
A Additional benchmark details

In this section we provide more details about our benchmark tasks, including horizons, scoring
functions, and so on. We also list the test variants available for each task in Table 2.

Task Test variant
Jitter Layout Colour Shape CountPlus Dynamics All

MoveToCorner ✓ ✗ ✓ ✓ ✗ ✓ ✓
MoveToRegion ✓ ✓ ✓ ✗ ✗ ✓ ✓
MatchRegions ✓ ✓ ✓ ✓ ✓ ✓ ✓

MakeLine ✓ ✓ ✓ ✓ ✓ ✓ ✓
FindDupe ✓ ✓ ✓ ✓ ✓ ✓ ✓
FixColour ✓ ✓ ✓ ✓ ✓ ✓ ✓

ClusterColour ✓ ✓ ✓ ✓ ✓ ✓ ✓
ClusterType ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Available variants for each task. Some variants are not defined for certain tasks because
they may make task completion impossible, make task completion trivial (i.e. the null policy often
completes the task), or do not provide a meaningful axis of variation (e.g. MoveToRegion does not
feature any blocks, and so there are no shapes to randomise).

A.1 Action and observation space

(a) Egocentric (b) Allocentric

Figure 3: Egocentric and allocentric views of a demonstration on MoveToRegion. The four 96×96
RGB frames shown in each subfigure would normally be stacked together along the channels axis
before being passed to an agent policy or discriminator.

We use the same discrete action space for all tasks. Although this benchmark was inspired by robotic
IL, where the underlying action space is generally continuous, we opted to use discrete actions so that
we could elicit human demonstrations using only a standard keyboard. The underlying state space is
still continuous, so each discrete action applies a preset combination of forces to the robot, such as a
force that pushes the gripper arms together, or a force that moves the robot forward or backward. In
total, the agent has 18 distinct actions. These are formed from the Cartesian product of two gripper
actions (push closed/allow to open), three longitudinal motion actions (forward/back/stop), and three
angular motions (left/straight/right).

We use the same image-based observation space for each task. In all of our experiments, we
provide the agent with stacked 96×96 pixel RGB frames depicting the workspace at the current time
step and three preceding time steps. At our 8Hz control rate, this corresponds to around 0.5s of
interaction context. Using an image-based observation space makes it easy to generalise policies
and discriminators across different numbers and types of objects, without having to resort to, e.g.,
graph networks or structured learning. An image-based observation space also means that the agent
gets access to a similar representation as the human demonstrator. This makes it possible to resolve
ambiguities and improve generalisation by exploiting features of the human visual system, as we do
when we apply the small image augmentations described in Appendix B.

By default, observations employ an egocentric (robot-centred) perspective on the workspace, as
illustrated in Fig. 3a. Unlike the allocentric perspective, depicted in Fig. 3b, the egocentric often does
not allow the agent to observe the full workspace. However, we found that an egocentric perspective
resulted in faster training and better generalisation, as we note in the ablations of Section 4. Similar
benefits to generalisation were previously observed by Hill et al. [22].
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A.2 Detailed task descriptions

A.2.1 MoveToCorner (MTC)

Figure 4: A demonstration on MoveToCorner.

In MoveToCorner, the robot must push a single block from the bottom right corner of the workspace
to the top left corner of the workspace. Test variants are also constrained so that there is only ever
one block, and it always starts close to the bottom right corner of the workspace. These constraints
preclude use of the CountPlus test variant, since block count cannot be changed without making the
task ambiguous. It also precludes use of the Layout variant, since fully randomising block position
might make the desired block location ambiguous (e.g. pushing the block into top left corner versus
pushing it to the opposite side of the workspace). The horizon for all variants is H = 80 time steps.

Trajectories receive a score of S(τ) = 1 if the block spends the last frame of the rollout within
√
2/2

units of the top left corner of the workspace (the whole workspace is 2×2 units). S(τ) decays linearly
from 1 to 0 as the block moves from inside that region to more than

√
2 units away from the corner.

A.2.2 MoveToRegion (MTR)

Figure 5: A demonstration on MoveToRegion.

The objective of the MoveToRegion task is for the robot to drive inside a goal region placed in the
workspace. There is only ever one goal region, and no blocks are present in the train or test variants.
Hence the CountPlus and Shape variants are not applicable. However, the Colour variant is still
applicable. as it randomises the colour of the goal region. The horizon is set to H = 40.

Scoring for MoveToRegion is binary. If at the end of the episode, the centre of the robot’s body is
inside the goal region, then it receives a score of 1. Otherwise it receives a score of 0.

