
Supplementary Material for “Tensor Completion Made
Practical"

A Omitted algorithms from Section 3

Our initialization algorithm is based on [22]. For ease of notation, we make the following definition:
Definition A.1. Let Π be the projection map that projects an n× n matrix onto its diagonal entries
and let Π⊥ denote the projection onto the orthogonal complement.

Algorithm 3 INITIALIZATION

Input: Let T̂ be an input tensor where each entry is observed with probability p1

Let U = Ux(T̂) be the unfolded tensor with all unobserved entries equal to 0
Define

B̂ =
1

p1
Π(UUT) +

1

p2
1

Π⊥(UUT)

Let X be the matrix whose columns are given by the top r singular vectors of B̂

Zero out all rows of X that have norm at least τ
√

r
n where τ =

(
2µr
c2 ·

σ2
1

σ2
r

)5

and let X0 be the
resulting matrix
Let V 0

x be the subspace spanned by the columns of X0

Compute V 0
y , V

0
z similarly using the corresponding unfoldings of T̂

Output: V 0
x , V

0
y , V

0
z

Now we present our algorithm for post-processing.

Algorithm 4 POST-PROCESSING VIA CONVEX OPTIMIZATION

Input: Let T̂ be a sample where each entry is observed with probability p3

Input: Let V̂x, V̂y, V̂z be subspace estimates that we are given
Split T̂ into two independent samples T̂−, T̂∼ where each entry is observed with probability p3/2

Let S be the set of observed entries in T̂−
Define:

T ′ = arg min
T ′∈V̂x⊗V̂y⊗V̂z

∥∥∥(T ′ − T̂−)|S
∥∥∥2

2

Run Jennrich’s algorithm (see Section F.2.1) to decompose T ′ into r rank-1 components

T ′ = T1 + · · ·+ Tr

For each 1 ≤ i ≤ r, write Ti = σ̂ix̂i ⊗ ŷi ⊗ ẑi where x̂i, ŷi, ẑi are unit vectors and σ̂i ≥ 0.
Let S∼ be the set of observed entries in T̂∼
Solve the following constrained optimization problem where a1, b1, c1, . . . , ar, br, cr ∈ Rn:

min
ai,bi,ci

∥∥∥∥∥
(
T −

r∑
i=1

(σ̂i(x̂i + ai))⊗ (ŷi + bi)⊗ (ẑi + ci)

)∣∣∣∣∣
S∼

∥∥∥∥∥
2

2

over the polytope Q(x̂1, . . . , x̂r, ŷ1, . . . , ŷr, ẑ1, . . . , ẑr) (defined below).
Output:

Test =

r∑
i=1

(σ̂i(x̂i + ai))⊗ (ŷi + bi)⊗ (ẑi + ci)

Definition A.2 (Definition of Q). For each 1 ≤ i ≤ r, let y′i be the unit vector in span(ŷ1, . . . , ŷr)
that is orthogonal to ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷr and define z′i similarly. Let

Q(x̂1, . . . , x̂r, ŷ1, . . . , ŷr, ẑ1, . . . , ẑr)

13

be the polytope consisting of all {a1, b1, c1, . . . , ar, br, cr} such that:

• 0 ≤ ||ai||∞, ||bi||∞, ||ci||∞ ≤
(

cσr
10nσ1

)10

for all 1 ≤ i ≤ r.

• bi · y′i = 0 and ci · z′i = 0 for all 1 ≤ i ≤ r.
Remark. Note we will prove that the constrained optimization problem is strongly convex (and thus
can be solved efficiently) in Section G.

A.1 “Exact" Completion and Bit Complexity

Technically, exact completion only makes sense when the entries of the hidden tensor have bounded
bit complexity. Our algorithm achieves exact completion in the sense that, if we assume that all of
the entries of the hidden tensor have bit complexity B, then the number of observations that our
algorithm requires does not depend on B while the runtime of our algorithm depends polynomially
on B. This is the strongest possible guarantee one could hope for in the Word RAM model. Note
that the last step of our algorithm involves solving a convex program. If we assume that the entries
of the original tensor have bounded bit complexity then it suffices to solve the convex program to
sufficiently high precision [12] and then round the solution.

B Outline of Proof of Theorem 3.2

Here we give an outline of the proof of Theorem 3.2. The first step involves proving that with high
probability, the INITIALIZATION algorithm outputs subspaces that are incoherent and have constant
principal angle with the true subspaces spanned by the unknown factors. The proof of the following
theorem is in Section D.
Theorem B.1. With probability 1− 1

n10 , when the INITIALIZATION algorithm is run with

p1 =

(
2µr log n

c2
· σ

2
1

σ2
r

)10
1

n3/2
,

the output subspaces V 0
x , V

0
y , V

0
z satisfy

• max
(
α(Vx, V

0
x), α(Vy, V

0
y), α(Vz, V

0
z)
)
≤ 0.1

• The subspaces V 0
x , V

0
y , V

0
z are µ′-incoherent where µ′ =

(
2µr
c2 ·

σ2
1

σ2
r

)10

Next, we prove that each iteration of alternating minimization decreases the principal angles between
our subspace estimates and the true subspaces. This is our main contribution.
Theorem B.2. Consider the KRONECKER ALTERNATING MINIMIZATION algorithm. Fix a timestep
t and assume that the subspaces V tx , V

t
y , V

t
z corresponding to the current estimate are µ′-incoherent

where µ′ =
(

2µr
c2 ·

σ2
1

σ2
r

)10

. Also assume

max
(
α(Vx, V

t
x), α(Vy, V

t
y), α(Vz, V

t
z)
)
≤ 0.1.

If p′ ≥ log2((nσ1)/(cσr))
n2

(
10rµ′

c · σ1

σr

)10

then after the next step, with probability 1 −
1

104 log((nσ1)/(cσr))

• max
(
α(Vx, V

t+1
x), α(Vy, V

t+1
y), α(Vz, V

t+1
z)

)
≤ 0.2 max

(
α(Vx, V

t
x), α(Vy, V

t
y), α(Vz, V

t
z)
)

• The subspaces V t+1
x , V t+1

y , V t+1
z are µ′-incoherent

This theorem is proved in Section E

In light of the previous two theorems, by running a logarithmic number of iterations of alternating
minimization, we can estimate the subspaces Vx, Vy, Vz to within any inverse polynomial accuracy.
This implies that we can estimate the entries of the true tensor T to within any inverse polynomial

14

accuracy. A robust analysis of Jennrich’s algorithm implies that we can then estimate the rank one
components of the true tensor to within any inverse polynomial accuracy. Finally, since our estimates
for the parameters σ̂i, x̂i, ŷi, ẑi are close to the true parameters, we can prove that the optimization
problem formulated in the POST-PROCESSING VIA CONVEX OPTIMIZATION algorithm is smooth
and strongly convex. See Section F and Section G for details.

C Preliminaries

C.1 Basic Facts

We use the following notation:

• Let Ux(T) denote the unfolding of T into an n× n2 matrix where the dimension of length
n corresponds to the xi. Define Uy(T), Uz(T) similarly.

• Let Vx be the subspace spanned by x1, . . . , xr and define Vy, Vz similarly.
• Let Mx be the matrix whose columns are x1, . . . , xr and define My,Mz similarly.

The following claim, which states that the unfolded tensor Ux(T) is not a degenerate matrix, will be
used repeatedly later on.
Claim C.1. The rth largest singular value of Ux(T) is at least c3σr

Proof. Let D be the r × r diagonal matrix whose entries are σ1, . . . , σr. Let N be the r × n2 matrix
whose rows are y1 ⊗ z1, . . . , yr ⊗ zr respectively. Then

Ux(T) = MxDN

For any unit vector v ∈ Vx, ||vMx||2 ≥ c. Also N consists of a subset of the rows of My ⊗Mz so
the smallest singular value of N is at least c2. Thus

||vUx(T)||2 ≥ c3σr.

Since Vx has dimension r, this implies that the rth largest singular value of Ux(T) is at least c3σr.

A key component of our analysis will be tracking principal angles between subspaces. Intuitively, the
principal angle between two r-dimensional subspaces U, V ⊂ Rn is the largest angle between some
vector in U and the subspace V .
Definition C.2. For two subspaces U, V ⊂ Rn of dimension r, we let α(U, V) be the sine of the
principal angle between U and V . More precisely, if U is a n× r matrix whose columns form an
orthonormal basis for U and V⊥ is a n× (n− r) matrix whose columns form an orthonormal basis
for the orthogonal complement of V , then

α(U, V) =
∥∥V T⊥ U∥∥op

Observation C.3 (Restatement of Observation 3.1). Given subspaces U1, V1 ⊂ Rn1 of dimension
d1 and U2, V2 ⊂ Rn2 of dimension d2, we have

α(U1 ⊗ U2, V1 ⊗ V2) ≤ α(U1, V1) + α(U2, V2)

Proof. We slightly abuse notation and use U1, V1, U2, V2 to denote matrices whose columns form an
orthonormal basis of the respective subspaces. Note that the cosine of the principal angle between U1

and V1 is equal to the smallest singular value of UT1 V1 and similar for U2 and V2. Next note

(U1 ⊗ U2)T (V1 ⊗ V2) = (UT1 V1)⊗ (UT2 V2).

Thus
1− α(U1 ⊗ U2, V1 ⊗ V2)2 = (1− α(U1, V1)2)(1− α(U2, V2)2)

and we conclude
α(U1 ⊗ U2, V1 ⊗ V2) ≤ α(U1, V1) + α(U2, V2)

15

In the analysis of our algorithm, we will also need to understand the incoherence of the tensor product
of vector spaces. The following claim gives us a simple relation for this.

Claim C.4. Suppose we have subspaces V1 ⊂ Rn1 and V2 ⊂ Rn2 with dimension r1, r2 that are µ1

and µ2 incoherent respectively. Then V1 ⊗ V2 is µ1µ2-incoherent.

