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A Replica Exchange1

Figure 1 illustrates the runtime trajectories of five replicas, in which two subroutines are executed in2

an alternating scheme. In the following subsections, theoretical bases will be established.
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Figure 1: A schematic illustration of the replica-exchange protocol. Lines describe 5 trajectories of
dynamics of replicas at different temperatures: horizontal segments represent parallel evolution while
intersections is replica exchange.3

B Hermite polynomials and the derivatives4

Table 1 lists the first 3 logistic derivatives of odd orders. For higher orders, a recursive routine [4] is5

developed for fast computation.

Table 1: An example of Hermite polynomials and the derivatives of g(z) = 1/[1 + e−z].

order Hn

[
u = σ2

/4λ
]

q(2n)
L
(z) in terms of g

n = 0 1 g − g2

n = 1 2u − 2 g − 7g2 + 12g3 − 6g4

n = 2 4u2 + 2u − 2 g − 31g2 + 180g3 − 390g4 + 360g5 − 120g6

6

C Empirical results of Gaussianity test on stochastic gradient when training ResNet7

Figure 2 illustrates the trajectories of percentage of Gaussian elements within the stochastic gradients8

during training ResNet-20; each curve represents a different block of ResNet-20. It is clear that9

the percentage of Gaussian elements within each blocks are higher than 90%, which indicates the10

Gaussianity assumption for ResNet are appropriate hypothesis.11

D Effective potentials of replicas at different temperatures12

Figure 3 shows the effective potentials of replicas at different temperatures; the corresponding πj(θ j)13

are then illustrated. It becomes clear that when climbing the increasing ladder of temperatures {Tj},14

πj(θ j) moves gradually towards a flat histogram.15

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Figure 2: Gaussianity of each layer in ResNet-20 during training epochs.
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Figure 3: (colored) The left plot shows the effective potentials for 5 replicas at different temperatures. As
temperature rises, the energy barrier at −7 reduces, which facilitates the passage. The right gives the marginal
distributions, moving towards flattened histograms during tempering. The blue curves is the real potential (left)
and thus the true posterior (right) at T = 1.

E Proof of Theorem 116

Proof. We prove the existence of the invariant distributions. The uniqueness follows as a consequence17

of the assumption on ergodicity.18

The Nosé-Hoover dynamics in (3) defines a system of stochastic differential equations, which governs19

the time evolution of state in a probabilistic way from a microscopic perspective. On the other20

hand, consider the entire ensemble, i.e. the collection of all possible states, its evolution can be21

characterized statistically from a macroscopic point of view through the time evolution of state22

distribution πj(Γj, t). The Fokker-Planck equation [6] translates the stochastic dynamics of state into23

the differential equation24

Ûπj(Γj, t) = −∂>θ j
[
pj πj

]
− ∂>p j

[
f (θ j)πj

]
+ ∂>p j

[
ξjpjπj

]
− ∂ξj

[
(p>j pj − Tjd)πj

]
+ ∂>p j

[
B∂p j πj

]
, (1)

which can be solved deterministically or even analytically; the invariant distributions can be indicated25

by Ûπj(Γj, t) = 0.26

We presume that the invariant distribution of ξ is separable from that of θ j and pj so that27

πj(Γj) = πj(ξj)πj(θ j, pj). For the marginal distribution πj(θ j, pj), we consider the typical Boltzmann28

distribution for the Hamiltonian system (θ j, pj) with the potential U and an additive quadratic kinetic29

energy p>j pj/2 (we presume all replicas have unit masses) as is defined for our system:30

πj(θ j, pj) ∝ exp
[
−

[
U(θ j) + p>j pj/2

] /
Tj

]
. (2)

When solving Ûπj(Γj, t) = 0, the Boltzmann πj(θ j, pj) in (2) results in the Hamiltonian dynamics [5];31

the first and second terms in (1) therefore cancel with each other. The resulting equation w.r.t. πj(ξj)32

is simplified as33

1
πj(ξj)

dπj(ξj)
dξj

= −
1
Tj

[
ξj −

B
Tj

]
,
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which gives the unique solution up to a normalizing constant34

πj(ξ) ∝ exp
[
−
(ξj − B/Tj )

2

2Tj

]
. (3)

Combining two marginal distributions in (2) and (3), the joint distribution of state is obtained as in35

(4), which is invariant by construction. �36

F Well-Tempered Ensemble for replica reduction37

In this section, we discuss an “optional” device, the Well-tempered Ensemble (WTE) [1], for RENHD.38

WTE is important, albeit not indispensable, for its use of enhancing the memory efficiency of RENHD39

by reducing the number of replicas for real-world applications, especially for deep neural networks.40

