
Online Convex Optimization Over Erdős-Rényi
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Abstract

The work studies how node-to-node communications over an Erdős-Rényi random
network influence distributed online convex optimization, which is vital in solving
large-scale machine learning in antagonistic or changing environments. At per step,
each node (computing unit) makes a local decision, experiences a loss evaluated
with a convex function, and communicates the decision with other nodes over a
network. The node-to-node communications are described by the Erdős-Rényi rule,
where independently each link takes place with a probability p over a prescribed
connected graph. The objective is to minimize the system-wide loss accumulated
over a finite time horizon. We consider standard distributed gradient descents with
full gradients, one-point bandits and two-points bandits for convex and strongly
convex losses, respectively. We establish how the regret bounds scale with respect
to time horizon T , network size N , decision dimension d, and an algebraic network
connectivity. The regret bounds scaling with respect to T match those obtained by
state-of-the-art algorithms and fundamental limits in the corresponding centralized
online optimization problems, e.g., O(

√
T ) and O(ln(T )) regrets are established

for convex and strongly convex losses with full gradient feedback and two-points
information, respectively. For classical Erdős-Rényi networks over all-to-all possi-
ble node communications, the regret scalings with respect to the probability p are
analytically established, based on which the tradeoff between the communication
overhead and computation accuracy is clearly demonstrated. Numerical studies
have validated the theoretical findings.

1 Introduction

The online convex optimization paradigm has become a central and canonical solution for machine
learning where data is generated sequentially over time, e.g., online routing, ad. selection for search
engines, and spam filtering ([1–4]). Instead of attempting to model the dynamical data, which is often
not possible due to fundamental complexity and efficiency challenges, an online convex optimization
framework adapts decisions along with the arrival of unforeseen data. After committing to a decision,
a convex loss is incurred that is unknown beforehand and may vary over time. There are two basic
types of online convex optimization settings in terms of the knowledge that the learner possesses
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over the loss: with the full gradient feedback, the learner has access to a gradient oracle of the loss
function; with the bandit feedback, the learner only observes the losses at points around the decisions.

The goal of the learner is then to minimize its regret by adapting the decisions along the streaming
data, measured by the difference between the cumulative loss of online decisions and the loss of the
best decision chosen in hindsight. How the regret scales in a finite time horizon T with problem
parameters is a central theme in studies of different algorithms. The gradient descent algorithm
was proved to guarantee regret bounds O(

√
T ) and O(ln(T )) for convex and strongly convex loss

functions ([5, 6]), respectively, which were later shown to be minimax optimal ([7, 8]).

Distributed online convex optimization ([9, 10]) is preferable in learning over networks when the
streaming data are collected at multiple nodes (e.g., sensor networks, smart phones or personal
wearable devices). In distributed online convex optimization, the nodes commit to local decisions and
then experience local losses that are unknown to the other nodes in the network. It turnes out that, by
properly sharing information with neighbors, nodes can collaboratively minimize the accumulated
system-wide loss and achieve regret bounds comparable to the centralized case.

1.1 The Framework

Consider N nodes indexed in the set V = {1, . . . , N}. At time t, node i ∈ V makes a decision
xi,t ∈ K with K ∈ Rd being a convex set. As a learner, each node can have the following two types
of loss information: (i) In the full information feedback, a loss function fi,t is revealed to node i
at time t; (ii) In the bandit feedback, the function value of fi,t at one or two points around xi,t is
revealed to node i at time t.

The network communication structure is described by a connected and undirected graph G = (V, E),
which serves as a collection of all possible node-to-node communication channels. At time t, an
Erdős-Rényi graph Gt = (V,Et) is generated over the prescribed graph G, where independently
with time and other links, {i, j} ∈ Et with a probability 0 < p < 1 for all {i, j} ∈ E . Note that
in classical Erdős-Rényi graphs [11], G is a complete graph. Here we allow G to be any connected
graph, for the sake of presenting a general online learning framework over networks, when all-to-all
communications might not exist in practice. Some realizations of classical Erdős-Rényi graphs with
N = 300 and p = 0.006 are shown as follows:

(a) Gt at t = 1 (b) Gt at t = 2 (c) Gt at t = 3 (d) Gt at t = 4

The objective is to design distributed online decision learning algorithms so that each node i identifies
the decision xi,t, t = 1, . . . , T to minimize the accumulated system-wide loss

∑T
t=1

∑N
i=1 fi,t(x).