Proof. Let M1,M2 be matrices whose columns are orthonormal bases for V1, V2 respectively. Then
the columns of M1 ⊗M2 form an orthonormal basis for V1 ⊗ V2. All rows of M1 have norm at most√

µ1r1
n1

and all rows of M2 have norm at most
√

µ2r2
n2

so thus all rows of M1 ⊗M2 have norm at

most
√

µ1µ2r1r2
n1n2

and we are done.

C.2 Matrix and Incoherence Bounds

Here, we prove a few general results that we will use later to bound the principal angles and
incoherence of the subspace estimates at each step of our algorithm.

Claim C.5. Let X be an n×m matrix such that:

• The rows of X have norm at most c
√

r
n

• The rth singular value of X is at least ρ

Then the subspace spanned by the top r left singular vectors of X is c2r
ρ2 -incoherent.

Proof. Let the top r left singular vectors of X be v1, . . . , vr. There are vectors u1, . . . , ur such that
vTi = Xui for all i. Furthermore, we can ensure

||ui||2 ≤
1

ρ

for all i. Now for a standard basis vector say ej , its projection onto the subspace spanned by v1, . . . , vr
has norm √

(eTj Xu1)2 + · · ·+ (eTj Xur)
2 ≤
√
r · c

√
r

n

1

ρ
.

Thus, the column space of X is c2r
ρ2 -incoherent.

Claim C.6. Let A,B be n × m matrices with rank r. Let δ = ‖A−B‖op. Assume that the rth

singular value of B is at least ρ. Then the sine of the principal angle between the subspaces spanned
by the columns of A and B is at most δρ .

Proof. Let VA be the column space of A and VB be the column space of B. Let V⊥ be a (n− r)× n
matrix whose rows form an orthonormal basis of the orthogonal complement of VA. Note that

‖V⊥B‖ ≥ ρα(VA, VB)

Now ‖V⊥B‖ ≤ ‖V⊥(B −A)‖ ≤ δ. Thus α(VA, VB) ≤ δ
ρ which completes the proof.

C.3 Sampling Model

In our sampling model, we observe each entry of the tensor T independently with probability p. In
our algorithm we will require splitting the observations into several independent samples. To do this,
we rely on the following claim:

Claim C.7. Say we observe a sample T̂ where every entry of T is revealed independently with
probability p. Say p1 + p2 ≤ p. We can construct two independent samples T̂1, T̂2 where in the first
sample, every entry is observed independently with probability p1 and in the second, every entry is
observed independently with probability p2.

16

Proof. For each entry in T̂ that we observe, reveal it in only T̂1 with probability p1−p1p2
p , reveal it in

only T̂2 with probability p2−p1p2
p and reveal it in both with probability p1p2

p . Otherwise, don’t reveal

the entry in either T̂1 or T̂2. It can be immediately verified that T̂1 and T̂2 constructed in this way
have the desired properties.

C.4 Concentration Inequalities

Claim C.8. Say we have real numbers −γ ≤ x1, . . . , xn ≤ γ. Consider the sum

X = ε1x1 + · · ·+ εnxn

where the εi are independent random variables that are equal to 1− p with probability p and equal
to −p with probability 1− p. Assume p ≥ 1

n . Then for any t ≥ 1,

Pr [|X| ≥ √pnγt] ≤ 2e−t/4

Proof. Let β be a constant with 0 ≤ β ≤ γ−1. Using the fact that ex ≤ 1 + x+ x2 between −1 and
1, we have

E[eβxi] = pe(1−p)βxi + (1− p)e−pβxi ≤ 1 + p(1− p)β2x2
i ≤ epβ

2x2
i

Thus
E[eβX] ≤ epβ

2(x2
1+···+x2

n)

Similarly
E[e−βX] ≤ epβ

2(x2
1+···+x2

n)

Now set β = 1
2
√
pnγ . Note that this is a valid assignment because we assumed p ≥ 1

n . Thus

Pr [|X| ≥ √pnγt] ≤ 2epβ
2nγ2−β√pnγt ≤ 2e−t/4

Claim C.9. [Matrix Chernoff (see [28])] Consider a finite sequence {Xk} of independent self-adjoint
n×n matrices. Assume that for all k, Xk is positive semidefinite and its largest eigenvalue is at most
R. Let µmin = λmin (

∑
k E[Xk]) be the smallest eigenvalue of the expected sum. Then

Pr

[
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

]
≤ ne−

δ2µmin
2R

Claim C.10. [Matrix Chernoff (see [28])] Consider a finite sequence {Xk} of independent self-
adjoint n× n matrices. Assume that for all k, Xk is positive semidefinite and its largest eigenvalue
is at most R. Let µmax = λmax (

∑
k E[Xk]) be the largest eigenvalue of the expected sum. Then

Pr

[
λmax

(∑
k

Xk

)
≤ (1 + δ)µmax

]
≤ ne−

δ2µmax
2R

D Initialization

The main purpose of this section is to prove that the INITIALIZATION algorithm obtains good initial
estimates for the subspaces. In particular we will prove Theorem B.1. First note that

• ||Ux(T)||op ≥ ||Ux(T)(y1 ⊗ z1)||2 = ‖
∑r
i=1 σi((yi · y1)(zi · z1))xi‖2 ≥ σ1c

• The largest norm of a row of Ux(T) is at most rσ1

√
µr
n

• The largest norm of a column of Ux(T) is at most σ1
µr2

n

• The largest entry of Ux(T) is at most rσ1

(
µr
n

)3/2
17

Thus Ux(T) is (λ, 1, ρ)-incoherent for λ = µr3

c2 , ρ = µ2r4

c2 according to Assumption 3 in [22]. Below
we use Ux to denote Ux(T).

The key ingredient in the proof of Theorem B.1 is the following result from [22], which says that the
matrix B̂ is a good approximation for UxUTx .
Lemma D.1 (Restatement of Corollary 3 in [22]). When the INITIALIZATION algorithm is run with

p1 =

(
2µr log n

c2
· σ

2
1

σ2
r

)10
1

n3/2
,

we have

||B̂ − UxUTx ||op ≤
103λρ(log n)4

p2
1n

3
||Ux||2op

with probability at least 1−
(

1
n

)25
.

Let D be the r× r diagonal matrix whose entries are the top r signed eigenvalues of B̂. We first note
that B̂ can be approximated well by its top r principal components.
Claim D.2.

||XDXT − B̂||op ≤ ||B̂ − UxUTx ||op

Proof. Let σ be the r + 1st largest singular value of B̂. Note ||XDXT − B̂||op = σ. Let Y be the
r + 1-dimensional space spanned by the top r + 1 singular vectors of B̂. Note that there is some unit
vector y ∈ Y such that UTx y = 0 (since UTx has rank r) so

||B̂ − UxUTx ||op ≥ ||(B̂ − UxUTx)y||2 = ||B̂y||2 ≥ σ

Let Π be the n× n diagonal matrix with 0 on diagonal entries corresponding to rows of X with norm
at least τ

√
r
n and 1 on other diagonal entries. Note X0 = ΠX .

Lemma D.1 and Claim D.2 imply that XDXT is a good approximation for UxUTx . To analyze the
INITIALIZATION algorithm, we will need to rewrite these bounds using X0 in place of X .
Claim D.3.

||X0DX
T
0 − UxUTx ||op ≤ 0.1

(
cσr
σ1

)10

σ2
1

with probability at least 1− 1
n25

Proof. First note that the squared Frobenius norm of X is r so there are at most n
τ2 entries of Π that

are 0. Next note

X0DX
T
0 − UxUTx = ((ΠX)D(ΠX)T − (ΠUx)(ΠUx)T) + (ΠUx)(ΠUx)T − UxUTx

Note that (ΠUx)(ΠUx)T − UxUTx is 0 in all but at most 2n2

τ2 entries. Furthermore, all entries of

UxU
T
x are at most µ

3σ2
1r

5

n . Thus

||(ΠUx)(ΠUx)T − UxUTx ||2 ≤
µ3σ2

1r
5

n
· 2n

τ
=

2µ3σ2
1r

5

τ

Also

||(ΠX)D(ΠX)T−(ΠUx)(ΠUx)T)||op ≤ ||XDXT−UxUTx ||op ≤ 2||B̂−UxUTx ||op ≤
203λρ(log n)4

p2
0n

3
||Ux||2op

where we used Claim D.2 and Lemma D.1. Combining the previous two equations and noting that
||Ux||op ≤ (σ1r)

||X0DX
T
0 − UxUTx ||op ≤

2µ3σ2
1r

5

τ
+

203λρ(log n)4

p2
0n

3
(σ1r)

2 ≤ 0.1

(
cσr
σ1

)10

σ2
1

18

To prove that V 0
x , the space spanned by the columns of X0 is incoherent, we will need a bound on

the smallest singular value of X0. In other words, we need to ensure that zeroing out the rows of X
whose norm is too large doesn’t degenerate the column space.

Claim D.4. With probability 1− 1
n25 , the rth singular value of X0 is at least c6

10r3

(
σr
σ1

)2

Proof. By Claim C.1, the rth singular value of UxUTx is at least c6σ2
r . Thus by Claim D.3, the rth

singular value of X0DX
T
0 is at least 0.9c6σ2

r .

Also note that the operator norm of UxUTx is at most (σ1r)
2 so by Lemma D.1, all entries

of D are at most 2(σ1r)
2. Also, the largest singular value of X0 is clearly at most r. Thus the

smallest singular value of X0 is at least

0.9c6σ2
r

2(σ1r)2r
≥ c6

10r3

(
σr
σ1

)2

Now we can use the results from Section C.2 to complete the proof of Theorem B.1.

Corollary D.5. With probability at least 1−
(

1
n

)25
, the subspace spanned by the columns of X0 is(

2µr
c2 ·

σ2
1

σ2
r

)10

-incoherent.

Proof. Note all rows of X0 have norm at most τ
√

r
n . By Claim C.5 and Claim D.4, the column

space of X0 is incoherent with incoherence parameter

τ2r(
c6

10r3

(
σr
σ1

)2
)2 ≤

(
2µr

c2
· σ

2
1

σ2
r

)10

.

Corollary D.6. With probability at least 1− 1
n25 we have α(Vx, V

0
x) ≤ 0.1.