A.2.3 MatchRegions (MR)

Figure 6: A demonstration on MatchRegions.
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In MatchRegions, the agent is confronted with a single goal region and several blocks of different
colours. The objective is to move all (and only) blocks of the same colour as the goal region into the
goal region. All test variants are applicable to this version, although CountPlus only randomises the
number of blocks (and not the number of goal regions) in order to avoid ambiguity about which goal
region(s) the robot should fill with blocks. The horizon is fixed to H = 120.

At the end of a trajectory τ , the robot receives a score of

S(τ) =
|T ∩R|
|T |� �� �

Target bonus

×
�
1− |D ∩R|

|R|

�

� �� �
Distractor penalty

.

Here T is the set of target blocks of the same colour as the goal region, D is the set of distractor
blocks of a different colour, and R is the set of blocks inside the goal region in the last state sT of
the rollout τ . The agent gets a perfect score of 1 for placing all the target blocks and none of the
distractors in the goal region. Its score decreases for each target block it fails to move to the goal
region (target bonus) and each distractor block it improperly places in the goal region (distractor
penalty).

A.2.4 MakeLine (ML)

Figure 7: A demonstration on MakeLine.

The objective of the MakeLine task is to arrange all of the blocks in the workspace into a line. The
orientation and location of the line are ignored, as are the shapes and colours of the blocks involved.
The horizon for this task is H = 180.

Scoring for MakeLine is a function of the relative positions of blocks in the final state of a trajectory,
and in particular the number of blocks that form the largest identifiable “line”. To identify lines of
blocks, we use a line-fitting methods that is similar in spirit to RANSAC [7], but with constraints
to ensure that blocks are spread out along the length of the line rather than “bunching up”. Our
definition of what constitutes a line is based on a relation between triples of blocks: we say that a
block bk is considered to be part of a line between blocks bi and bj if:

1. bk is an inlier: it must lie a distance of at most di = 0.18 units from the (geometric) line
that links bi and bj (recall that the workspace is 2× 2 units).

2. bk is close to other blocks in the line: if bk is not the first or last block in the line of blocks,
then it must be a distance of at most dc = 0.42 units from the previous and next blocks.
Here the distance is measured along the direction of the geometric line between bi and bj .
That is, by projecting the previous and next inliers onto the geometric line between bi and
bj , then taking the distance between those projections and the projection for bk.

Note that if bi and bj are a long way apart, then there may be several subsets of inliers for the line
between bi and bj , each of which is separated from the other subsets than dc units. For any given pair
of blocks (bi, bj), let #(bi, bj) be the number of blocks that form the largest such subset for the line
between bi and bj (potentially including bi and/or bj , if they are close enough to the other inliers).
Further, let n be the number of blocks in the workspace, and m = maxi,j #(bi, bj) be the largest
number of blocks on a line between any two blocks in the final state. If m = n, then all blocks belong
to the same line, and so S(τ) = 1. If m = n− 1, then exactly one block is not a part of the largest
identifiable line, and S(τ) = 0.5. Otherwise, if m < n− 1, the agent receives a score of S(τ) = 0.
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A.2.5 FindDupe (FD)

Figure 8: A demonstration on FindDupe.

FindDupe presents the agent with a goal region that has a single “query” block inside it, along with
a mixture of blocks outside the goal region. The agent’s objective is to locate at least one block
outside the goal region with the same shape and colour as the query block, and push it inside the goal
region. Variants are constrained so that there is only ever one goal region and query block, and so
that there is at least one duplicate of the query block outside the goal region. The horizon for this task
is H = 100.

The score for this task is a function of the set of blocks present in the goal area at the end of the
trajectory. Let R denote the set of blocks inside the region at the end of the episode, let T denote the
set of all target blocks with the same shape and colour as the query block, and let D denote the set of
all distractor blocks with a different shape or colour. Further, let q refer to the original query block.
The score S(τ) for a trajectory is

S(τ) = I[q ∈ R]× I[T ∩R �= ∅]� �� �
Query satisfied?

×
�
1− |D ∩R|

|R|

�

� �� �
Distractor penalty

.

The first factor ensures that the query block remains inside the goal region. The second factor ensures
that at least one other block with the same attributes as the query block is in the goal region. Finally,
the last factor creates a penalty for pushing distractor blocks into the goal region.

A.2.6 FixColour (FC)

Figure 9: A demonstration on FixColour.

FixColour variants always include several non-overlapping goal regions, each containing a single
block. Exactly one of those blocks will be of a different colour to its enclosing goal region; we’ll call
this the “mismatched block”. The agent’s objective is to identify the mismatched block and push it
out of its goal region, into an unoccupied part of the workspace, thereby “fixing” the mismatch. The
horizon for this task is H = 60.