In learning very deep neural networks, it might be the case that the parameters grows to hundreds of41

millions, or even billions. As the efficiency of RENHD relies on the chance of successful exchanges,42

and the latter is a function of (potential) energy differences: in our case, it resembles the logistic43

function g(∆Ejk). For a pair of replicas ( j, k), a greater overlap of the energy distributions πj(E)44

and πk(E) will lead to a better chance on the exchange between θ j and θk . However, observations45

reveal that the overlap will decrease in the rate of 1/
√
d when the system size d (i.e. the dimension for46

θ ∈ �d) increases [3]. Therefore, to retain a constant acceptance probability, the number of replicas47

needs to increase in
√

d. For very large systems, the amount of replicas might be prohibitively large.48

WTE manages to reduce the number of replicas by enlarging the energy overlap of replicas. It49

constructs and then maintains for each replica j a time-dependent biasing potential Aγj (E, t) with50

γ > 1 denoting the tempering factor, which is a predefined constant defining the increase of energy51

overlaps by WTE. Figure 4 illustrates the effect of deploying WTE on a demo model with Gaussian52

energy distributions; the overlap of energy distributions (of adjacent replicas) is substantially enlarged.53

The time evolution of the biasing potential Aγj in WTE is defined by54

dAγj (E, t)

dt
= h exp

[
−

Aγj (E, t)

(γ − 1)Tj

]
· δ

[
E −U(θ j(t))

]
, (4)

where θ j(t) indicates the trajectory of θ j at time t, h is a constant determining the learning rate of55

Aγj , and δ[·] denotes the Dirac delta function. As γ is a constant, we hereafter omit it for simplicity.56

Intuitively, the dynamics (4) gradually builts up a 1d landscape Aj for replicas j, with the coordinates57

being the energy E , at a rate of h. The way it determines where to make such incremental changes is58

by calculating the potential U at the current configuration θ j(t).59

It has been shown that Aj(E, t) converges asymptotically [2]. With Aj(E) B Aj(E, t → ∞),60

the augmented potential can be defined as Vj(θ j) B U(θ j) + Aj(U(θ j)) and the tempered energy61

distribution reads62

π̃A
j (E) ∝

∫
δ
[
E −U(θ j)

]
e−V (θ j )/Tj dθ j

=

( ∫
δ
[
E −U(θ j)

]
dθ j

)
e−

[
E+A j (E)

] /
Tj . (5)

Theorem 1 ([1]). The energy distribution (5) of the WTE-augmented replica j with converged Aj63

satisfies64

π̃A
j (E) ∝

[
πj(E)

] 1/γ
, (6)

indicating that the fluctuation var[E] w.r.t. π̃A
j is effectively amplified by a factor γ.65

Proof. We firstly recall equation (5). We define the integral in the last equity as the temperature-66

independent density of states, formulated as67

Nj(E) B
∫
δ[E −U(θ j)] dθ j (7)
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Figure 4: Effect of deploying WTE on a set of 5 replicas at different temperatures. On the left depicts
the real histograms of replicas’ energy distributions while the right shows their tempered counterparts.
With WTE enabled, the energy overlap (shaded) of adjacent replicas is greatly enlarged, leading to a
better chance for successful exchange and thus a higher efficiency.

Algorithm 1 Replica-exchange Nosé-Hoover dynamics with Well-tempered Ensemble
1: function NHDYNAMICS({θ j}, {Aj[·]}, {Tj},model,D, |S|nhd,N, ε, c, γ, h,∆)
2: . NHD length N; ε, c in (20); γ, h in (4); ∆ for quantizing Aj

3: for all { j} do . all j running in parallel
4: vj ∼N(0,Tjε) and sj ← c

/
Tj . resetting auxiliary variables

5: for n = RANGE(1,N) do
6: S← NEXTBATCH( D, |S|nhd ) . fetching new mini-batch
7: Ej ← model.FORWARD( θ j,S ) . Ej B U(θ j)
8: f̃j ← model.BACKWARD( θ j,S ) . evaluating mini-batch gradient
9: i ← QUANTIZE(Ej) . indexing Aj[i] for quantized Ej

10: dAj ←
[
Aj[i + 1] − Aj[i]

] /
∆ . approximating dA j (E)/dE

11: dVj ← [1 + dAj] f̃j . Vj B U(θ j) + Aj(U(θ j))
12: vj ← vj + dVjε − sjvj +N(0,2cε) . additional Gaussian noise added
13: θ j ← θ j + vj and sj ← sj +

[
v>j vj/d − Tjε

]
. simulating NHD in (3)

14: Aj[i] ← Aj[i] + h exp
[
− A j [i]/(γ−1)Tj

]
. updating Aj[·] cf. (11)