Proof. Note that X0DX
T
0 and UxUTx are both n × n matrices with rank r. By Claim C.1, the rth

singular value of Ux is at least c3σr and thus the rth singular value of UxUTx is at least c6σ2
r . Now

using Claim D.3 and Claim C.6, we have with probability at least 1− 1
n25

α(Vx, V
0
x) ≤

0.1
(
cσr
σ1

)10

σ2
1

c6σ2
r

≤ 0.1.

Proof of Theorem B.1. Combining Corollary D.5 and Corollary D.6 we immediately get the desired.

E Alternating Minimization

This section is devoted to the proof of Theorem B.2.

E.1 Least Squares Optimization

We will need to analyze the least squares optimization in the alternating minimization step of our
KRONECKER ALTERNATING MINIMIZATION algorithm. We use the following notation.

• Let the rows of Ht+1 be r1, . . . , rn.

19

• We will abbreviate Ux(T) with Ux. Let the rows of Ux(T) be u1, . . . , un.
• For each 1 ≤ j ≤ n, let Pj ⊂ [n2] be the set of indices that are revealed in the jth row of
Ux(T̂t+1).

• Let Πj be the n2 × n2 matrix with one in the diagonal entries corresponding to elements of
Pj and zero everywhere else.

Let E = Ht+1−UxBTt and let its rows be s1, . . . , sn. Note UxBTt is the solution to the least squares
optimization problem if we were able to observe all the entries i.e. if the optimization problem were
not restricted to the set St+1. Thus, we can think of E as the error that comes from only observing a
subset of the entries. The end goal of this section is to bound the Frobenius norm of E.

First we will need a technical claim that follows from a matrix Chernoff bound.

Claim E.1. If p′ ≥ log2 n
n2

(
10rµ′

c · σ1

σr

)10

then With at least 1−
(
cσr
nσ1

)20

probability

||(BtΠjB
T
t)−1|| ≤ 2

p′

for all 1 ≤ j ≤ n.

Proof. Note by Claim C.4, the columns of Bt have norm at most µ
′r
n . Consider 1

p′BtΠjB
T
t . This is

a sum of independent rank 1 matrices with norm bounded by µ′2r2

p′n2 and the expected value of the sum
is I , the identity matrix. Thus by Claim C.9

Pr

[
λmin

(
1

p′
BtΠjB

T
t

)
≤ 1

2

]
≤ ne−

p′n2

8µ′2r2 ≤
(
cσr
nσ1

)25

The claim below follows directly from writing down the explicit formula for the solution to the least
squares optimization problem.
Claim E.2. We have for all 1 ≤ j ≤ n

rj = ujΠjB
T
t (BtΠjB

T
t)−1

Proof. Note rj must have the property that the vector uj − rjBt restricted to the entries indexed by
Pj is orthogonal to the space spanned by the rows of Bt restricted to the entries indexed by Pj . This
means

(uj − rjBt)(BtΠj)
T = 0

The above rearranges as
rj(BtΠjB

T
t) = ujΠjB

T
t

from which we immediately obtain the desired.

After some direct computations, the previous claim implies:
Claim E.3. We have for all 1 ≤ j ≤ n

sj = uj(I −BTt Bt)ΠjB
T
t (BtΠjB

T
t)−1

Proof. Note

sj = rj − ujBTt = ujΠjB
T
t (BtΠjB

T
t)−1 − ujBTt = uj(I −BTt Bt)ΠjB

T
t (BtΠjB

T
t)−1

Now we are ready to prove the main result of this section.
Lemma E.4. With probability at least 1− 1

105 log((nσ1)/(cσr))

||E||2 ≤
103µ′r3σ1

√
log((nσ1)/(cσr))

n
√
p′

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

20

Proof. Note BtBTt = I since its rows form an orthonormal basis so uj(I −BTt Bt)BTt = 0. Thus

sj = uj(I −BTt Bt)(Πj − p′I)BTt (BtΠjB
T
t)−1

Let qj = uj(I −BTt Bt). By Observation 3.1,

||qj ||2 ≤ ||uj ||2α(Vy ⊗ Vz, V ty ⊗ V tz) ≤ ||uj ||2
(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

(4)

Now we upper bound ||qj(Πj − p′I)BTt ||. Let the columns of BTt be c1, . . . , cr2 respectively. Note
that since the entries of Πj − p′I have expectation 0 and variance p′(1− p′)

E[||qj(Πj − p′I)ci||22] ≤ ||qj ||22 · p′(1− p′) · ||ci||2∞ ≤
p′||qj ||22µ′2r2

n2

Thus

E[||qj(Πj − p′I)BTt ||22] ≤ p′||qj ||22µ′2r4

n2
(5)

Now by Claim E.1, with probability 1−
(
cσr
nσ1

)20

we have

||(BtΠjB
T
t)−1|| ≤ 2

p′

for all 1 ≤ j ≤ n. Denote this event by Γ. Let

EΓ

[
||E||22

]
= Pr [Γ]E

[
||E||22

∣∣ Γ
]

In other words, EΓ[||E||22] is the sum of the contribution to E
[
||E||22

]
from events where Γ happens.

Using (4) and (5) we have

EΓ

[
||E||22

]
=

n∑
j=1

EΓ

[
||sj ||22

]
≤ 4

p′2
p′µ′2r4

n2

 n∑
j=1

||qj ||22


≤ 4µ′2r4

p′n2

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)2 n∑

j=1

||uj ||22

≤ 4µ′2r6σ2
1

p′n2

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)2

By Markov’s inequality, the probability that Γ occurs and

||E||2 ≥
103µ′r3σ1

√
log((nσ1)/(cσr))

n
√
p′

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

is at most 1
2·105 log((nσ1)/(cσr)) . Thus with probability at least

1− 1

2 · 105 log((nσ1)/(cσr))
−
(
cσr
nσ1

)20

≥ 1− 1

105 log((nσ1)/(cσr))

we have

||E||2 ≤
103µ′r3σ1

√
log((nσ1)/(cσr))

n
√
p′

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

We will need one additional lemma to show that the incoherence of the subspaces is preserved. This
lemma is an upper bound on the norm of the rows of E. Note this upper bound is much weaker than
the one in the previous lemma and does not capture the progress made by alternating minimization
but rather is a fixed upper bound that holds for all iterations.

Lemma E.5. If p′ ≥ log2((nσ1)/(cσr))
n2

(
10rµ′

c · σ1

σr

)10

then with probability at least 1−
(
cσr
nσ1

)15

all

rows of E have norm at most 0.1c3σr√
n

21

Proof. We use the same notation as the proof of the previous claim. Fix indices 1 ≤ j ≤ n, 1 ≤ i ≤
r2. It will suffice to obtain a high probability bound for

|qj(Πj − p′I)ci|

and then union bound over all indices. Recall

qj = uj − ujBTt Bt

and by our incoherence assumptions, all entries of uj have magnitude at most rσ1

(
µr
n

)3/2
. By Claim

C.4, all entries of ujBTt Bt have magnitude at most

||ujBTt ||2
µ′r

n
≤ ||uj ||2

µ′r

n
≤ rσ1

√
µr

n

µ′r

n

Thus all entries of qj have magnitude at most 2rσ1

√
µr
n
µ′r
n . Let τ be the vector obtained by taking

the entrywise product of qj and ci and say its entries are τ1, . . . , τn2 . Note that by Claim C.4 the
entries of ci are all at most µ

′r
n . Thus the entries of τ are all at most

γ = 2rσ1

√
µr

n

µ′2r2

n2

Next observe that qj(Πj − p′I)ci is obtained by taking a sum ε1τ1 + · · ·+ εn2τn2 where ε1, . . . , εn2

are sampled independently and are equal to −p′ with probability 1 − p′ and equal to 1 − p′ with
probability p′. We now use Claim C.8. Note p′ ≥ 1

n2 clearly. Thus

Pr
[
|qj(Πj − p′I)ci| ≥ 103 log((nσ1)/(cσr))nγ

√
p′
]
≤
(
cσr
nσ1

)25

.

Note

nγ
√
p′ =

2r3.5µ′2µ0.5
√
p′σ1

n3/2

Thus

Pr

[
|qj(Πj − p′I)ci| ≤

2 · 103 log((nσ1)/(cσr))r
3.5µ′2µ0.5

√
p′σ1

n3/2

]
≥ 1−

(
cσr
nσ1

)25

.

Union bounding over 1 ≤ i ≤ r2 implies that with probability at least 1−
(
cσr
nσ1

)23

||qj(Πj − p′I)BTt || ≤
2 · 103 log((nσ1)/(cσr))r

4.5µ′2µ0.5
√
p′σ1

n3/2

Finally, since

sj = uj(I −BTt Bt)(Πj − p′I)BTt (BtΠjB
T
t)−1 = qj(Πj − p′I)BTt (BtΠjB

T
t)−1

combining with Claim E.1 and union bounding over all 1 ≤ j ≤ n, we see that with at least

1−
(
cσr
nσ1

)15

probability, all rows of E have norm at most

4 · 103 log((nσ1)/(cσr))r
4.5µ′2µ0.5σ1

n3/2
√
p′

≤ 0.1c3σr√
n

which completes the proof.

E.2 Progress Measure

Now we will use the bounds in Lemma E.4 and Lemma E.5 on the error term E to bound the principal
angle with respect to Vx and the incoherence of the new subspace estimate V t+1

x . This will then
complete the proof of Theorem B.2. We first need a preliminary result controlling the rth singular
value of UxBTt . Note this is necessary because if the rth singular value of UxBTt were too small, then
it could be erased by the error term E.