Scoring for FixColour is binary. A score of S(τ) = 1 is given if, in the final state, the mismatched
block is not in its original goal region. All other goal regions must contain exactly the same block that
they started with (and in particular cannot contain the mismatched block). If any of these conditions
is not satisfied, then the score is zero.
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A.2.7 ClusterColour (CC) and ClusterShape (CS)

Figure 10: Demonstrations on ClusterColour (top) and ClusterShape (bottom).

In both ClusterColour and ClusterShape, the workspace is initially filled with a jumble of blocks
of different colours and types, and the agent must push the blocks into clusters according to some
attribute. For ClusterColour, blocks should belong to the same cluster iff they have the same colour,
while ClusterShape applies the analogous criterion to block shape. All variants are applicable to these
tasks. Because these tasks require interaction with most or all blocks in the workspace, the horizon is
set to H = 320 (40s at 8Hz).

The score S(τ) takes the same form for both ClusterColour and ClusterShape, but with a different
attribute-of-interest (either colour or shape). Specifically, S(τ) is computed by applying a K-means-
like objective to the final state sT of the rollout τ . For each value a of the attribute-of-interest (either
red/green/blue/yellow for ClusterColour or square/circle/pentagon/star for ClusterShape), a centroid
xa is computed from the mean positions of blocks with the corresponding attribute value. Formally,
this is

xa =
1

|Ba|
�

b∈Ba

b.pos ,

where Ba is the set of blocks with the relevant attribute set to value a, and b.pos is the position of
block b in state sT . In order for an individual block b with relevant attribute value a to be considered
correctly clustered, the squared distance

d(b, a) = �b.pos − xa�22
between it and its associated centroid must be at most a third the squared distance d(b, a�) between it
and the nearest centroid for any other attribute value a�. Specifically, we must have

d(b, a) <
1

3
min
a� �=a

d(b, a�) .

When 50% or fewer of blocks are correctly clustered in the final state of a trajectory, the score
S(τ) = 0. As the fraction of correctly clustered blocks increases from 50% up to 100%, the score
S(τ) increases linearly from 0 to 1.

B Addition experiment details

This section documents the full set of hyperparameters we used for BC and GAIL, along with
additional details on how we collected and preprocessed our demonstrations.

Dataset and data preprocessing details We collected training datasets of 25 demonstration tra-
jectories for the demonstration variant of each task. These trajectories were recorded by the authors
to show several distinct strategies for solving the task within the demonstration variant. For instance,
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in ClusterColour, there are demonstrations that place clusters in different locations or construct them
in a different order. Appendix A shows a single demonstration for each task in the dataset.

Each algorithm run used only 10 of the 25 total trajectories for each task (or 10 trajectories for each
task, in the multi-task case). The subset of 10 trajectories was sampled at random based on the seed
for that run. We did not hold out any trajectories for testing or validation; rather, our evaluation is
based on the test variant scores assigned to the trained policy produced by each algorithm. For all
policies, value functions, and discriminators, we constructed an observation by concatenating four
temporally adjacent RGB frames along the channels axis, scaling the pixel values into the [0, 1] range,
and resizing the stacked frames to 96×96 pixels. For BC, we performed the additional preprocessing
step of removing samples with noop actions from the demonstration dataset, as described below.

Evaluation details For single-task BC and GAIL, we do five training runs on each task with
different random seeds. After each run, we take the trained policy, use it to perform 100 rollouts on
each test variant of the original task, and retain the mean scores from those 100 trajectories. In tables,
we report “mean score ± standard deviation of score”, where the mean and standard deviation are
taken over the mean evaluation scores for each of the five runs on each algorithm and task. Multitask
evaluations are similar, except we pool data from all tasks together, and consequently only perform
five runs in total rather than five runs per task. To reduce variance, we used the same five random
seeds (and consequently the same five subsets of 10 training trajectories each) for all algorithms and
tasks.

Default augmentation set Throughout the text, we refer to noise, translation, rotation, and colour
jitter augmentations. Concretely, these augmentations involved the following operations:

• Noise: Each (RGB) channel of each pixel is independently perturbed by additive noise
sampled from N (0, 0.01).

• Translation: The image is mirror-padded and randomly translated along the x and y axes
by up to 5% of their respective range (so ±4.8px, for 96×96 pixels).

• Rotation: Image is mirror padded and then rotated around its centre by up to ±5 degrees.