When choosing xi,t+1, node i can utilize its previous local decisions xi,k, k ≤ t and revealed losses
fi,k, k ≤ t, along with the information received from its neighbors over Gt. The performance of
a distributed learning algorithm is captured by the regrets at various nodes compared with the best

fixed decision in the hindsight x∗ = argminx∈K
∑T
t=1

N∑
i=1

fi,t(x). The regret of node j ∈ V is thus

Reg(j, T ) =

T∑
t=1

N∑
i=1

fi,t(xj,t)−
T∑
t=1

N∑
i=1

fi,t(x
∗). (1)

The motivation to study online convex optimization over Erdős-Rényi graphs is as follows. Firstly, the
distributed online learning can happen in Internet of things or social networks, while the Erdős-Rényi
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graph is one of the fundamental models for network communications or social interactions (see
[12, 13]), where information channels are represented by independent links that are either on with a
probability p or off with a probability 1−p. Therefore, the performance of online convex optimization
over Erdős-Rényi graphs would serve as a benchmark for online learning over practical networks.
Secondly, in the dense network, we tend to avoid communicating along each edge per iteration to
decrease communication, for which Erdős-Rényi graphs can be viewed as a strategic way to organize
node-to-node communications. As such, the probability p becomes a design parameter for tuning the
trade-off between the communication overhead and the computation accuracy. It has been found that
Erdős-Rényi random graphs can outperform fully connected graphs in some distributed training tasks
([14]). Finally, Erdős-Rényi graphs allow us to intuitively have a deep theoretical characterization of
how the graph topology and connectivity probability influence the network regret of online convex
optimization, and paves the way to study distributed online convex optimization over other complex
graph models.

1.2 Main Results

We consider online distributed gradient descents under Erdős-Rényi graphs, and establish the regret
bounds explicitly in term of time horizon T , the underlying graph G, the probability p, and the
decision complexity d.

Algorithms: The node adapts its decision with gradient descents and local averaging over Erdős-
Rényi graphs. In the full information case, the local gradient ∇fi,t(xi,t) is utilized first, and then
the decision is made by averaging across its neighboring information and projecting onto a feasible
set. When the nodes can only observe loss function values, the one-point bandit or two-points bandit
around the current decision is used to get a randomized approximation of the gradient.

Regret Bounds: In the full gradient case, the algorithm achieves the regrets O(
√
T ) and O(ln(T ))

for convex and strongly convex losses, respectively. The bounds O(d1/2T 3/4) (convex) and
O(d2/3T 2/3 ln1/3(T )) (strongly convex) are achieved in the one-point bandit case, while the bounds
are improved to O(d

√
T ) and O(d2 ln(T )) in the two-points bandit case. It is shown that the regrets

scale with network sizeN by a magnitude ofN c where c takes 3
2 ,

5
4 , or 7

6 , depending on the convexity
or strong convexity of the losses, and the information feedback type. In term of time horizon T , the
regret scalings match those obtained by state-of-the-art algorithms in the centralized online convex
optimization, and distributed online convex optimization with deterministic communications. In
addition, for classical large-scale Erdős-Rényi networks over all-to-all possible node communications,
the regret bounds scale with the probability p by a magnitude of pc where c = −1,−1/2, or −1/3.
The regret bounds along with the communication complexity over classical Erdős-Rényi graphs
are shown in Table 1, while the communication complexity is measured by the expected rounds of
node-to-node communications taken by each node over a time horizon T.

Settings Regrets for convex losses Regrets for strongly convex losses Communication Complexity
Full information O(p−1N3/2

√
T ) O(p−1N3/2 ln(T )) pNT

One-point bandit O(p−1/2d1/2N5/4T 3/4) O(p−1/3d2/3N7/6T 2/3 ln1/3(T )) pNT

Two-points bandit O(p−1dN3/2
√
T ) O(p−1d2N3/2 ln(T )) pNT

Table 1: Regret bounds and communication complexity over classical Erdős-Rényi graphs

1.3 Related Work

The early works [5] and [6] about the centralized online convex optimization in the full information
feedback obtained regrets O(

√
T ) and O(ln(T )) for convex and strongly convex losses, respectively.