22

Claim E.6. The rth largest singular value of UxBTt is at least
(
1− α(Vy, V

t
y)− α(Vz, V

t
z)
)
c3σr

Proof. By Claim C.1, the rth largest singular value of Ux is at least c3σr. Therefore there exists an
r-dimensional subspace of Rn, say V such that for any unit vector v ∈ V , ||vUx|| ≥ c3σr. Now for
any vector u in Vy ⊗ Vz ,

||uBTt || ≥
√

1− α(Vy ⊗ Vz, V ty ⊗ V tz)2||u||

Next vUx is contained in the row span of Ux which is contained in Vy ⊗ Vz . Thus for any unit vector
v ∈ V

||vUxBTt || ≥ c3σr
√

1− α(Vy ⊗ Vz, V ty ⊗ V tz)2 ≥
(
1− α(Vy, V

t
y)− α(Vz, V

t
z)
)
c3σr

Now we can upper bound the principal angle between Vx and V t+1
x in terms of the principal angles

for the previous iterates.

Corollary E.7. If p′ ≥ log2((nσ1)/(cσr))
n2

(
10rµ′

c · σ1

σr

)10

then α(V t+1
x , Vx) ≤

0.1
(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

with at least 1− 1
105 log((nσ1)/(cσr)) probability.

Proof. Note H = UxB
T
t + E.

By Lemma E.4, with probability at least 1− 1
105 log((nσ1)/(cσr))

‖E‖2 ≤
103µ′r3σ1

√
log(n/(cσr))

n
√
p′

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

If this happens, the largest singular value of E is at most

σ ≤ ‖E‖2 ≤
103µ′r3σ1

√
log(n/(cσr))

n
√
p′

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

Let ρ1 ≥ · · · ≥ ρr be the singular values of UxBTt . By Claim E.6

ρr ≥
(
1− α(Vy, V

t
y)− α(Vz, V

t
z)
)
c3σr

Let Hr be the rank-r approximation of H given by the top r singular components. UxBTt has rank r
and since Hr is the best rank r approximation of H in Frobenius norm we have Hr = H + E′ =
UxB

T
t + E + E′ where ||E′||2 ≤ ||E||2. Now note∥∥Hr − UxBTt

∥∥
op ≤ ‖E + E′‖2 ≤ 2 ‖E‖2

Thus by Claim C.6 (applied to the matrices Hr, UxBTt)

α(Vx, V
t+1
x) ≤ 2||E||2

ρr
≤ 4||E||2

σrc3
≤ 0.1

(
α(Vy, V

t
y) + α(Vz, V

t
z)
)

We also upper bound the incoherence of V t+1
x , relying on Lemma E.5.

Corollary E.8. If p′ ≥ log2((nσ1)/(cσr))
n2

(
10rµ′

c · σ1

σr

)10

then the subspace V t+1
x is

(
2µr
c2 ·

σ2
1

σ2
r

)10

-

incoherent with at least 1−
(
cσr
nσ1

)10

probability.

Proof. By Lemma E.5, with 1−
(
cσr
nσ1

)10

probability, each row of E has norm at most 0.1c3σr√
n

. This

implies ‖E‖2 ≤ 0.1c3σr.

23

Let the top r singular values of H be ρ′1, . . . , ρ
′
r and let the top r singular values of UxBTt

be ρ1, . . . , ρr. Note ρ′r ≥ ρr − ‖E‖op. Also by Claim E.6

ρr ≥
(
1− α(Vy, V

t
y)− α(Vz, V

t
z)
)
c3σr

Thus

ρ′r ≥ ρr − ‖E‖op ≥
(
1− α(Vy, V

t
y)− α(Vz, V

t
z)
)
c3σr − ‖E‖2 ≥

c3σr
2

Next observe that each row of UxBTt has norm at most rσ1

√
µr
n and since each row of E has norm

at most 0.1c3σr√
n

, we deduce that each row of H has norm at most 2rσ1

√
µr
n . Now by Claim C.5,

V t+1
x is incoherent with incoherence parameter

4r3µσ2
1(

c3σr
2

)2 =
16µr3σ2

1

c6σ2
r

.

Clearly

16µr3σ2
1

c6σ2
r

≤
(

2µr

c2
· σ

2
1

σ2
r

)10

so we are done.

We can now complete the proof of the main theorem of this section, Theorem B.2.

Proof of Theorem B.2. Combining Corollary E.7 and Corollary E.8, we immediately get the desired.

Theorem B.2 immediately gives us the following corollary.

Corollary E.9. Assume that V 0
x , V

0
y , V

0
z satisfy

• max
(
α(Vx, V

0
x), α(Vy, V

0
y), α(Vz, V

0
z)
)
≤ 0.1

• The subspaces V 0
x , V

0
y , V

0
z are µ′-incoherent where µ′ =

(
2µr
c2 ·

σ2
1

σ2
r

)10

Then with probability 0.99, when KRONECKER ALTERNATING MINIMIZATION is run with parame-
ters

p2 =

(
µr log n

c
· σ1

σr

)300
1

n3/2

p′ =
log2((nσ1)/(cσr))

n2

(
10rµ′

c
· σ1

σr

)10

we have

max
(
α(Vx, V

k
x), α(Vy, V

k
y), α(Vz, V

k
z)
)
≤
(

σrc

10σ1n

)102

.

F Projection and Decomposition

After computing estimates for Vx, Vy, Vz , say V̂x, V̂y, V̂z , we estimate the original tensor by projecting
onto the space spanned by V̂x ⊗ V̂y ⊗ V̂z . Our first goal is to show that our error in estimating
T by projecting onto these estimated subspaces depends polynomially on the principal angles
α(Vx, V̂x), α(Vy, V̂y), α(Vz, V̂z). This will then imply (due to Theorem B.2) that we can estimate the
entries of the original tensor to any inverse polynomial accuracy.

24

F.1 Projection Step

We will slightly abuse notation and use V̂x, V̂y, V̂z to denote n × r matrices whose columns form
orthonormal bases of the respective subspaces. Let

δ = max
(
α(Vx, V̂x), α(Vy, V̂y), α(Vz, V̂z)

)
Let M = Vx ⊗ Vy ⊗ Vz be an r3 × n3 matrix. Let S be a subset of the rows of M where each row is

chosen with probability p′ = log2 n
n2

(
10rµ
c ·

σ1

σr

)10

. Let MS be the matrix obtained by taking only
the rows of M in S.

The main lemma of this section is:

Lemma F.1. Assume that δ ≤
(
cσr
nσ1

)10

. When the POST-PROCESSING VIA CONVEX OPTIMIZA-

TION algorithm is run with p3 = 2 log2 n
n2

(
10rµ
c ·

σ1

σr

)10

, the tensor T ′ satisfies

||T − T ′||2 ≤ 10σ1δrn

with probability at least 1− 1
n20 .

We first prove a preliminary claim.

Claim F.2. Assume that δ ≤
(
cσr
nσ1

)10

. Then with probability at least 1− 1
n20 , the smallest singular

value of MS is at least 1
n

Proof. First we show that all of the entries of V̂x are at most 2
√

µr
n in magnitude. Assume for the

sake of contradiction that some entry of V̂x is at least 2
√

µr
n . Let c be the column of V̂x that contains

this entry. Let Π(c) be the projection of c onto the subspace Vx. Note that all entries of Π(c) are at
most

√
µr
n since Vx is µ-incoherent. This means that

||c−Π(c)||22 ≥
µr

n

so

α(V̂x, Vx) ≥
√
µr

n

contradicting the assumption that α(Vx, V̂x) ≤
(
cσr
nσ1

)10

. Similarly, we get the same bound for the

entries of V̂y, V̂z . This implies each row of M has norm at most 8µ3/2r3

n3/2 . Now consider 1
p′M

T
SMS .

This is a sum of independent rank-1 matrices with norm at most 1
p′ ·

64µ3r6

n3 and the expected value of
the sum is I , the identity matrix. Thus by Claim C.9

Pr

[
λmin

(
1

p′
MT
SMS

)
≤ 1

2

]
≤ 1

n20

In particular, with probability at least, 1− 1
n20 , the smallest singular value of MS is at least√

p′

2
≥ 1

n

Proof of Lemma F.1. For 1 ≤ i ≤ r, let xi be the projection of xi onto V̂x. Define yi, zi similarly.
Let

T =

r∑
i=1

σixi ⊗ yi ⊗ zi

25

Note

||xi ⊗ yi ⊗ zi − xi ⊗ yi ⊗ zi||2 ≤ ||xi − xi||2 + ||yi − yi||2 + ||zi − zi||2
≤ α(Vx, V̂x) + α(Vy, V̂y) + α(Vz, V̂z)

≤ 3δ

Thus
||T − T ||2 ≤ 3δσ1r (6)

Now consider the difference T − T ′. By the definition of T ′ We must have

‖(T ′ − T) |S‖2 ≤
∥∥(T − T) |S∥∥2

≤ 3δσ1r

Thus
∥∥(T ′ − T) |S∥∥2

≤ 6δσ1r. Since T ′, T are both in the subspace V̂x ⊗ V̂y ⊗ V̂z , when flattened
T ′, T can be written in the form Mv′,Mv respectively for some v′, v ∈ Rr3 . Now we know

||MS(v′ − v)||2 ≤ 6δσ1r

so by Claim F.2 we must have
||v − v||2 ≤ 6δσ1rn

Thus
||T ′ − T ||2 = ||M(v′ − v)||2 ≤ 6σ1δrn

and combining with (6) we immediately get the desired.

F.2 Decomposition Step

Now we analyze the decomposition step where we decompose T ′ into rank-1 components. First, we
formally state JENNRICH’S ALGORITHM and its guarantees.

F.2.1 Tensor Decomposition via Jennrich’s Algorithm

JENNRICH’S ALGORITHM is an algorithm for decomposing a tensor, say T =
∑r
i=1(xi ⊗ yi ⊗ zi),

into its rank-1 components that works when the fibers of the rank 1 components i.e. x1, . . . , xr are
linearly independent (and similar for y1, . . . , yr and z1, . . . , zr).

Algorithm 5 JENNRICH’S ALGORITHM

Input: Tensor T ′ ∈ Rn×n×n where
T ′ = T + E

for some rank-r tensor T and error E

Choose unit vectors a, b ∈ Rn uniformly at random
Let T (a), T (b) be n× n matrices defined as

T
(a)
ij = T ′i,j,· · a

T
(b)
ij = T ′i,j,· · b

Let T (a)
r , T

(b)
r be obtained by taking the top r principal components of T (a), T (b) respectively.