• Colour jitter: For this augmentation, images are translated to the CIELab colour space.
The luminance channel is rescaled by a randomly sampled factor between 0.99 and 1.01,
while the a and b channels are treated as a 2D vectors and randomly rotated by up to ±0.15
radians. We use the same luminance scaling factor and colour rotation for each pixel an a
given image. After these operations, images are converted back to RGB.

For the translation, rotation, and colour jitter augmentations, we apply the same randomly sampled
transformation to each image in a four-image “stack” of frames, but different, independently sampled
transformations to each stack in a training batch.

Single- and multi-task BC hyperparameters The hyperparameters for BC are given in Table 3.
BC hyperparameters were manually tuned to ensure that losses plateaued on most single-task prob-
lems. Note that hyperparameters for single- and multi-task learning were identical. In particular,
we retained the same batch size for multi-task experiments, and randomly sampled demonstration
states from each task with a weighting that ensured equal representation from all tasks. Initially,
we found that training BC to convergence would cause the policy to get “stuck” in states where the
most probable demonstrator action was a noop action. We avoided this problem by removing all
state/action pairs with noop actions from the dataset in our BC experiments; we did not do this in our
GAIL experiments.

Single- and multi-task GAIL hyperparameters Hyperparameters for GAIL are listed in Table 4.
For policy optimisation, we used the PPO implementation from rlpyt [36]; PPO hyperparameters that
are not listed in Table 4 took their default values in rlpyt. To prevent value and advantage magnitudes
from exploding in PPO, we normalised rewards produced by the discriminator to have zero mean
and a standard deviation of 0.1, both enforced using a running average and variance updated over the
course of training. Again, multi-task hyperparameters were the same as single-task hyperparameters,
and we split each policy and discriminator training batch evenly between the tasks.
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Hyperparameter Value Range Considered
Total opt. batches 20,000 5,000–20,000
Batch size 32 -
SGD learning rate 10−3 -
SGD momentum 0.1 -

Policy augmentations Noise, trans.,
rot., colour jit. -

Table 3: Hyperarameters for BC experiments.

Hyperparameter Value Range Considered
Policy (PPO)

Sampler batch size 32 16 to 64
Sampler time steps 8 8 to 20
Opt. epochs per update 12 2 to 10
Opt. minibatch size 64 42 to 64
Initial Adam step size 6× 10−5 10−6 to 10−3

Final Adam step size 0 (lin. anneal) -
Discount γ 0.8 0.8 to 1.0
GAE λ 0.8 0.8 to 1.0
Entropy bonus 10−5 10−6 to 10−4

Advantage clip � 0.01 0.01 to 0.2
Grad. clip �2 norm 1.0 -
Augmentations N/A -

Discriminator
Batch size 24 -
Adam step size 2.5× 10−5 10−5 to 5× 10−4

Augmentations Noise, trans.,
rot., colour jit. -

λw-gp (WGAIL-GP) 100 -
Misc.

Disc. steps per PPO update 12 8 to 32
Total env. steps of training 106 5× 105 to 5× 106

Reward norm. std. dev. 0.1 -

Table 4: Hyperarameters for GAIL experiments.

Apprenticeship learning baseline In addition to our BC and (W)GAIL baselines, we also attemp-
ted to train a feature expectation matching Apprenticeship Learning (AL) baseline [1, 24]. Given a
feature function Φ : S × A → Rn, the goal of AL is to find a policy πθ that matches the expected
value of the feature function Φ under the demonstration distribution with its expected value under
the novice distribution. That is, we seek a πθ such that Eπθ

Φ(s, a) = ED Φ(s, a). Matching feature
expectations is equivalent to finding a policy πθ that drives the cost

sup
�w�≤2

�
E
D
wTΦ(s, a)− E

πθ

wTΦ(s, a)

�
(1)

to zero. Observe that if w∗ is a weight vector that attains the supremum in Eq. (1), then

−∇θ E
πθ

w∗TΦ(s, a)

is a subgradient of Eq. (1) with respect to the policy parameters θ. Thus, our training procedure
consisted of alternating between optimising Eq. (1) to convergence with respect to w, and taking a
PPO step on the policy parameters using the reward function r(s, a) = w∗TΦ(s, a) (recall that RL
maximises return, but we want to minimise Eq. (1)). To optimise w, we used 512 samples from the
expert and the novice, and to optimise πθ, we used the same generator hyperparameters as our GAIL
runs. This single-task AL baseline is denoted “AL (ST)” in results tables.
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Figure 11: Base architecture for policies, value functions and discriminators. “nc” is used as an
abbreviation for “n channels”. Refer to main text for a discussion of which networks use the optional
features (batch norm, action input), and for a description of the final layer for each network type.