With one-point bandit feedback, the seminal work [15] modified the gradient descent algorithm by
replacing the gradient with a randomized estimate, and showed that the expected regret was O(T 3/4)
for bounded and Lipschitz-continuous convex losses, whereas the regret O(T 2/3) was obtained in
[16] for the setting of Lipschitz and strongly convex losses. It remains an open problem to design an
optimal algorithm for the one-point bandit online convex optimization, whereas [17] proved that the
optimal regret can not be better than Ω(

√
T ) even for strongly convex losses. In some special cases,

the minimax regret is exactly O(poly(ln(T ))
√
T ) , e.g., the losses are Lipschitz and linear [17, 18],
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or they are both smooth and strongly-convex [19]. The recent work [20] designed some kernel-based
methods with O(poly(ln(T ))

√
T ) regret and polynomial computing time. [16] extended the one-

point bandit feedback to the multi-points bandit feedback where loss can be observed at multiple
points around the decision, and established the expected regret bounds O(

√
T ) and O(ln(T )) for

convex and strongly convex losses. In this work, we design distributed algorithms over random
graphs with full gradient feedback, one-point bandit feedback, and two-points bandit feedback, which
can recover the regret bounds in the centralized methods ([6], [15] and [16]).

Distributed online convex optimization has drawn much research attention in online learning over
networks. [21] proposed distributed regression algorithms for distributed online linear regression,
and established the regret bound O(T 3/4) when the decision set is unbounded and O(

√
T ) in case of

bounded decision set. [22] proposed a distributed subgradient algorithm that achieved the regrets
O(
√
T ) and O(ln(T )) for convex and strongly convex losses, while [23] introduced a distributed

online dual subgradient averaging with a regretO(
√
T ) for convex losses. The aforementioned works

[21–23] considered the static and strongly-connected balanced directed networks. [24] designed
a distributed online primal-dual algorithm with the regrets O(ln(T )) (or O(

√
T )) for strongly

convex (or convex) losses when the communication networks are jointly connected. While [25]
considered distributed online convex optimization with long-term constraints over jointly connected
networks, and proposed a decentralized algorithm with regret and cumulative constraint violation
matching the fundamental limits in the corresponding centralized online optimization problem. In
addition, [26] proposed a distributed online subgradient push-sum algorithm for distributed online
convex optimization over unbalanced time-varying digraphs, and obtained a regret O

(
(ln2(T ))

)
for

strongly convex losses. [27] further deigned a consensus-based primal-dual method for distributed
online convex optimization with global coupling constraints, and obtained a regretO(

√
T ) for weight-

balanced and jointly connected networks. To replace the expensive projection operation with a simpler
linear optimization, [9] proposed a distributed online conditional gradient method that achieved a
regret O(T

3
4 ) for convex losses. To mitigate the impact of slow nodes in synchronized distributed

stochastic online convex optimization, [10] fixed the computation time of minibatch gradients for
each node per step, and proved a regret O(

√
m̄), where m̄ is the expected total number of gradient

samples used up to time T . It is worth mentioning that all aforementioned works are restricted to fixed
or deterministically switching graphs. This work explores the distributed online convex optimization
over Erdős-Rényi graphs and obtains the same regret bounds as previous distributed online convex
optimization schemes, e.g., [22] and [24], while further characterizes how the regrets are influenced
by the link probability p of the Erdős-Rényi graphs (or the algebraic network connectivity).

2 Full Information Feedback

This section focuses on the full information feedback, where each node i has access to the gradient of
the loss function fi,t at the query point. We consider the following assumptions on the constraint set
and the loss functions, which are also used in the existing literature, see e.g., [1, 28].

Assumption 1. The convex set K is compact, i.e., there exists D1 such that

‖x− y‖ ≤ D1, ∀x,y ∈ K.

Assumption 2. For each i ∈ V and all t = 1, · · · , T , the loss function fi,t is convex with bounded
gradients over K:

max
i∈V

max
t=1,··· ,T

max
x∈K

‖∇fi,t(x)‖ ≤ Gf .

Assumption 3. For each i ∈ V and t = 1, . . . , T , fi,t is α-strongly convex over K, i.e.,

fi,t(x)− fi,t(y) ≥
(
x− y

)T∇fi,t(y) +
α

2
‖x− y‖2, ∀x,y ∈ K.