Compute the eigendecompositions of U = T
(a)
r (T

(b)
r)+ and V =

(
(T

(a)
r)+T

(b)
r

)T
(where for a

matrix M , M+ denotes the pseudoinverse)
Let u1, . . . , ur, v1, . . . , vr be the eigenvectors computed in the previous step.
Permute the vi so that for each pair (ui, vi), the corresponding eigenvalues are (approximately)
reciprocals.
Solve the following for the vectors wi

arg min

∥∥∥∥∥T ′ −
r∑
i=1

ui ⊗ vi ⊗ wi

∥∥∥∥∥
2

2

Output the rank-1 components {ui ⊗ vi ⊗ wi}ri=1

26

Moitra [21] gives a complete analysis of JENNRICH’S ALGORITHM. The result that we need is
that as the error E goes to 0 at an inverse-polynomial rate, JENNRICH’S ALGORITHM recovers the
individual rank-1 components to within any desired inverse-polynomial accuracy. Note that the exact
polynomial dependencies do not matter for our purposes as they only result in a constant factor
change in the number of iterations of alternating minimization that we need to perform.
Theorem F.3 ([21]). Let

T =

r∑
i=1

σi(xi ⊗ yi ⊗ zi)

where the xi, yi, zi are unit vectors and σ1 ≥ · · · ≥ σr > 0. Assume that the smallest singular value
of the matrix with columns given by x1, . . . , xr is at least c and similar for the yi and zi. Then for
any constant d, there exists a polynomial P such that if

‖E‖2 ≤
σ1

P (n, 1
c ,

σ1

σr
)

then with 1 − 1
(10n)d

probability, there is a permutation π such that the outputs of JENNRICH’S

ALGORITHM satisfy∥∥σπ(i)(xπ(i) ⊗ yπ(i) ⊗ zπ(i))− ui ⊗ vi ⊗ wi
∥∥

2
≤ σ1

(
σrc

10σ1n

)d
for all 1 ≤ i ≤ r.
Remark. Note that the extra factors of σ1 in the theorem above are simply to deal with the scaling
of the tensor T .

F.2.2 Uniqueness of Decomposition

In Section F.1, we showed that our estimate T ′ is close to T . We will now show that the components
σ̂i, x̂, ŷ, ẑ that we obtain by decomposing T ′ are close to the true components.
Theorem F.4. Consider running the POST-PROCESSING VIA CONVEX OPTIMIZATION algorithm
with parameter

p3 = 2
log2 n

n2

(
10rµ

c
· σ1

σr

)10

and input subspaces that satisfy

max
(
α(Vx, V̂x), α(Vy, V̂y), α(Vz, V̂z)

)
≤
(

σrc

10σ1n

)102

.

With probability at least 0.95, there exists a permutation π : [n]→ [n] and εx, εy, εz ∈ {−1, 1} such
that the estimates σ̂i, x̂i, ŷi, ẑi computed in the POST-PROCESSING VIA CONVEX OPTIMIZATION
algorithm satisfy

|σi − σ̂π(i)|
σ1

, ||xi − εxx̂π(i)||, ||yi − εy ŷπ(i)||, ||zi − εz ẑπ(i)|| ≤ ε

where ε =
(

cσr
10nσ1

)20

Proof. By Lemma F.1 we have with probability at least 0.98 that

||T − T ′||2 ≤ σ1

(
σrc

10σ1n

)99

Now by the robust analysis of JENNRICH’S ALGORITHM (see Theorem F.3) we know that with
0.97 probability, for the components T1, . . . , Tr that we obtain in the decomposition of T ′, there is a
permutation π such that

||Tπ(i) − σixi ⊗ yi ⊗ zi||2 ≤ σ1

(
σrc

10nσ1

)40

27

for all 1 ≤ i ≤ r. We write Tπ(i) = σ̂π(i)x̂π(i) ⊗ ŷπ(i) ⊗ ẑπ(i) where x̂π(i), ŷπ(i), ẑπ(i) are unit
vectors and σ̂π(i) is nonnegative. Note that this decomposition is clearly unique up to flipping the
signs on the unit vectors. Then

||σ̂π(i)x̂π(i)⊗ŷπ(i)⊗ẑπ(i)−σixi⊗yi⊗zi||2 ≥
∣∣∣∣ ∥∥σ̂π(i)x̂π(i) ⊗ ŷπ(i) ⊗ ẑπ(i)

∥∥
2
−‖σixi ⊗ yi ⊗ zi‖2

∣∣∣∣ = |σi−σ̂π(i)|

Thus

|σi − σ̂π(i)| ≤ σ1

(
σrc

10nσ1

)40

Now let x⊥ be the projection of x̂π(i) onto the orthogonal complement of xi. WLOG x̂π(i) · xi ≥ 0.
Otherwise we can set εx = −1. Then

x⊥ ≥ 0.5||xi − x̂π(i)||2
Also

||σ̂π(i)x̂π(i)⊗ ŷπ(i)⊗ ẑπ(i)−σixi⊗ yi⊗ zi||2 ≥ ||σ̂π(i)x⊥⊗ ŷπ(i)⊗ ẑπ(i)||2 ≥ 0.1σr||xi− x̂π(i)||2
Thus

||xi − x̂π(i)||2 ≤
(

σrc

10nσ1

)20

and similar for ŷπ(i), ẑπ(i), completing the proof.

From now on we will assume π is the identity permutation and εx = εy = εz = 1. It is clear that
these assumptions are without loss of generality. We now have
Assertion F.5. For all 1 ≤ i ≤ r

|σi − σ̂i|
σ1

, ||xi − x̂i||, ||yi − ŷi||, ||zi − ẑi|| ≤ ε

where ε =
(

cσr
10nσ1

)20

.

G Exact Completion via Convex Optimization

In the last step of our algorithm, once we have estimates σ̂i, x̂i, ŷi, ẑi, we solve the following
optimization problem which we claim is strongly convex. Let S∼ be the set of observed entries
in T∼. For each 1 ≤ i ≤ r let y′i be the unit vector in span(ŷ1, . . . , ŷr) that is orthogonal to
ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷr. Define z′i similarly. We solve

min
ai,bi,ci

∥∥∥∥∥
(
T −

r∑
i=1

(σ̂i(x̂i + ai))⊗ (ŷi + bi)⊗ (ẑi + ci)

)∣∣∣∣∣
S∼

∥∥∥∥∥
2

2

(7)

with the constraints

• 0 ≤ ||ai||∞, ||bi||∞, ||ci||∞ ≤
(

cσr
10nσ1

)10

for all 1 ≤ i ≤ r.

• bi · y′i = 0 and ci · z′i = 0 for all 1 ≤ i ≤ r.

Assume that Assertion F.5 holds. We will prove the following three lemmas which will imply that the
optimization problem can be solved efficiently and yields the desired solution.
Lemma G.1. Assuming that Assertion F.5 holds, an optimal solution of (7) is

ai =
σi
σ̂i

(yi · y′i)(zi · z′i)
(ŷi · y′i)(ẑi · z′i)

xi − x̂i

bi =
ŷi · y′i
yi · y′i

yi − ŷi

ci =
ẑi · z′i
zi · z′i

zi − ẑi

28

Lemma G.2. Assuming that Assertion F.5 holds, with 1− 1
n10 probability over the random sample

S∼, the objective function in (7) is σ2
rc

6

10r ·
log2 n
n2

(
10rµ
c ·

σ1

σr

)10

-strongly convex.

Lemma G.3. Assuming that Assertion F.5 holds, with 1− 1
n10 probability over the random sample

S∼, the objective function in (7) is 20σ2
1r ·

log2 n
n2

(
10rµ
c ·

σ1

σr

)10

-smooth.

First we demonstrate why these lemmas are enough to finish the proof of Theorem 3.2.

Proof of Theorem 3.2. Note that for the solution stated in Lemma G.1, the value of the objective in
(7) is 0 and thus the solution is a local minimum. Lemma G.2 implies that the optimization problem
is strongly convex and thus this is actually the global minimum. Also since the ratio of the strong
convexity and smoothness parameters is 200σ2

1r
2

σ2
rc

6 , the optimization can be solved efficiently (see [23]).
For the solution in Lemma G.1, the output of our FULL EXACT TENSOR COMPLETION ALGORITHM
is exactly T . Thus combining Theorem B.1, Corollary E.9, and Theorem F.4 with Lemma G.1,
Lemma G.2 and Lemma G.3, we are done.

G.1 The True Solution Satisfies the Constraints

First we show that the true solution T can be recovered while satisfying the constraints.

Proof of Lemma G.1. When

ai =
σi
σ̂i

(yi · y′i)(zi · z′i)
(ŷi · y′i)(ẑi · z′i)

xi − x̂i

bi =
ŷi · y′i
yi · y′i

yi − ŷi

ci =
ẑi · z′i
zi · z′i

zi − ẑi

then the value of the objective is 0 and we exactly recover T . It remains to show that this solution
satisfies the constraints. It is immediate that the second constraint is satisfied. We now verify that
the first constraint is also satisfied. Note that the smallest singular value of Vy is at least c. Thus the
smallest singular value of the matrix with columns ŷ1, . . . , ŷr is at least c− εr. In particular ŷi · y′i
must be at least c− εr. Also the difference between ŷi · y′i and yi · y′i is at most ε. Thus

1− 2εr

c
≤ ŷi · y′i
yi · y′i

≤ 1 +
2εr

c

Combining this with the fact that |σi−σ̂i|σ1
, ||xi − x̂i||, ||yi − ŷi||, ||zi − ẑi|| ≤ ε, it is clear that the

first constraint is satisfied.

G.2 The Optimization Problem is Strongly Convex

To show that the optimization problem is strongly convex, we will compute the Hessian of the
objective function. Let m be the magnitude of the largest entry of

T −
r∑
i=1

σ̂ix̂i ⊗ ŷi ⊗ ẑi

Note m ≤ 10rσ1ε where ε =
(

cσr
10nσ1

)20

.

