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A Mathematical derivations1

Lemma 1. Let v ∼ N (v̂,Σv) denote a Gaussian random vector and x ∈ RD an arbitrary point.2

Then z := v � x is Gaussian, z ∼ N (ẑ,Σz), with mean and covariance matrix given by:3

ẑ = v̂ � x (1)

Σz = x1T �Σv � 1xT (2)

Proof. The element-wise vector product, which is the Hadamard product for single-column matrices,4

is symmetric and linear, i.e. a�b = b� a and a� (b+ c) = a�b+ a� c, for any a,b, c ∈ RD.5

By the linearity of the expectation, we then have E[z] = E[v � x] = E[v]� x. From the properties6

of the Hadamard product, one can also show that a(b� c)T = abT � 1cT, where 1 is a vector of7

1’s. Therefore, the covariance matrix Σz := V[z] = E[(z− ẑ)(z− ẑ)T], is given by:8

V[z] = E[((v − v̂)� x)((v − v̂)� x)T]

= x1T � E[(v − v̂)(v − v̂)T]� 1xT

= x1T � V[v]� 1xT ,

(3)

which concludes the proof.9

B Relationship to output warped GPs10

A body of work has previously been developed under the title of warped Gaussian processes [2].11

As noted, this contrasts from our modelling problem because while we proceed to expand the GP’s12

capabilities to warp the inputs, the WGP and extensions warps explicitly the output distribution of13

the Gaussian process. We now juxtapose the efficacy of our input warping formulation with WGP by14

applying SSWIM to the three challenging datasets abalone, creep, and ailerons experimented upon15

in [2, 1].16

Our results in Table Table 1 suggest that with SSWIM we are able to improve upon both WGP17

and BWGP in MSE: marginal improvements for abalone and a signficant improvement for creep18

with comparable performance in ailerons. Contrasting this, the output warping methods outperform19

unanimously on the MNLP metric. This is expected because output warping may allow one to capture20

non-gaussian conditional distributions which an input warping formulation cannot with a standard21

Gaussian process. The discussion we wish to raise here is that both aspects of manipulating the inputs22

and outputs of a GP can result in major improvements respectively across different metrics.23
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Table 1: MSE and MNLP metrics for comparison with Warped and Bayesian Warped GPs [1]. MSE
results for ailerons are ×10−8.

Method abalone creep ailerons

M
SE

GP 4.55 ± 0.14 584.9 ± 71.2 2.95 ± 0.16
BWGP 4.55 ± 0.11 491.8 ± 36.2 2.91 ± 0.14
MLWGP3 4.54 ± 0.10 502.3 ± 43.3 2.80 ± 0.11
MLWGP20 4.59 ± 0.32 506.3 ± 46.1 3.42 ± 2.87
SSWIM1 4.64 ± 0.13 483.69 ± 64.12 2.96 ± 0.08
SSWIM2 4.50 ± 0.11 279.86 ± 31.88 2.83 ± 0.06

M
N

L
P

GP 2.17 ± 0.01 4.46 ± 0.03 -7.30 ± 0.01
BWGP 1.99 ± 0.01 4.31 ± 0.04 -7.38 ± 0.02
MLWGP3 1.97 ± 0.02 4.21 ± 0.03 -7.44 ± 0.01
MLWGP20 1.99 ± 0.05 4.21 ± 0.08 -7.45 ± 0.08
SSWIM1 2.18 ± 0.01 4.45 ± 0.03 -7.24 ± 0.01
SSWIM2 2.17 ± 0.02 4.27 ± 0.03 -7.00 ± 0.02

C Additional Experiments24

C.1 Increasing number of pseudo-training points25

For the "increasing number of pseudo-training points" experiment we used 1 layer of warping with26

256 features for both the warping and top-level predictive functions.27

C.2 Increasing warping depth28

We used 256 features and 1280 pseudo-training points for all of the experiments.29