The feature function Φ used for AL was acquired by removing the final (logit) layer of our GAIL
discriminator network architecture and optimsing the remaining layers to minimise an autoencoder
loss. In creating the encoder, our only modification to the GAIL discriminator network architecture
was to replace the 256-dimensional penultimate layer with a 32-dimensional one, to produce a 32-
dimensional feature function Φ. This optimisation was performed for 8,192 size-24 batches of expert
data, which we empirically found was enough to get clear reproduction of most input images. After
autoencoder pretraining, the encoder weights were kept frozen for the remainder of each training run.

Unfortunately, we could not get AL to produce adequate policies for any task except MoveToCorner.
We suspect that the poor performance of AL was due to inadequate autoencoder features. The
autoencoder was only trained on expert samples, and we found that for some problems it would not
correctly reproduce images of states that were far from the support of the demonstrations. It may be
possible to improve results by training the autoencoder on both random rollouts and expert samples,
or by training it on more diverse multi-task data.

Network architecture Fig. 11 shows the base architecture for all neural networks used in the
experiments (including discriminators, policies, and value functions). Some experiments use slight
variations on this basic policy architecture for some of the networks:

• The one-hot action input is only used for discriminators, which concatenate the one-hot
action representation to the activations of the final convolution layer before performing a
forward pass through the linear layers.

• Batch norm is only used for the BC policy and GAIL discriminator, not for the GAIL policy
and value function.

• In GAIL experiments, which train a policy via RL, the policy and value function share all
layers except the final fully-connected layer.

• In multitask experiments, the policy, value function, and discriminator share weights between
tasks for all layers except the last. The final layer uses a single, separate set of weights
corresponding to each task.

Computing infrastructure and experiment running time Experiments were performed on ma-
chines with 2× Xeon Gold 6130 CPUs (16 cores each, 2.1GHz base clock), 128–256GB RAM, and
4× GTX 1080-Ti GPUs. Each “run”—that is, the training and evaluation of a specific algorithm on a
specific task with one seed—took an average of 10h03m (GAIL) and 32m (BC). It should be noted
that these wall time figures were recorded while performing up to 16 runs in parallel on each machine.
Because we did not use task-specific training durations, there was little variance in execution time
between the different configurations (multi-task, egocentric, allocentric, etc.) of each of the two main
base algorithms (BC and GAIL).
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C Full experiment results

Full results for all methods, along with corresponding ablations, are shown in Table 5, Table 6, Table 7
and Table 8. We abbreviate behavioural cloning as “BC” and generative adversarial IL as “GAIL”,
while apprenticeship learning is “AL”. Single-task methods are denoted with “(ST)” and multi-task
methods with “(MT)”. “Allo.” is for experiments using an allocentric view; all other expeirments
use an egocentric view. For GAIL, “WGAIL-GP” denotes a version of GAIL that approximately
minimises Wasserstein divergence while using a gradient penalty to encourage 1-Lipschitzness of
the discriminator. For augmentation ablations, we use “no trans./rot. aug.” to denote removal of
translation/rotation; and “no aug.” to denote removal of all three default augmentations (colour,
translation/rotation, Gaussian noise).
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MoveToCorner
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 - 0.00±0.00 0.00±0.00 - 0.00±0.00 0.00±0.00
BC (MT) 0.97±0.04 0.91±0.02 - 0.73±0.16 0.98±0.01 - 0.92±0.04 0.62±0.11
BC (ST) 0.98±0.04 0.86±0.07 - 0.96±0.05 0.97±0.03 - 0.91±0.05 0.84±0.06
BC (ST, allo.) 0.94±0.05 0.89±0.04 - 0.93±0.04 0.97±0.02 - 0.90±0.04 0.91±0.02
BC (ST, no aug.) 0.96±0.04 0.77±0.09 - 0.80±0.06 0.81±0.12 - 0.86±0.05 0.60±0.05
BC (ST, no trans./rot. aug.) 0.96±0.04 0.85±0.04 - 0.83±0.14 0.88±0.06 - 0.94±0.05 0.67±0.11
GAIL (MT) 0.31±0.31 0.33±0.31 - 0.16±0.09 0.34±0.30 - 0.30±0.27 0.16±0.10
GAIL (ST) 0.99±0.01 0.91±0.06 - 0.78±0.10 0.95±0.03 - 0.95±0.05 0.65±0.16
GAIL (ST, allo.) 1.00±0.00 0.82±0.05 - 0.90±0.08 0.99±0.01 - 0.99±0.01 0.59±0.12
GAIL (ST, no aug.) 0.56±0.36 0.36±0.23 - 0.39±0.30 0.34±0.24 - 0.46±0.27 0.11±0.10
WGAIL-GP (ST) 0.35±0.24 0.22±0.12 - 0.17±0.20 0.32±0.21 - 0.30±0.21 0.04±0.05