Next, let σ̂ = max(σ̂1, . . . , σ̂r). Note σ̂ ≤ 2σ1. Also define

D =

r∑
i=1

σ̂iai ⊗ ŷi ⊗ ẑi + σ̂ix̂i ⊗ bi ⊗ ẑi + σ̂ix̂i ⊗ ŷi ⊗ ci

29

Note that the objective function can be written as

||D|S∼ ||22 + P (ai, bi, ci) (8)

where P is a polynomial with the following property: all terms of P of degree 2 have coefficients
with magnitude at most (10nr)6mσ̂ and all coefficients for higher degree terms have magnitude at
most (10nr)6σ̂2. Now to prove strong convexity we will lower bound the smallest singular value of
the Hessian of ||D|S∼ ||22 (with respect to the variables ai, bi, ci). Since m, ai, bi, ci are all small, we
can ensure that the contribution of P does not affect the strong convexity and this will complete the
proof.

G.2.1 Understanding the Hessian when S∼ contains all entries

First we consider H0, the Hessian of ||D||22 i.e. when we are not restricted to the set of entries in S∼.

Claim G.4. The smallest eigenvalue of H0 is at least σ
2
rc

6

2r

Proof. Consider a directional vector v = (∆a1 ,∆b1 ,∆c1 , . . . ,∆ar ,∆br ,∆cr). Then

||vTH0v||22 =

∥∥∥∥∥
r∑
i=1

(σ̂i∆ai ⊗ ŷi ⊗ ẑi + σ̂ix̂i ⊗∆bi ⊗ ẑi + σ̂ix̂i ⊗ ŷi ⊗∆ci)

∥∥∥∥∥
2

2

We now lower bound the RHS. For each i, let ∆−ai be the projection of ∆ai onto span(x̂1, . . . , x̂r)

and let ∆⊥ai be the projection of ∆ai onto the orthogonal complement of span(x̂1, . . . , x̂r). Define
∆−bi ,∆

⊥
bi
,∆−ci ,∆

⊥
ci similarly. We want to lower bound the squared Frobenius norm of
r∑
i=1

(σ̂i∆ai ⊗ ŷi ⊗ ẑi + σ̂ix̂i ⊗∆bi ⊗ ẑi + σ̂ix̂i ⊗ ŷi ⊗∆ci) =

r∑
i=1

(σ̂i∆
−
ai ⊗ ŷi ⊗ ẑi + σ̂ix̂i ⊗∆−bi ⊗ ẑi + σ̂ix̂i ⊗ ŷi ⊗∆−ci)

+

r∑
i=1

σ̂i∆
⊥
ai ⊗ ŷi ⊗ ẑi +

r∑
i=1

σ̂ix̂i ⊗∆⊥bi ⊗ ẑi +

r∑
i=1

σ̂ix̂i ⊗ ŷi ⊗∆⊥ci

Let the four sums above be A,B,C,D respectively. A,B,C,D are pairwise orthogonal. Thus it
suffices to lower bound the Frobenius norm of each of them individually. First we lower bound the
Frobenius norm of A. Since ∆−ai is in span(x̂1, . . . , x̂r), it can be written as a linear combination of
x̂1, . . . , x̂r say

∆−ai = a
(1)
i x̂1 + · · ·+ a

(r)
i x̂r

Furthermore (
a

(1)
i

)2

+ · · ·+
(
a

(r)
i

)2

≥
||∆−ai ||

2
2

r
We can use the same argument for ∆−bi ,∆

−
ci . Also, since in our optimization problem we have the

constraints bi · y′i = 0, ci · z′i = 0, we know that the coefficients b(i)i , c
(i)
i are 0. Thus we can write A

as a sum

A =

r∑
i=1

r∑
j=1

σ̂ia
(j)
i x̂j ⊗ ŷi ⊗ ẑi +

r∑
i=1

r∑
j=1,j 6=i

σ̂ix̂i ⊗ b(j)i ŷj ⊗ ẑi +

r∑
i=1

r∑
j=1,j 6=i

σ̂ix̂i ⊗ ŷi ⊗ c(j)i ẑj

Note that the above is a linear combination of terms of the form x̂i ⊗ ŷj ⊗ ẑk and each term appears
at most once. Furthermore, the sum of the squares of the coefficients is at least

r∑
i=1

min(σ̂1, . . . , σ̂r)
2

(
||∆−ai ||

2
2

r
+
||∆−bi ||

2
2

r
+
||∆−ci ||

2
2

r

)
Next, observe that the smallest singular value of the matrix with columns given by x̂i ⊗ ŷj ⊗ ẑk for
1 ≤ i, j, k ≤ r is at least (c− rε)3. Thus

||A||22 ≥ (c− rε)6
r∑
i=1

min(σ̂1, . . . , σ̂r)
2

(
||∆−ai ||

2
2

r
+
||∆−bi ||

2
2

r
+
||∆−ci ||

2
2

r

)

30

Now we lower bound the squared Frobenius norm of B. Each slice of B is a linear combination of
ŷ1 ⊗ ẑ1, . . . , ŷr ⊗ ẑr. Note the matrix with columns given by ŷi ⊗ ẑj for 1 ≤ i, j ≤ r has smallest
singular value at least (c − rε)2. Thus if we let ∆

⊥[j]
ai be the jth entry of ∆⊥ai then the sum of the

squares of the entries in the jth layer of B is at least

min(σ̂1, . . . , σ̂r)
2(c− rε)4

((
∆⊥[j]
a1

)2

+ · · ·+
(

∆⊥[j]
ar

)2
)
.

Overall we get

||B||22 ≥
n∑
j=1

min(σ̂1, . . . , σ̂r)
2(c− rε)4

((
∆⊥[j]
a1

)2

+ · · ·+
(

∆⊥[j]
ar

)2
)

≥ min(σ̂1, . . . , σ̂r)
2(c− rε)4

r∑
i=1

||∆⊥ai ||
2
2.

Similarly

||C||22 ≥ min(σ̂1, . . . , σ̂r)
2(c− rε)4

r∑
i=1

||∆⊥bi ||
2
2

||D||22 ≥ min(σ̂1, . . . , σ̂r)
2(c− rε)4

r∑
i=1

||∆⊥ci ||
2
2.

Overall we have

||vTH0v||22 = ||A||22 + ||B||22 + ||C||22 + ||D||22 ≥
min(σ̂1, . . . , σ̂r)

2(c− rε)6

r
||v||22 ≥

σ2
rc

6

2r
||v||22

and we get that the smallest eigenvalue of H0 is at least σ
2
rc

6

2r .

G.2.2 Understanding the Hessian when |S∼| is small

To prove Lemma G.2, we want to go from a bound on the Hessian of ||D||22 to a bound on the
Hessian of ||D|S∼ ||22. We will then use the fact that the Hessian of P (ai, bi, ci) is small and cannot
substantially affect the strong convexity.

Proof of Lemma G.2. Note that ||D||22 is a sum of n3 terms each of which is the square of a linear
function (corresponding to an entry). Each of these terms contributes a rank-1 term to the Hessian.
Furthermore, since all entries of x̂i, ŷi, ẑi are at most

√
µr
n + ε, the operator norm of each of these

rank 1 terms is at most 9σ̂2r2
(√

µr
n + ε

)4 ≤ 10r4µ2σ2
1

n2 .

If we add each entry to S∼ with probability p = log2 n
n2 (10rµ

c · σ1

σr
)10 then by Claim C.9,

with at least 1 − 1
n10 probability, the sum of the rank 1 terms corresponding to entries of S has

smallest singular value at least σ
2
rc

6

4r p.

We have shown that with high probability, the smallest eigenvalue of the Hessian of ||D|S∼ ||22 is at
least σ

2
rc

6

4r p. It remains to note that the Hessian of P (ai, bi, ci) has operator norm at most σ2
rc

6

10rn2 for
all ai, bi, ci in the feasible set and thus the optimization problem we formulated is strongly convex
with parameter

σ2
rc

6

10r
p =

σ2
rc

6

10r
· log2 n

n2

(
10rµ

c
· σ1

σr

)10

G.3 The Optimization Problem is Smooth

The proof that the objective function is smooth will follow a similar approach to that in Section G.2.
We use the same notation as the previous section. Again, the first step will be to consider the Hessian
H0 of ||D||22 when we are not restricted to the set of entries in S∼.

31

Claim G.5. The largest eigenvalue of H0 is at most 5σ2
1r.

Proof. Consider a directional vector v = (∆a1 ,∆b1 ,∆c1 , . . . ,∆ar ,∆br ,∆cr). Then

||vTH0v||22 =

∥∥∥∥∥
r∑
i=1

(σ̂i∆ai ⊗ ŷi ⊗ ẑi + σ̂ix̂i ⊗∆bi ⊗ ẑi + σ̂ix̂i ⊗ ŷi ⊗∆ci)

∥∥∥∥∥
2

2

.

Thus,

||vTH0v||22 ≤

(
r∑
i=1

‖σ̂i∆ai ⊗ ŷi ⊗ ẑi‖2 + ‖σ̂ix̂i ⊗∆bi ⊗ ẑi‖2 + ‖σ̂ix̂i ⊗ ŷi ⊗∆ci‖2

)2

≤

(
σ̂

r∑
i=1

(‖∆ai‖2 + ‖∆bi‖2 + ‖∆ci‖2)

)2

≤ 5σ2
1r

(
r∑
i=1

‖∆ai‖
2
2 + ‖∆bi‖

2
2 + ‖∆ci‖

2
2

)
= 5σ2

1r ‖v‖
2
2

which immediately implies the desired.

Now we can complete the proof of Lemma G.3 in the same way we proved Lemma G.2 through a
matrix Chernoff bound and the fact that the Hessian of P (ai, bi, ci) is small.

Proof of Lemma G.3. Note that ||DS∼ ||22 is a sum of |S∼| terms each of which is the square of a
linear function (corresponding to an entry). Each of these terms contributes a rank-1 term to the
Hessian. Furthermore, since all entries of x̂i, ŷi, ẑi are at most

√
µr
n + ε, the operator norm of each

of these rank 1 terms is at most 9σ̂2r2
(√

µr
n + ε

)4 ≤ 10r4µ2σ2
1

n2 .