Let the neighbor set of node i with the prescribed graph G be denoted as Ni , {j ∈ V : {i, j} ∈ E}.
Denote by L the Laplacian matrix of the graph G, where [L]ij = −1 if {i, j} ∈ E , [L]ii = |Ni|,
and and [L]ij = 0, otherwise. Here and thereafter, | · | stands for the cardinality of a set. At each
time t, node i can receive the decisions of its neighbors in the random set Ni,t , {j ∈ V : {i, j} ∈
Et} ⊆ Ni. Denote by Lt the Laplacian matrix of the graph Gt, and IN the N ×N identity matrix.
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Denote ρ ,
√

esp
(
IN − 2apL + a2E[L2

t ]
)
< 1 with esp

(
P
)

denoting the essential spectral radius
of a stochastic matrix P: esp(P) = max{|λ| : λ is the eigenvalue of P different from 1}. The
parameter ρ reflects the algebraic connectivity of Erdős-Rényi graphs. Qualitatively, ρ is small when
the underlying graph G has a good connectivity or the probability p is large.

We generalize the algorithm of [5] to a distributed setting, and propose Algorithm 1 for online
decision making with local gradients and neighboring information over Erdős-Rényi graphs.

Algorithm 1 Distributed online gradient descent with full gradients
Input: convex set K, T , and step-sizes {ηt}.
Initialize: Set xi,1 = 0 for each node i ∈ V .
1: for t = 1 to T do
2: Node i commits to a decision xi,t, receives the loss fi,t, and computes

yi,t = xi,t − ηt∇fi,t(xi,t). (2)

3: Nodes i communicates yi,t to its neighbors over Gt and updates its decision as follows

xi,t+1 = ΠK

(1− a|Ni,t|
)
yi,t + a

∑
j∈Ni,t

yj,t

 , (3)

where 0 < a ≤ 1
1+maxi |Ni| , and ΠK(x) denotes the Euclidean projection of a vector x onto a set K,

i.e., ΠK(x) = argminy∈K ‖x− y‖.
4: end for

Next, we establish the expectation-valued regret bounds of Algorithm 1 for convex and strongly
convex losses, respectively.
Theorem 1 (Expected regret for convex losses). Let Assumptions 1 and 2 hold. Consider Algorithm
1 with ηt = D1

Gf

√
t
. Then for each j ∈ V,

E
[
Reg(j, T )

]
≤ 3ND1Gf

(
0.5 +

2ρ(1 +
√
N)

1− ρ

)
√
T . (4)

Theorem 2 (Expected regret for strongly convex losses). Let Assumptions 1, 2, and 3 hold. Consider
Algorithm 1 with ηt = 1

αt . Then for each j ∈ V,

E
[
Reg(j, T )

]
≤
NG2

f

2α

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )). (5)

The results are proved according to the following. We firstly establish an upper bound on the node
regrets, which depend on the step-sizes and the consensus error across the node decisions. Then
by utilizing the properties of Erdős-Rényi graphs, we bound the expected consensus error with the
step-sizes and the inverse spectral gap of the expected network. Finally, with appropriately chosen
step-sizes, we obtain the regret bounds established in Theorems 1 and 2.

Theorems 1 and 2 show that, for distributed online convex optimization over Erdős-Rényi graphs,
the regrets O(

√
T ) and O(ln(T )) are obtained for convex and strongly convex losses, which are

the same as the centralized regrets established in [5] and [6]. For a single agent case, the regrets

become 3D1Gf

2

√
T [1, Theorem 3.1] and

G2
f

2α (1 + ln(T )) [1, Theorem 3.3] for convex and strongly
convex losses, respectively. For the multiple nodes case with N ≥ 2, the results explicitly show how
the regrets depend on the network size and the algebraic network connectivity. Both Theorems 1
and 2 imply that the average regret (divided by N ) increases with N . This is possibly because the
increasing node number would increase the nodes’ information heterogeneity and make the network
regret minimization more difficult. In addition, the derived regrets showed the inverse dependence on
the spectral gap of the expected network, which is quite natural since it is well-known to determine
the mixing rates in random walks on graphs, and the information propagation over Erdős-Rényi
graphs is closely tied to the random walk on the expected network.
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Let the underlying G = {V, E} be a complete graph to recover the classical Erdős-Rényi graphs. It
was shown in [29, Example 4.7] that ρ2 = (1− p)

(
1− p+ 2pN−1N2

)
. Then for a sufficiently large

N , ρ
1−ρ is approximately p−1 − 1. Note that the expected number of node-to-node communications

of each node over a time horizon is pNT, while the expected regrets for convex and strongly convex
losses are approximately O

(
p−1N3/2

√
T
)

and O
(
p−1N3/2 ln(T )

)
, which decrease as p increases.