MoveToRegion
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.51±0.42 0.47±0.39 0.22±0.17 0.21±0.22 - - 0.51±0.41 0.09±0.05
BC (MT) 0.79±0.22 0.77±0.26 0.52±0.13 0.60±0.16 - - 0.81±0.24 0.26±0.04
BC (ST) 0.89±0.11 0.88±0.11 0.48±0.12 0.60±0.13 - - 0.88±0.10 0.28±0.06
BC (ST, allo.) 0.63±0.08 0.57±0.14 0.09±0.02 0.56±0.19 - - 0.61±0.12 0.10±0.02
BC (ST, no aug.) 0.88±0.12 0.83±0.11 0.44±0.08 0.75±0.17 - - 0.87±0.12 0.36±0.07
BC (ST, no trans./rot. aug.) 0.91±0.05 0.85±0.10 0.44±0.10 0.73±0.13 - - 0.89±0.06 0.33±0.05
GAIL (MT) 1.00±0.00 0.99±0.02 0.69±0.20 0.34±0.09 - - 1.00±0.00 0.31±0.07
GAIL (ST) 1.00±0.00 1.00±0.00 0.71±0.09 0.40±0.07 - - 1.00±0.00 0.29±0.07
GAIL (ST, allo.) 1.00±0.00 0.98±0.02 0.08±0.02 0.95±0.02 - - 1.00±0.00 0.10±0.03
GAIL (ST, no aug.) 0.99±0.03 0.79±0.08 0.34±0.10 0.56±0.12 - - 0.93±0.06 0.20±0.06
WGAIL-GP (ST) 0.94±0.03 0.87±0.04 0.60±0.06 0.23±0.01 - - 0.94±0.03 0.18±0.04

Table 5: Scores for all compared methods on two tasks, reported as “mean (std.)” over five training runs (individual run means were computed with 100 rollouts
each). A colour scale ( ) grades mean scores from poor (lightest) to perfect (darkest). See main text in Appendix C for abbreviations.
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MatchRegions
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.01
BC (MT) 0.69±0.10 0.60±0.09 0.05±0.01 0.32±0.06 0.65±0.07 0.04±0.02 0.64±0.09 0.04±0.01
BC (ST) 0.77±0.09 0.69±0.11 0.07±0.02 0.42±0.04 0.69±0.10 0.07±0.03 0.68±0.08 0.05±0.02
BC (ST, allo.) 0.72±0.06 0.58±0.14 0.01±0.01 0.58±0.11 0.60±0.09 0.02±0.01 0.56±0.10 0.03±0.02
BC (ST, no aug.) 0.71±0.05 0.49±0.07 0.04±0.01 0.35±0.05 0.59±0.05 0.05±0.02 0.54±0.05 0.04±0.02
BC (ST, no trans./rot. aug.) 0.75±0.05 0.54±0.05 0.06±0.01 0.34±0.03 0.62±0.07 0.06±0.01 0.63±0.02 0.05±0.02
GAIL (MT) 0.19±0.12 0.20±0.10 0.05±0.02 0.07±0.03 0.19±0.12 0.02±0.01 0.20±0.11 0.04±0.01
GAIL (ST) 0.94±0.03 0.92±0.03 0.21±0.02 0.31±0.10 0.93±0.05 0.14±0.04 0.92±0.04 0.14±0.04
GAIL (ST, allo.) 0.64±0.13 0.58±0.11 0.01±0.01 0.36±0.08 0.62±0.11 0.01±0.01 0.57±0.11 0.02±0.02
GAIL (ST, no aug.) 0.44±0.24 0.35±0.18 0.04±0.03 0.18±0.13 0.35±0.20 0.03±0.02 0.36±0.19 0.02±0.01
WGAIL-GP (ST) 0.32±0.05 0.30±0.04 0.15±0.04 0.07±0.00 0.32±0.05 0.11±0.03 0.28±0.03 0.08±0.02