If we add each entry to S∼ with probability p = log2 n
n2 (10rµ

c · σ1

σr
)10 then by Claim C.10,

with at least 1− 1
n10 probability, the sum of the rank 1 terms corresponding to entries of S has largest

singular value at most 10σ2
1rp.

We have shown that with high probability, the largest eigenvalue of the Hessian of ||D|S∼ ||22 is at
most 10σ2

1rp. It remains to note that the Hessian of P (ai, bi, ci) has operator norm at most σ2
rc

6

10rn2

for all ai, bi, ci in the feasible set and thus the optimization problem we formulated is smooth with
parameter

20σ2
1rp = 20σ2

1r ·
log2 n

n2

(
10rµ

c
· σ1

σr

)10

H Nearly Linear Time Implementation

Now we show how to implement our FULL EXACT TENSOR COMPLETION algorithm with running
time that is essentially linear in the number of observations (up to poly(r, log n, σ1/σr, µ, 1/c)-
factors). We will assume that our observations are in a list of tuples giving the coordinates
and value i.e. (i, j, k, Tijk). Throughout this section, we use ζ to denote a quantity that is
poly(r, log n, σ1/σr, µ, 1/c).

H.1 Initialization

We will construct B̂ implicitly, i.e. we will store the coordinates of all of its nonzero entries and their
values. To do this we can enumerate over all pairs (j, k) ∈ [n]2 such that there is some i ∈ [n] for

32

which we observe Tijk. For each of these pairs (j, k) we take all pairs i, i′ such that Tijk and Ti′jk
are observed (we may have i = i′) and update B̂ii′ . For each pair (j, k), let Xj,k be the number of
distinct i for which we observe Tijk. Note

E

 n∑
j=1

n∑
k=1

X2
j,k

 ≤ ζn3/2

so the time complexity of this step and the sparsity of B̂ is essentially linear in the number of
observations.

Next to compute the top-r singular vectors of B̂ we can use matrix powering (with the im-
plicit sparse representation for B̂). Note Lemma D.1 implies that there is a sufficient gap between the
rth and r + 1st singular values of B̂ that matrix powering converges within ζ rounds. It is clear that
the remainder of the steps in the initialization algorithm can be completed in nearly linear time.

H.2 Alternating Minimization

Note that for the least squares optimization problem, it suffices to solve the optimization for each
row separately. For the rows of Ux(T̂t+1), let o1, . . . , on be the number of observations in each row.
The least squares problems for the rows have sizes o1, . . . , on respectively. Instead of constructing
the full matrix Bt (which has size n2), we only need to compute the columns of Bt that correspond
to actual observations, which can be done using the matrices V tx , V

t
y , V

t
z . Thus, the least squares

problems can be solved in time essentially linear in o1 + · · ·+ on. Overall, this implies that all of the
alternating minimization steps can be completed in nearly linear time.

H.3 Post-Processing

Note the projection step can be solved in nearly linear time and from it we obtain a representation of
T ′ as a sum of r3 rank-1 tensors (corresponding to the basis given by V̂x ⊗ V̂y ⊗ V̂z .

H.3.1 Jennrich’s Algorithm

Note we have an implicit representation of the tensor T ′ that we are decomposing as a sum of r3 rank-
1 components. Thus, we can compute implicit representations of T (a), T (b) each as a sum of r3 rank-1
matrices. Next, we can use matrix powering with the implicit representations to compute the top r
principal components for T (a), T (b) (note the analysis in [21] implies there is a sufficient gap between
the rth and r+ 1st singular values of these matrices). Now, we can compute the pseudo-inverses of the
rank-r matrices T (a)

r , T
(b)
r (written implicitly as the sum of r rank-1 matrices) in npoly(r) operations.

We can compute the eigendecompositions of U = T
(a)
r (T

(b)
r)+ and V =

(
(T

(a)
r)+T

(b)
r

)T
using implicit matrix powering again (the analysis in [21] implies that with 0.99 probability,
the eigenvalues of these matrices are sufficiently separated). These operations all take nζ time.
Finally, we show that once we have (u1, v1), . . . , (ur, vr), we can solve for w1, . . . , wr. To
do this, instead of solving the full least squares problem, we will choose a random subset of
poly(r, log n, σ1/σr, µ, 1/c) entries within each layer of the tensor T ′ and solve the least squares
optimization restricted to those entries.

To see why this works, first note that the subspaces spanned by u1, . . . , ur and v1, . . . , vr
are 2µ-incoherent (the proof of Theorem F.4 implies that u1, . . . , ur and v1, . . . , vr are close
to the true factors up to some permutation). Next, let A be the matrix with columns given by
u1 ⊗ v1, . . . , ur ⊗ vr. Note that if A′ is a matrix constructed by selecting a random subset of
poly(r, log n, σ1/σr, µ, 1/c) rows of A, then with 1 − 1

n10 probability, A′ is well-conditioned (by
incoherence and the matrix Chernoff bound in Claim C.9). Since A′ is well-conditioned, the solution
to the restricted least squares optimization problem must still be close to the true solution.

Thus, the entire least-squares optimization can be completed in nζ time. Overall, we con-
clude that the tensor decomposition step can be completed in nζ time.

33

H.3.2 Convex Optimization

It remains to show that the final optimization problem can be solved in nearly linear time. Note
the size of the optimization problem is npoly(r, log n, σ1/σr, µ, 1/c). Lemma G.2 and Lemma G.3
imply that the condition number of this convex optimization problem is poly(r, log n, σ1/σr, µ, 1/c)
so it can be solved in nζ time.

I Code for Experiments

import numpy as np
from sklearn.decomposition import TruncatedSVD
from sklearn.linear_model import LinearRegression

#size of tensor
n = 200
#CP rank of tensor
r = 4
#number of observations
num_samples = 50000
p = min(float(num_samples/ (n*n*n)), 1)

#Whether initialization is random or computed using initialization step
randominit = True

#Whether the underlying tensor will have correlated components
correlated = True

#Whether observations are exact or noisy
noisy = True
noise_size = 0.1

#which algorithm to run
#can be "Matrix Alt Min, Tensor Powering, Subspace Powering, all"
which_alg = "Tensor␣Powering"

save_file = "tensorpowering+noisy200_4_50000.csv"

#Number of different tensors to run on
num_runs = 100

#Number of iterations per run
num_iter = 400

#min error threshold
threshold = 10**(-13)

#generate random uncorrelated tensor
def gen(n,r):

coeffs = np.ones(r)
x_vecs = np.random.normal(0,1,(r,n))
y_vecs = np.random.normal(0,1,(r,n))
z_vecs = np.random.normal(0,1,(r,n))
return (coeffs, x_vecs,y_vecs,z_vecs)

34

#generate random correlated tensor
def gen_biased(n,r):

coeffs = np.zeros(r)
x_vecs = np.zeros((r,n))
y_vecs = np.zeros((r,n))
z_vecs = np.zeros((r,n))
for i in range(r):

coeffs[i] = 0.5**i
if(i==0):

x_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,1,n))
y_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,1,n))
z_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,1,n))

else:
x_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,0.5,n) + x_vecs[0])
y_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,0.5,n) + y_vecs[0])
z_vecs[i] = np.sqrt(n) *
normalize(np.random.normal(0,0.5,n) + z_vecs[0])

return (coeffs, x_vecs,y_vecs,z_vecs)

#evaluate tensor given coordinates
def T(i,j,k, coeffs, x_vecs, y_vecs, z_vecs):

ans = 0
for a in range(r):

ans += coeffs[a] * x_vecs[a][i] * y_vecs[a][j] * z_vecs[a][k]
return ans

#sample observations, a is num_samples
#returns 3 lists of coordinates
def sample(a):

samples = np.random.choice(n**3, a, replace=False)
x_coords = samples%n
y_coords = (((samples - x_coords)/n)%n).astype(int)
z_coords = (((samples - n*y_coords - x_coords)/(n*n))%n).astype(int)
return (x_coords, y_coords, z_coords)

#Given samples and tensor T, construct dictionary x_dict that stores the
observations

35

def fill(x_coords, y_coords, z_coords, coeffs, x_vecs, y_vecs, z_vecs,
x_dict):

num_samples = x_coords.size
for i in range(num_samples):

#For x_dict coordinates are in order x,y,z
if(x_coords[i] in x_dict.keys()):

if(y_coords[i] in x_dict[x_coords[i]].keys()):
if(z_coords[i] in x_dict[x_coords[i]][y_coords

[i]].keys()):
pass

else:
x_dict[x_coords[i]][y_coords[i]][

z_coords[i]] = T(x_coords[i] ,
y_coords[i] , z_coords[i], coeffs,
x_vecs, y_vecs, z_vecs)

else:
x_dict[x_coords[i]][y_coords[i]] = {}
x_dict[x_coords[i]][y_coords[i]][z_coords[i]]

= T(x_coords[i] , y_coords[i] , z_coords[i
], coeffs, x_vecs, y_vecs, z_vecs)

else:
x_dict[x_coords[i]] = {}
x_dict[x_coords[i]][y_coords[i]] = {}
x_dict[x_coords[i]][y_coords[i]][z_coords[i]] = T(

x_coords[i] , y_coords[i] , z_coords[i], coeffs,
x_vecs, y_vecs, z_vecs)

#normalize vector
def normalize(v):

u = v/np.linalg.norm(v)
return u

#given rxn array, output orthonormal basis
def orthonormalize(V):

a = len(V)
b = len(V[0])
for i in range(a):

for j in range(i):
V[i] = V[i] - np.dot(V[i],V[j])*V[j]

V[i] = normalize(V[i])
return V

#implicit sparse matrix multiplication where M is stored as a dictionary
def mult(M,v):

u = np.zeros(n)
for coord1 in M.keys():

for coord2 in M[coord1].keys():
u[coord1] += M[coord1][coord2] * v[coord2]

return u

#Compute initial subspace estimates
def initialization(x_dict):

M_x = np.zeros((n,n))

