 0.096 0.109 0.11
BA-20k 0.0781 0.0751 0.0781 0.0781
BA-50k 0.0491 NA 0.0490 0.0491

BA-100k 0.0346 NA 0.0328 0.0346
Gowalla 0.081 NA 0.081 0.081
YouTube 0.060 NA 0.060 0.060

Twitter-ego 0.031 NA 0.031 0.031

Table 5: Coverage achieved in the Max Vertex Cover (MVC) problem. The best result in each dataset
is highlighted in bold.

N Impact of Parameters

N.1 Size of training data

In Fig. 8b, we evaluate the impact of training data size on expected spread in IM. The budget for this
experiment is set to 20. We observe that even when we use only 5% of YT to train, the result is almost
identical to training with a 25% subgraph. This indicates GCOMB is able to learn a generalized policy
even with small amount of training data.

N.2 Effect of sampling rate

We examine how the sampling rate in locality computation affects the overall coverage in MCP. In
Fig. 8c, with the increase of samples, the accuracy at b = 100 increases slightly. At b = 25, the
increase is negligible. This indicates that our sampling scheme does not compromise on quality.

N.3 Dimension

We vary the GCN embedding dimension from 40 to 160 and measure its impact on coverage in MCP
(Fig. 8d). We observe minute variations in quality, which indicates that GCOMB is robust and does
not require heavy amount of parameter optimization.

20

50 100 150 200

Budget

0

100000

200000

300000

400000

500000

|V
g
|

TW-TV

FS-TV

TW-CO

FS-CO

(a) TW and FS

0 10 20

Training Size (%)

0.0

0.2

0.4

0.6

S
pr

ea
d

([
0,

1]
)

YouTube-TV

Youtube-CO

Stack-TV

Stack-CO

(b) Quality Vs. Training

25 50 75 100

Locality sampling rate (%)

0.22

0.24

0.26

C
ov

er
ag

e

b=25

b=100

(c) Gowalla

50 100 150

Dimension

0.15

0.20

0.25

0.30

0.35

0.40

C
ov

er
ag

e

b=15

b=50

b=100

b=200

(d) Gowalla

Figure 8: (a) Number of nodes included in V g in Twitter and Friendster for different budgets b. (b)
Impact of training set size on spread quality in IM. (c-d) Effect of sampling rate and embedding
dimension across different budgets on MCP coverage.

21

	Appendix
	Influence Maximization
	The greedy approach
	Training the GCN:

	Q-learning
	Complexity Analysis of the Test Phase
	Time Complexity
	Space Complexity

	Number of parameters
	Proof of Theorem 1
	Training time distribution of different phases of Gcomb
	Parameters
	Extracting Subgraph from Gowalla
	Comparison with Opim on billion sized graphs
	Results on Max Cover Problem (MCP) on Gowalla
	Comparison with Stochastic Greedy (SG) on MCP
	Results on Max Vertex Cover (MVC)
	Impact of Parameters
	Size of training data
	Effect of sampling rate
	Dimension