It is seen that the increasing of p reduces the regret bounds while increases the communication
overhead. Therefore, for a fixed time horizon T and a fixed prescribed graph G, the parameter p can
be used to balance the communication overhead and the computation accuracy.

3 One-point Bandit Feedback

This part considers the one-point bandit feedback, when each node i can only observe the value of
the loss function fi,t at a single point around xi,t. Motivated by [15], we replace ∇fi,t(xi,t) in (2)
with its randomized estimate gi,t given by (6) to obtain Algorithm 2. It is shown in [15, Lemma
1] that E[gi,t] = ∇f̂i,t(xi,t), where f̂i,t(x) = Eu∈B[fi,t(x + δu)] with B = {u ∈ Rd : ‖u‖ ≤ 1}.
Node i adapts its decision xi,t+1 by (7), where the projection onto (1− ξ)K is used to guarantee that
xi,t + δui,t ∈ K.

Algorithm 2 Distributed online algorithm with one-point bandit feedback
Input: Step sizes {ηt}, the exploration and shrinkage parameters δ > 0 and ξ ∈ (0, 1).
Initialize: Set xi,1 = 0 for each node i ∈ V .
1: for t = 1 to T do
2: Node i commits to a decision xi,t and observes fi,t(xi,t + δui,t), where ui,t ∈ Rd is uniformly
chosen from vectors with a unit norm (‖ui,t‖ = 1).
3: Node i constructs a gradient estimator

gi,t =
d

δ
fi,t(xi,t + δui,t)ui,t, (6)

and computes yi,t = xi,t − ηtgi,t.
4: Nodes i communicates yi,t to its neighbors over Gt, and updates its decision as follows

xi,t+1 = Π(1−ξ)K

((
1− a|Ni,t|

)
yi,t + a

∑
j∈Ni,t

yj,t

)
. (7)

5: end for

We impose the following conditions on K and the losses by slightly modifying Assumptions 1 and 2.
Both are conventional in online bandit optimization ([15, 16]).
Assumption 4. The set K contains a ball of radius r centered at the origin, and is also contained in
a ball of radius R , i.e., rB ⊆ K ⊆ RB.
Assumption 5. Each loss function fi,t is convex and Lipschitz continuous in K, i.e., there exists a
constant Lf > 0 such that for each i ∈ V and any t = 1, · · · , T :

‖fi,t(x)− fi,t(y)‖ ≤ Lf‖x− y‖, ∀x,y ∈ K.

Based on Assumptions 4 and 5, there exists a constant C > 0 such that,

max
i∈V

max
t=1,··· ,T

max
x∈K
‖fi,t(x)‖ ≤ C. (8)

Theorem 3 (Convex losses with the one-point bandit feedback). Let Assumptions 4 and 5
hold. Consider Algorithm 2, where ηt = 2δR

dC
√
t
, δ = (c1/c2)0.5T−0.25, and ξ = δ

r with

c1 , 3dRC
(

1 + 4ρ(1+
√
N)

1−ρ

)
and c2 , 2(Lf + C/r). Then

E
[
Reg(j, T )

]
≤ 2T 3/4N

√√√√6dRC

(
1 +

4ρ(1 +
√
N)

1− ρ

)
(Lf + C/r), ∀j ∈ V.
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Theorem 4 (Strongly convex losses with the one-point bandit feedback). Let Assumptions 3, 4,

and 5 hold. Consider Algorithm 2, where ηt = 1
αt , δ =

(
2c3(1+ln(T ))

c2T

)1/3
, and ξ = δ

r with

c3 , d2C2

2α

(
1 + 6ρ(1+

√
N)

1−ρ

)
and c2 , 2(Lf + C/r). Then, for each j ∈ V,

E
[
Reg(j, T )

]
≤ 3Nd2/3T 2/3(1 + ln(T ))1/3

(
C2(Lf + C/r)2

2α

(
1 +

6ρ(1 +
√
N)

1− ρ

))1/3

.