36

for x in x_dict.keys():
for y in x_dict[x].keys():

for z1 in x_dict[x][y].keys():
for z2 in x_dict[x][y].keys():

val = x_dict[x][y][z1] * x_dict[x][y][
z2]

if(z1 == z2):
val = val/p

else:
val = val/(p*p)

M_x[z1][z2] += val
svd = TruncatedSVD(n_components=r)
svd.fit(M_x)
return(svd.components_)

#Unfold and perform matrix completion via altmin
def matrix_altmin(V_x, V_yz):

#Solve for next iteration of x
lsq_solution = []
for i in range(n):

features = []
target = []
for y_coord in x_dict[i].keys():

for z_coord in x_dict[i][y_coord].keys():
features.append(V_yz[n*y_coord + z_coord])
target.append(x_dict[i][y_coord][z_coord])

features = np.array(features)
target = np.array(target)

reg = LinearRegression(fit_intercept = False).fit(features,
target)

lsq_solution.append(reg.coef_)

x_solution = np.array(lsq_solution)

#Solve for next iteration of yz
lsq_solution2 = []
for i in range(n):

for j in range(n):
features = []
target = []
if i in y_dict.keys() and j in y_dict[i].keys():

for x_coord in y_dict[i][j].keys():
features.append(x_solution[x_coord])
target.append(y_dict[i][j][x_coord])

features = np.array(features)
target = np.array(target)

reg = LinearRegression(fit_intercept = False).
fit(features, target)

lsq_solution2.append(reg.coef_)
else:

lsq_solution2.append(np.zeros(r))

newV_x = x_solution

37

newV_yz =np.array(lsq_solution2)
return(newV_x, newV_yz)

#Normalized MSE for unfolded matrix completion
def eval_error_matrix(V_x,V_yz):

#take random sample of entries to speed up evaluation
num_trials = 1000
total_error = 0
total_norm = 0
for i in range(num_trials):

x = np.random.randint(n)
y = np.random.randint(n)
z = np.random.randint(n)

prediction = 0
for j in range(r):

prediction += V_x[x][j] * V_yz[n * y + z][j]

true_val = T(x,y,z, coeffs, x_vecs,y_vecs, z_vecs)

total_norm += np.square(true_val)
total_error += np.square(prediction - true_val)

return np.sqrt(total_error/total_norm)

#altmin for naive tensor powering
def power_altmin(V_x, V_y, V_z , x_dict):

lsq_solution = []
for i in range(n):

features = []
target = []
for y_coord in x_dict[i].keys():

for z_coord in x_dict[i][y_coord].keys():

#subsample to speed up and get "unstuck"
check = np.random.randint(2)
if(check == 0):

features.append(np.multiply(V_y[y_coord
], V_z[z_coord]))

target.append(x_dict[i][y_coord][
z_coord])

features = np.array(features)
target = np.array(target)

reg = LinearRegression(fit_intercept = False).fit(features,
target)

lsq_solution.append(reg.coef_)

lsq_solution = np.array(lsq_solution)
return(lsq_solution)

38

#Normalized MSE for naive tensor powering
def eval_error_direct(V_x,V_y,V_z, x_dict):

num_trials = 1000
total_error = 0
total_norm = 0
for i in range(num_trials):

x = np.random.randint(n)
y = np.random.randint(n)
z = np.random.randint(n)

prediction = 0
for j in range(r):

prediction += V_x[x][j] * V_y[y][j] * V_z[z][j]

true_val = T(x,y,z, coeffs, x_vecs,y_vecs, z_vecs)

total_norm += np.square(true_val)
total_error += np.square(prediction - true_val)

return np.sqrt(total_error/total_norm)

#altmin for our algorithm
def subspace_altmin(V_x, V_y, V_z , x_dict):

lsq_solution = []
for i in range(n):

features = []
target = []
for y_coord in x_dict[i].keys():

for z_coord in x_dict[i][y_coord].keys():

#subsample to speed up and get "unstuck"
check = np.random.randint(2)
if(check == 0):

features.append(np.tensordot(V_y[
y_coord], V_z[z_coord] , axes = 0).
flatten())

target.append(x_dict[i][y_coord][
z_coord])

features = np.array(features)
target = np.array(target)

reg = LinearRegression(fit_intercept = False).fit(features,
target)

lsq_solution.append(reg.coef_)

lsq_solution = np.transpose(np.array(lsq_solution))
svd = TruncatedSVD(n_components=r)
svd.fit(lsq_solution)

return(np.transpose(svd.components_))

39

#Normalized MSE for our algorithm
def eval_error_subspace(V_x,V_y,V_z, x_dict):

features = []
target = []
#Find coefficients in V_x x V_y x V_z basis
for x_coord in x_dict.keys():

for y_coord in x_dict[x_coord].keys():
for z_coord in x_dict[x_coord][y_coord].keys():

#speed up by using less entries
check = np.random.randint(10)
if(check == 0):

target.append(x_dict[x_coord][y_coord][
z_coord])

part = np.tensordot(V_x[x_coord], V_y[
y_coord], axes = 0).flatten()

full = np.tensordot(part, V_z[z_coord],
axes = 0).flatten()

features.append(full)

features = np.array(features)
target = np.array(target)
reg = LinearRegression(fit_intercept = False).fit(features, target)
solution_coeffs = reg.coef_
#print(reg.score(features, target))
#print(solution_coeffs)

#Evaluate RMS error
num_trials = 1000
total_error = 0
total_norm = 0
for i in range(num_trials):

x = np.random.randint(n)
y = np.random.randint(n)
z = np.random.randint(n)

part = np.tensordot(V_x[x], V_y[y], axes = 0).flatten()
feature = np.tensordot(part, V_z[z], axes = 0).flatten()
prediction = np.dot(feature, solution_coeffs)

true_val = T(x,y,z, coeffs, x_vecs,y_vecs, z_vecs)

total_norm += np.square(true_val)
total_error += np.square(prediction - true_val)

return np.sqrt(total_error/total_norm)

#Keep track of errors for all runs
all_errors = []

40

for run in range(num_runs):
#store error over time for this run
error = []
curr_error = 1.0

#Construct random tensor
if(correlated):

coeffs, x_vecs,y_vecs,z_vecs = gen_biased(n,r)
else:

coeffs, x_vecs,y_vecs,z_vecs = gen(n,r)
x_coords,y_coords,z_coords = sample(num_samples)

#x_dict,y_dict, z_dict each stores all observed entries
#x_dict has coordinates in order x,y,z
#y_dict has coordinates in order y,z,x
#z_dict has coordinates in order z,x,y

x_dict = {}
y_dict = {}
z_dict = {}
fill(x_coords, y_coords, z_coords, coeffs, x_vecs, y_vecs, z_vecs,

x_dict)
fill(y_coords, z_coords, x_coords, coeffs, y_vecs, z_vecs, x_vecs,

y_dict)
fill(z_coords, x_coords, y_coords, coeffs, z_vecs, x_vecs, y_vecs,

z_dict)

#Add Noise
if(noisy):

for x_coord in x_dict.keys():
for y_coord in x_dict[x_coord].keys():

for z_coord in x_dict[x_coord][y_coord].keys():

x_dict[x_coord][y_coord][z_coord] += np.
random.normal(0,noise_size)

y_dict[y_coord][z_coord][x_coord] += np.
random.normal(0,noise_size)

z_dict[z_coord][x_coord][y_coord] += np.
random.normal(0,noise_size)

#Initialization
if(randominit):

V_x = np.random.normal(0,1,(r,n))
V_y = np.random.normal(0,1,(r,n))
V_z = np.random.normal(0,1,(r,n))
V_x = orthonormalize(V_x)
V_y = orthonormalize(V_y)
V_z = orthonormalize(V_z)
V_x = np.transpose(V_x)
V_y = np.transpose(V_y)
V_z = np.transpose(V_z)

else:

41

V_x = np.transpose(initialization(y_dict))
V_y = np.transpose(initialization(z_dict))
V_z = np.transpose(initialization(x_dict))

#For unfolding and matrix completion
V_xmat = np.random.normal(0,1, (r,n))
V_yzmat = np.random.normal(0,1, (r, n*n))
V_xmat = orthonormalize(V_xmat)
V_yzmat = orthonormalize(V_yzmat)
V_xmat = np.transpose(V_xmat)
V_yzmat = np.transpose(V_yzmat)

V_x2 = np.copy(V_x)
V_y2 = np.copy(V_y)
V_z2 = np.copy(V_z)

print(n)
print(r)
print(num_samples)

#AltMin Steps
for i in range(num_iter):

print(i)
if(which_alg == "Matrix␣Alt␣Min" or which_alg == "all"):

print("Matrix␣Alt␣Min")
V_xmat, V_yzmat = matrix_altmin(V_xmat, V_yzmat)
curr_error = eval_error_matrix(V_xmat, V_yzmat)
print(curr_error)
error.append(curr_error)

if(which_alg == "Tensor␣Powering" or which_alg == "all"):
print("Tensor␣Powering")
if(curr_error > threshold):

V_x = power_altmin(V_x,V_y,V_z, x_dict)
V_y = power_altmin(V_y,V_z,V_x, y_dict)
V_z = power_altmin(V_z,V_x,V_y, z_dict)
curr_error = eval_error_direct(V_x,V_y,V_z,

x_dict)
print(curr_error)
error.append(curr_error)

if(which_alg == "Subspace␣Powering" or which_alg == "all"):
print("Subspace␣Powering")
if(curr_error > threshold):

V_x2 = subspace_altmin(V_x2,V_y2,V_z2, x_dict)
V_y2 = subspace_altmin(V_y2,V_z2,V_x2, y_dict)
V_z2 = subspace_altmin(V_z2,V_x2,V_y2, z_dict)
curr_error = eval_error_subspace(V_x2,V_y2,

V_z2, x_dict)
print(curr_error)
error.append(curr_error)

42

all_errors.append(error)
to_save = np.transpose(np.array(all_errors))
avg_errors = np.mean(to_save, axis = 0)
np.savetxt(save_file, to_save, delimiter=",")

43