C.3 Complete real-dataset experiments table30

Table 2 contains additional real-world experiments to extend the majore experimental results from31

the main paper.32

Table 2: RMSE and MNLP metrics for various real world datasets.
(D,N) (18, 8751) (5, 1503) (8, 1030) (16, 5875) (15, 17379) (379, 53500) (81, 21263) (9, 45730) (77, 583250) (90, 515345)

Method elevators airfoil concrete parkinsons bikeshare ct slice supercond protein buzz song

R
M

SE
(×

1
0
−

1
)

SSWIM1 2.83 ± 0.08 2.38 ± 0.26 3.05 ± 0.26 7.63 ± 0.20 0.13 ± 0.04 0.46 ± 0.02 3.44 ± 0.14 5.91 ± 0.07 2.98 ± 0.04 8.12 ± 0.05
SSWIM2 2.74 ± 0.08 2.35 ± 0.22 3.01 ± 0.31 7.55 ± 0.15 0.11 ± 0.03 0.23 ± 0.01 3.02 ± 0.04 5.80 ± 0.08 2.40 ± 0.01 7.97 ± 0.03
DSDGP 2.74 ± 0.06 4.30 ± 0.19 5.88 ± 1.24 7.94 ± 0.20 0.33 ± 0.55 4.81 ± 1.18 5.10 ± 0.84 5.96 ± 0.06 3.65 ± 0.75 8.46 ± 0.03
DKL 3.06 ± 0.29 3.19 ± 0.37 3.18 ± 0.38 8.84 ± 0.74 0.24 ± 0.03 0.52 ± 0.08 3.46 ± 0.18 7.15 ± 1.10 4.11 ± 3.33 16.66 ± 8.14
RFFNS 2.83 ± 0.07 3.31 ± 0.37 3.46 ± 0.24 8.15 ± 0.15 0.05 ± 0.01 4.39 ± 0.27 3.85 ± 0.05 6.87 ± 0.06 5.70 ± 0.84 8.35 ± 0.03
SVGP 2.88 ± 0.10 2.70 ± 0.15 3.32 ± 0.26 8.14 ± 0.12 0.06 ± 0.03 1.16 ± 0.02 4.06 ± 0.05 7.32 ± 0.08 9.98 ± 0.02 12.19 ± 0.18
SGPR 4.96 ± 2.02 4.24 ± 0.40 5.55 ± 0.58 7.86 ± 0.22 0.67 ± 0.18 1.79 ± 0.04 4.27 ± 0.06 6.45 ± 0.07 2.89 ± 0.02 8.40 ± 0.04
RFFS 2.87 ± 0.10 3.28 ± 0.24 3.33 ± 0.30 8.24 ± 0.17 0.03 ± 0.00 2.34 ± 0.05 3.89 ± 0.06 6.91 ± 0.07 3.78 ± 0.14 8.36 ± 0.04

M
N

L
P

(×
1
0
−

1
) SSWIM1 1.81 ± 0.55 1.25 ± 2.50 10.22 ± 4.15 11.95 ± 0.47 -11.89 ± 0.15 -11.24 ± 0.05 3.55 ± 0.32 8.95 ± 0.12 2.03 ± 0.13 12.08 ± 0.05