Algorithm 2 can achieve the regretO
(
( ρ
1−ρ )1/2d1/2N5/4T 3/4

)
for convex losses, which matches the

bound O(T 3/4) obtained by [15] in centralized settings, while, for strongly convex losses, the regret
bound can be improved to O

(
( ρ
1−ρ )1/3d2/3N7/6T 2/3 ln1/3(T )

)
. The results explicitly show the

influence of time horizon T, decision variable dimension d, network sizeN , and network connectivity
ρ on the regret bounds. It is further noticed that for classical Erdős-Rényi graphs, the regrets
respectively scale with p−1/2 and p−1/3 for convex and strongly convex losses.

4 Two-points bandit feedback

This part studies the two-points bandit feedback, where the gradient ∇fi,t(xi,t) is estimated by
evaluating the loss function fi,t at two random points around xi,t. Consider Algorithm 3, where the
gradient is estimated by (9). Since the distribution of ui,t is symmetric, by [15, Lemma 1] we have
that E[g̃i,t] = ∇f̂i,t(xi,t) with f̂i,t(x) = Eu∈B[fi,t(x + δu)].

Algorithm 3 Distributed algorithm with two-points bandit feedback
Input: Step sizes {ηt}, the exploration and shrinkage parameters δ and ξ ∈ (0, 1).
Initialize: Set xi,1 = 0 for each node i ∈ V .
1: for t = 1 to T do
2: Node i commits to a decision xi,t, picks a unit-norm vector ui,t ∈ Rd uniformly at random, and
observes the values of the loss function fi,t at two points y1

j,t = xi,t + δui,t and y2
j,t = xi,t − δui,t.

3: Node i constructs a gradient estimator

g̃i,t =
d

2δ
(fi,t(xi,t + δui,t)− fi,t(xi,t − δui,t))ui,t, (9)

and computes yi,t = xi,t − ηtg̃i,t.
4: Nodes i communicates yi,t to its neighbors over Gt, and updates its decision as follows

xi,t+1 = Π(1−ξ)K

((
1− a|Ni,t|

)
yi,t + a

∑
j∈Ni,t

yj,t

)
. (10)

5: end for

With Algorithm 3, the regret of node j is denoted as

R2(j, T ) ,
T∑
t=1

N∑
i=1

fi,t(y
1
j,t) + fi,t(y

2
j,t)

2
−

T∑
t=1

N∑
i=1

fi,t(x
∗).

Theorem 5 (Convex losses with the two-points bandit feedback). Let Assumptions 4 and 5 hold.
Consider Algorithm 3, where ηt = 2R

dLf

√
t
, δ = 1√

T
, and ξ = δ

r . Then, for each j ∈ V,

E
[
R2(j, T )

]
≤ NLf

√
T

(
3 +R/r + 3dR+

12dρR(1 +
√
N)

1− ρ

)
.

Theorem 6 (Strongly convex losses with the two-points bandit feedback). Let Assumptions 3, 4, and
5 hold. Consider Algorithm 3 with ηt = 1

αt , δ = ln(T )
T , and ξ = δ

r . Then, for each j ∈ V,

E
[
R2(j, T )

]
≤
Nd2L2

f

2α

(
1 +

6ρ(1 +
√
N)

1− ρ

)
(1 + ln(T )) +NLf

(
3 +

R

r

)
ln(T ).
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Theorems 5 and 6 show that Algorithm 3 can recover the regret bounds O(
√
T ) (convex) and

O(ln(T )) (strongly convex) in the full information case, if each node is allowed to query the
losses at two points around the decision. Nevertheless, the bounds in the two-points bandit case
depend on the decision dimension d, and the constants are larger than those of Theorems 1 and
2. In addition, Algorithm 3 imposes Assumption 4 on the convex set, stronger than Assumption 1
required by Algorithm 1. Specially, for classical Erdős-Rényi graphs, the expected regrets become
O(p−1dN3/2

√
T ) and O(p−1d2N3/2 ln(T )) for convex and strongly convex losses, respectively.