MakeLine
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 0.04±0.01 0.00±0.00 0.00±0.00 0.03±0.01 0.00±0.00 0.03±0.01
BC (MT) 0.31±0.07 0.29±0.02 0.18±0.03 0.18±0.03 0.30±0.05 0.16±0.02 0.28±0.07 0.14±0.02
BC (ST) 0.48±0.08 0.43±0.07 0.20±0.04 0.32±0.04 0.41±0.05 0.18±0.05 0.42±0.07 0.18±0.04
BC (ST, allo.) 0.25±0.07 0.24±0.04 0.04±0.01 0.11±0.02 0.21±0.07 0.03±0.01 0.19±0.03 0.02±0.01
BC (ST, no aug.) 0.19±0.03 0.12±0.06 0.11±0.03 0.11±0.02 0.14±0.03 0.09±0.02 0.11±0.05 0.09±0.02
BC (ST, no trans./rot. aug.) 0.23±0.05 0.17±0.06 0.12±0.04 0.13±0.02 0.15±0.02 0.12±0.06 0.14±0.04 0.11±0.03
GAIL (MT) 0.02±0.01 0.01±0.01 0.06±0.02 0.02±0.00 0.02±0.01 0.05±0.02 0.02±0.01 0.06±0.03
GAIL (ST) 0.33±0.19 0.33±0.21 0.20±0.02 0.19±0.07 0.27±0.16 0.17±0.05 0.28±0.15 0.17±0.04
GAIL (ST, allo.) 0.01±0.01 0.01±0.01 0.05±0.02 0.01±0.01 0.01±0.01 0.04±0.01 0.01±0.01 0.03±0.01
GAIL (ST, no aug.) 0.05±0.03 0.03±0.02 0.05±0.02 0.02±0.01 0.03±0.02 0.05±0.02 0.04±0.03 0.04±0.02
WGAIL-GP (ST) 0.10±0.04 0.08±0.03 0.11±0.01 0.06±0.02 0.07±0.03 0.11±0.04 0.08±0.02 0.08±0.01

Table 6: Additional results; refer to Table 5 for details.
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FindDupe
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.01 0.00±0.00 0.00±0.00
BC (MT) 0.89±0.04 0.78±0.12 0.05±0.03 0.31±0.07 0.81±0.07 0.03±0.01 0.81±0.08 0.05±0.03
BC (ST) 0.89±0.03 0.76±0.02 0.04±0.01 0.60±0.04 0.80±0.02 0.06±0.02 0.77±0.04 0.05±0.01
BC (ST, allo.) 0.93±0.02 0.79±0.07 0.01±0.01 0.72±0.11 0.75±0.09 0.02±0.01 0.74±0.08 0.02±0.01
BC (ST, no aug.) 0.94±0.06 0.38±0.06 0.06±0.03 0.36±0.04 0.75±0.08 0.04±0.02 0.78±0.06 0.06±0.02
BC (ST, no trans./rot. aug.) 0.93±0.03 0.45±0.10 0.09±0.01 0.43±0.05 0.81±0.07 0.05±0.03 0.75±0.09 0.06±0.03
GAIL (MT) 0.43±0.24 0.41±0.21 0.02±0.02 0.06±0.04 0.38±0.24 0.03±0.02 0.39±0.24 0.02±0.02
GAIL (ST) 0.98±0.02 0.97±0.01 0.10±0.02 0.23±0.06 0.95±0.04 0.05±0.02 0.96±0.02 0.05±0.01
GAIL (ST, allo.) 0.95±0.03 0.84±0.03 0.00±0.00 0.50±0.09 0.87±0.05 0.00±0.01 0.90±0.04 0.01±0.01
GAIL (ST, no aug.) 0.46±0.28 0.36±0.27 0.01±0.01 0.10±0.07 0.34±0.25 0.02±0.01 0.37±0.27 0.02±0.01
WGAIL-GP (ST) 0.70±0.09 0.46±0.11 0.02±0.00 0.09±0.04 0.64±0.04 0.02±0.01 0.62±0.03 0.03±0.02