SSWIM2 1.65 ± 0.63 1.05 ± 1.74 5.19 ± 2.59 12.50 ± 0.44 -11.78 ± 0.07 -11.79 ± 0.02 2.82 ± 0.29 8.82 ± 0.15 -0.09 ± 0.04 11.93 ± 0.04
DSDGP 1.16 ± 0.21 9.19 ± 0.20 11.02 ± 1.06 11.91 ± 0.24 -23.28 ± 8.29 6.62 ± 2.61 7.36 ± 1.62 9.04 ± 0.10 3.80 ± 2.02 12.52 ± 0.04
DKL 7.57 ± 0.15 7.70 ± 0.17 7.69 ± 0.20 13.17 ± 1.12 6.82 ± 0.01 6.83 ± 0.01 7.76 ± 0.10 11.02 ± 1.53 9.01 ± 4.65 42.64 ± 44.77
RFFNS 1.44 ± 0.24 2.74 ± 1.20 3.31 ± 0.45 12.18 ± 0.18 -11.97 ± 0.00 5.95 ± 0.66 4.66 ± 0.12 10.39 ± 0.08 8.78 ± 1.87 12.39 ± 0.04
SVGP 1.78 ± 0.30 1.19 ± 0.33 2.83 ± 0.56 12.21 ± 0.14 -27.70 ± 1.24 -5.98 ± 0.13 5.32 ± 0.12 11.10 ± 0.09 63.31 ± 3.44 18.02 ± 0.09
SGPR 11.59 ± 22.38 6.45 ± 0.47 8.48 ± 2.10 12.39 ± 0.30 -13.67 ± 0.98 -3.14 ± 0.26 5.58 ± 0.10 10.05 ± 0.13 1.11 ± 0.12 11.97 ± 0.07
RFFS 1.59 ± 0.26 2.72 ± 0.69 3.05 ± 0.96 12.29 ± 0.20 -11.98 ± 0.00 -0.33 ± 0.22 4.79 ± 0.13 10.45 ± 0.09 4.41 ± 0.37 12.40 ± 0.05

C.4 Extended discussion33

It is imperative to note here our aim is not to demand any algorithmic dominance when comparing34

methods. Firstly, this is a fruitless pursuit due to the diversity and dependence of all advanced35

GP methods on hyperparameter optimization, and secondly it is not a constructive approach to the36

communal development of new methodologies to claim some benchmark task superiority. Rather,37

encouraged by the results of this paper, we invite the discussion to move beyond stationary kernels38

and inquire upon and interpret the effectiveness of new Gaussian process methodologies through the39
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more general perspective of input space warping for unearthing hidden nonstationary patterns within40

data.41

C.5 Overfitting analysis42

We ran an overfitting analysis of SSWIM1 to observe the effect of over-optimising with respect43

to the marginal likelihood. We ran with 256 features, 1280 pseudo-training points, for 150 steps,44

with 10 repeats, and evaluated the test RMSE and test MNLP on the test set for every single epoch of45

optimisation. This test bench is provided in the supplementary code. The results are averaged with46

mean and standard deviations of the training curves displayed in Figure 1. We can see that we are47

quite resistant to overfitting except for RMSE in the elevators dataset and the MNLP in the concrete48

and parkinsons datasets. The causes of this could be explained by the underlying flexibility of the49

proposed method which allows the model to become overconfident in what it has learned with respect50

to the data it has observed. In fact, we observed similar overfitting behaviour for similar optimisation51

periods with DKL and DSDGP.52

This analysis leads to some interesting observations and recommendations for future algorithm53

development in more expressive GP methodologies: 1. the marginal likelihood is no panacea54

although it is easy to think it is, and 2. other loss functions and training schemes, such as leave-55

one-out cross validation. Actually, these results corroborate long known discussions from [3] about56

the risk of overfitting from trusting the marginal likelihood with standard optimisation procedures,57

however their importance seems to have been largely ignored in evaluation of recent methodology58

innovations in the GP literature. We believe that a more open discussion should be on the table for59

analysing the interplay between model expressiveness and the effect this has on overfitting; this is60

especially pertinent to the GP literature which has placed a large emphasis on the importance of the61

marginal likelihood has a valid hyperparameter optimisation loss.62

Figure 1: Empirical analysis of overfitting behaviour in SSWIM

C.6 Pseudo-training points in 2D63

Figure 2 contains an interpretation of input warping and the pseudo-training points in higher di-64

mensions. We use the exponential 2D function from [4] as a case where it is intuitive to observe65

how SSWIM reacts to topological differences in the underlying function. The function consists of66

a mostly flat surface with abrupt spiking occurring at a corner of the domain as seen in Figure 267

(b). If we were to assume a homogeneous domain, and model our data with a standard SSGP with68

stationary RBF kernel, the kernel’s hyperparameters would be optimised to provide a homogeneous69

representation resulting in conflict between the spiked area in the corner and flat areas elsewhere. By70

directly manipulating the input domain with our warping, we are able to transform the input domain71

with a continuous warping that consequently allows accurate representation as seen in Figure 2 (c).72