15: return {θ j}, {Aj[·]}

16: MAIN:
17: {θ j} ← RANDN() and {Aj[·]} ← ZEROS() . initialization
18: args←

(
|S|nhd,N, ε, c, γ, h,∆

)
. packing arguments

19: loop
20: {θ j}, {Aj[·]} ← NHDYNAMICS({θ j}, {Aj[·]}, {Tj},model,D,args)
21: {( j, k)} ← RAND() . sampling a set of replicas to swap
22: for all {( j, k)} do
23: EXCHANGE(θ j, θk,model,D, |S|re, σ2

∗ , λ, q̃C) . recall Algorithm 1
24: if θ j and θk exchanged then swap Aj[·] and Ak[·]

25: samples←
[
samples, θ0

]
. reweighting needed using (9) or (10)

such that the tempered energy distribution is re-written as68

π̃A
j (E) ∝ Nj(E) e

−

[
E+A j (E)

] /
Tj .

As stated by [1], the equilibrium of biasing potential Aγj (U) B Aγj (U, t →∞) can be formulated as69

Aγj (E) = −
(γ − 1)
γ
·
[
− Tj log πj(E)

]
= −
(γ − 1)
γ
· Tj log

[
Nj(E)e−

E/Tj

]−1
+ const

= −
(γ − 1)
γ
·
[
E − Tj log N(E)

]
+ const , (8)
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After WTE has converged, the actual potential is essentially the superposition U(θ j) + Aγj (U(θ j)) of70

the biasing potential and the original unbiased one. With (7) and (8), the energy distribution reads71

πAj (E) ∝
∫
δ
[
E −U(θ j )

]
e−

[
U(θ j )+A

γ
j (U(θ j ))

] /
Tj dθ j

=

[ ∫
δ
[
E −U(θ j )

]
dθ j

]
exp

[
−

E + Aγ
j
(E)

Tj

]
= N(E) exp

[
−

E + (γ − 1)Tj log N(E)
γTj

]
=

[
N(E)e−E/Tj

]1/γ
=

[
πj (E)

]1/γ
,

which would give an approximately same average 〈E〉 as in the canonical ensemble but with the72

fluctuation var[E] amplified by a factor of γ.73

�74

An intuitive example can be obtained when the energy distribution is Gaussian, i.e. πj(E) ∝75

e−(E−〈E 〉)
2
/2Tj , the well-tempered distribution is also Gaussian with the exactly same average but larger76

variance πA
j (E) =

[
πj(E)

] 1/γ
∝ e−(E−〈E 〉)

2
/2γTj .77

The marginal distribution of θ j for the WTE-augmented replica j is then modified as (cf. (??))78

π̃A
j (θ j) ∝ e−Vj (θ j )/Tj

= exp
[
−

U(θ j) + Aj(U(θ j))
Tj

]
∝ πj(θ j) e−A j (U(θ j ))/Tj , (9)

which deviates from the concerned marginal distribution πj(θ j) in (??) by a factor e−A j (U(θ j ))/Tj . A79

re-weighting procedure needs to be conducted by simply implementing importance sampling with80

the same factor. In practical scenarios where WTE is deployed, large models, e.g. deep neural81

networks, often involve; it is usually the canonical average of some function r(θ j), i.e. its Monte82

Carlo integration w.r.t. πj(θ j), rather than the posterior distribution ρ(θ |D) ≡ π(θ | T = 1) itself that83

really matters. For that average, we can readily evaluate it in a simple and unbiased way derived from84

(9):85

〈r(θ j)〉πj =

〈
r(θ j)e

Aj (U (θ j ))/Tj
〉
π̃A
j〈

eAj (U (θ j ))/Tj
〉
π̃A
j

, with samples from π̃A
j , (10)

where the biasing potential Aj(U(θ j)) can be evaluated on the fly during the simulation.86

Now we devise WTE’s update rule for replica j by setting an array to restore the biasing potential Aj .87

Given the granularity ∆, the energy E is quantized; each segment is then associated to one of the cells88

in that array. Aj is evaluated for all quantized E , with the values registered in the corresponding cells.89

Time is discretized t → n∆t using the same steps; the differential equation (4) is hence converted into90

Aj [E; n] ← Aj [Ej ; n − 1] + h δ
E ,E

(n)
j

exp
[
−

Aj [E
(n)
j

; n − 1]

(γ − 1)Tj

]
, (11)

where the learning rate h controls the size of increments, δ
E ,E

(n)
j

defines the Kronecker delta function91

in the quantized E while E (n)j B U(θ j(n∆t)) denoting the potential energy evaluated at the n-th step.92

By initializing Aj[E; 0] ≡ 0, the biasing potential is adaptively accumulated through the simulation.93

Algorithm 1 provides a procedural description of RENHD with WTE deployed..94
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