FixColour
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.01 0.03±0.04 0.02±0.01 0.03±0.03 0.00±0.01 0.01±0.01 0.01±0.01 0.01±0.02
BC (MT) 0.76±0.18 0.61±0.14 0.15±0.03 0.23±0.05 0.72±0.18 0.13±0.02 0.70±0.21 0.14±0.07
BC (ST) 0.62±0.14 0.45±0.18 0.18±0.04 0.19±0.03 0.63±0.12 0.18±0.04 0.71±0.13 0.13±0.03
BC (ST, allo.) 0.88±0.07 0.47±0.24 0.11±0.03 0.32±0.03 0.86±0.06 0.13±0.04 0.84±0.04 0.14±0.05
BC (ST, no aug.) 0.55±0.18 0.29±0.12 0.19±0.03 0.21±0.09 0.57±0.18 0.22±0.03 0.52±0.23 0.22±0.02
BC (ST, no trans./rot. aug.) 0.46±0.14 0.28±0.07 0.17±0.04 0.17±0.07 0.48±0.16 0.23±0.03 0.39±0.13 0.20±0.04
GAIL (MT) 0.99±0.02 0.65±0.17 0.30±0.08 0.21±0.06 0.99±0.01 0.18±0.10 0.95±0.07 0.16±0.06
GAIL (ST) 0.99±0.01 0.84±0.07 0.32±0.07 0.25±0.04 0.97±0.03 0.19±0.02 0.96±0.02 0.20±0.01
GAIL (ST, allo.) 0.98±0.00 0.66±0.21 0.06±0.02 0.36±0.01 0.99±0.01 0.09±0.04 0.98±0.01 0.09±0.03
GAIL (ST, no aug.) 0.98±0.02 0.64±0.12 0.16±0.05 0.27±0.03 0.87±0.07 0.13±0.04 0.84±0.07 0.14±0.03
WGAIL-GP (ST) 0.93±0.04 0.72±0.12 0.08±0.03 0.18±0.02 0.93±0.04 0.02±0.02 0.91±0.05 0.05±0.02

Table 7: Additional results; refer to Table 5 for details.
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ClusterColour
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
BC (MT) 0.11±0.05 0.10±0.03 0.00±0.01 0.01±0.01 0.10±0.05 0.00±0.00 0.09±0.06 0.01±0.00
BC (ST) 0.16±0.05 0.17±0.04 0.01±0.01 0.01±0.00 0.17±0.04 0.01±0.01 0.16±0.05 0.01±0.00
BC (ST, allo.) 0.10±0.05 0.11±0.02 0.00±0.00 0.00±0.00 0.10±0.04 0.00±0.00 0.07±0.03 0.00±0.00
BC (ST, no aug.) 0.04±0.02 0.02±0.01 0.01±0.01 0.01±0.01 0.02±0.01 0.00±0.00 0.04±0.01 0.00±0.00
BC (ST, no trans./rot. aug.) 0.05±0.01 0.02±0.00 0.00±0.00 0.01±0.01 0.04±0.02 0.00±0.00 0.04±0.02 0.00±0.00
GAIL (MT) 0.01±0.01 0.01±0.01 0.01±0.00 0.01±0.00 0.01±0.01 0.00±0.00 0.01±0.01 0.00±0.00
GAIL (ST) 0.12±0.03 0.11±0.04 0.01±0.00 0.01±0.00 0.08±0.04 0.01±0.00 0.11±0.03 0.01±0.01
GAIL (ST, allo.) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.01 0.00±0.00
GAIL (ST, no aug.) 0.02±0.01 0.01±0.01 0.00±0.00 0.01±0.00 0.02±0.01 0.01±0.01 0.02±0.01 0.00±0.00
WGAIL-GP (ST) 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

ClusterShape
Demo Jitter Layout Colour Shape CountPlus Dynamics All

AL (ST) 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00
BC (MT) 0.23±0.06 0.19±0.05 0.00±0.00 0.02±0.01 0.00±0.00 0.00±0.00 0.19±0.04 0.01±0.00
BC (ST) 0.35±0.11 0.26±0.06 0.01±0.01 0.06±0.02 0.01±0.00 0.00±0.00 0.31±0.04 0.01±0.01
BC (ST, allo.) 0.21±0.02 0.23±0.10 0.00±0.00 0.13±0.04 0.00±0.00 0.00±0.00 0.16±0.05 0.01±0.00
BC (ST, no aug.) 0.12±0.03 0.10±0.02 0.00±0.01 0.02±0.01 0.01±0.01 0.00±0.01 0.09±0.04 0.01±0.01
BC (ST, no trans./rot. aug.) 0.11±0.05 0.11±0.02 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.01 0.11±0.04 0.01±0.00
GAIL (MT) 0.01±0.01 0.01±0.01 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.02 0.01±0.01
GAIL (ST) 0.44±0.05 0.44±0.08 0.01±0.02 0.02±0.01 0.01±0.00 0.00±0.00 0.39±0.01 0.01±0.00
GAIL (ST, allo.) 0.00±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.01±0.00
GAIL (ST, no aug.) 0.01±0.02 0.02±0.01 0.00±0.00 0.00±0.00 0.00±0.01 0.01±0.00 0.01±0.01 0.01±0.00
WGAIL-GP (ST) 0.01±0.00 0.01±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Table 8: Additional results; refer to Table 5 for details.
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