5 Numerical Experiments

Erdős-Rényi graphs give us information about complex systems in the real world. A prominent
motivating example is distributed online learning through random social interactions for exploiting
the streaming but private health data generated from wearable personal tracking device ([30]). Thus,
in this section, we examine the empirical performance of the proposed distributed algorithms on the
bodyfat dataset with 14 features and 252 instances from LIBSVM library 2. Throughout this section,
the empirical results are based on averaging across 20 sample trajectories.

Consider a distributed online regularized linear regression problem formulated as follows:

min
x∈Rd

T∑
t=1

N∑
i=1

(aTi,tx− bi,t)2 + µ‖x‖2, s.t. x ∈ K , {x ∈ Rd : ‖x‖ ≤ R}, (11)

where µ ≥ 0 denotes the regularization parameter, the data (ai,t, bi,t) ∈ Rd × R with d = 14 from
bodyfat is revealed only to node i at time t, and the decision is restricted to a sphere K with radius R.

We first demonstrate the empirical performance of the rescaled maximum regret SReg(T ) ,
maxj Reg(j,T )

T as a function of the time horizon T . We set N = 30, p = 0.2, and µ = 0 in
(11) to get convex losses. We run Algorithms 1, 2, and 3, and plot the rescaled maximum regret
SReg(T ) versus the time horizon T in Figure 1. In addition, we set µ = 1 in (11) to construct strongly
convex losses, run Algorithms 1, 2, and 3, and plot SReg(T ) versus the time horizon T in Figure 2.
It is seen from Figure 2 that the performance gets deteriorated in the first few steps, maybe because
there is not enough accumulated data to adapt a good solution in the one-point bandit case. The
empirical results shown in both Figure 1 and Figure 2 are accordant with the theoretical results that
the time averaged regret goes to zero as T goes to infinity. From both Figures 1 and 2 we can see that
the performance of the one-bandit feedback is the worst among the three cases, while the two-points
bandit feedback can significantly improve the algorithm performance and is almost comparable with
the full information case.

Figure 1: SReg vs time for convex losses. Figure 2: SReg vs time for strongly convex losses.

Next, we fix the time horizon T = 200 and demonstrate the empirical performance of the maximum
regret MReg(T ) , maxj Reg(j, T ) versus the link probability p of Erdős-Rényi graphs. SetN = 50
with three base graphs: complete graph, star graph, and k-regular graph with k = 5. Let the link
connection probability p vary from p = 0.1 to p = 0.9 at a stride of 0.1. We run Algorithms 1, 2, and
3, and plot the maximum regret MReg versus the probability p in Figure 3 and Figure 4 for convex
and strongly convex losses, respectively. From the figures, we observe the trend that the increasing of
link probability p can improve the algorithm performance.
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(a) complete graph (b) star graph (c) k-regular graph with k = 5

Figure 3: MReg vs probability for convex losses.

(a) complete graph (b) star graph (c) k-regular graph with k = 5

Figure 4: MReg vs probability for strongly convex losses.

Finally, we fix the time horizon T = 200 and let the base graph be k-regular graph with k = 3. We
let the node number N vary from N = 5 to N = 80, implement Algorithms 1, 2, and 3 over the
bodyfat dataset, and plot maxj Reg(j,T )

N versus N in Figure 5 for convex and strongly convex losses.
In addition, we set N = 20, let the vector dimension d vary from d = 5 to d = 100, implement
Algorithms 1, 2, and 3 on the randomly generated dataset, and plot maxj Reg(j,T )

d versus d in Figure
5 for convex and strongly convex losses.

Figure 5: Algorithm performance vs the node number N and the vector dimension d.

6 Conclusions

In this paper, we consider the online convex optimization over Erdős-Rényi random graphs under the
full information feedback, one-point and two-points bandit feedback. We develop consensus-based
distributed algorithms and establish the regret bounds for both convex and strongly convex losses,
which match those of the centralized online optimization in the literature. We further quantitatively
characterize the influence of the algebraic network connectivity on the regret bounds, and show that
the link connection probability can be used to tune a trade-off between the communication overhead
and the computation accuracy. Future directions include closing the gap of the regret bounds and
extending the kernel-based methods (see [20]) to bandit online convex optimization over networks.

2The data set is from https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Broader Impact Section

The work provides the theoretical understanding of the performance limits about distributed online
convex optimization over random networks, and could be applied in processing streaming data
to various Internet of Things systems, such as machine learning with personal wearable devices.
Currently, it does not present any foreseeable societal consequence.
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