The intuition and utility of our proposed pseudo-training as virtual training points is visualised from73

a birds-eye view in Figure 2 (d). Before optimisation, we initialise these points uniformly across74

the domain of the training space. It is clear that the learned positions of the pseudo-training data75

have transformed their spatial locations away from uniform. At the bottom left they appear to have76

clustered near the discontinuity of the test function while in the remaining corners of the space the77
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Figure 2: Visualisation of learning spatial positioning of pseudo training points in 2D. We demonstrate
spatial nonstationarity with the exponential 2D function from [4]. (a) Noisy training data, (b) True
function surface, (c) SSWIM prediction conditioned on training data, (d) Learned pseudo-training
point positions, (e) Learned warping predictive mean for x1, (f) Learned warping predictive mean for
x2, (g) Learned warping predictive variance.

points have spread away. The predictive mean of the learned warping function is thus visualised78

across the domain, for both x1 and x2, in Figure 2 (e) and (f). Furthermore, Figure 2 (g) shows the79

predictive variance of the warping function and we can see how a lower amount of spatial uncertainty80

arises both from the noisy pseudo-targets as well as the pseudo-inputs from (d).81

D Datasets and Experimental Conditions82

For completeness, we specify for each dataset used, the data dimensionality and sample size, the83

raw data source, the modelling objective (i.e. the target) as defined for the original problem, and84

any target variable pre-processing excluding standardisation. The dimensionality D is reported for85

the inputs X (i.e. excluding the target variable y). All problems are single output regression tasks.86

Number of samples N is reported for the entire dataset before train/test splitting is applied. Note87

that we do not alter the raw data files and pre-processing is applied through code exactly as in the88

provided supplementary code. dataloader.py.89

elevators90

D : 1891

N : 875192

Source: https://web.archive.org/web/*/http://www.liacc.up.pt/~ltorgo/93

Regression/*94

Preprocessing: None95

Target: goal96

airfoil97

D : 598

N : 150399

Source: https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise100
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Preprocessing: None101

Target: Sound pressure in decibels102

concrete103

D : 8104

N : 1030105

Source: https://archive.ics.uci.edu/ml/datasets/concrete+compressive+strength106

Preprocessing: None107

Target: Compressive Strength108

parkinsons109

D : 16110

N : 5875111

Source: https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring112

Preprocessing: Drop the first 5 columns as they are not used in the original problem113

Target: Total udpr114

bikeshare115

D : 15116

N : 17379117

Source: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset118

Preprocessing: None119

Target: Number of bike shares per hour120

ct slice121

D : 379122

N : 53500123

Source: https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+124

slices+on+axial+axis125

Preprocessing: Drop Patient ID. Drop columns which have constant value throughout entire dataset.126

Target: Reference (relative location)127

supercond128

D : 81129

N : 21263130

Source: https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data131

Preprocessing: None132

Target: Critical Temperature133

protein134

D : 9135

N : 45730136

Source: https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+137

of+Protein+Tertiary+Structure138

Preprocessing: log(1 + y) transform for target y139

Target: RMSD140

buzz141

D : 77142

N : 583250143

Source: https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+#144

Preprocessing: log(1 + y) transform of target y145

Target: Mean Number of Active Discussion (NAD)146
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song147

D : 90148

N : 515345149

Source: https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+#150

Preprocessing: None151

Target: Year of song release152

abalone153

D : 9154

N : 4177155

Source: https://web.archive.org/web/*/http://www.liacc.up.pt/~ltorgo/156

Regression/*157

Preprocessing: None158

Target: Number of Rings159

creep160

D : 30161

N : 2066162

Source: http://www.phase-trans.msm.cam.ac.uk/map/data/materials/creeprupt-b.163

html#down164

Preprocessing: None165

Target: Rupture stress166

ailerons167

D : 40168

N : 7154169

Source: https://web.archive.org/web/*/http://www.liacc.up.pt/~ltorgo/170

Regression/*171

Preprocessing: None172

Target: goal173
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