Supplementary Material for:
A Fair Classifier Using Kernel Density Estimation

1 Outline

We first present a theorem that forms the basis of our choice made on the bandwidth h, as mentioned
in Remark 2. Next we provide the gradient formulas that we explicitly derived for linear and 2-layer
NN classifiers both w.r.t. DDP and DEO. We provide details on synthetic datasets and we provide
experimental results conducted on two additional real benchmark datasets: Law School Admissions
[36] and Credit Card Default [6, 39].

2 Theoretical Insights on the Choice of the Bandwidth ~

We provide theoretical insights on the choice on A such that it minimizes the asymptotic mean squared
error (AMSEﬂ w.r.t. an estimate of an interested distribution Py. As in [34, 35], the AMSE can
indeed be expressed as bias and variance terms that compete with each other w.r.t. h. The larger h,
the higher the bias is, while yielding a smaller variance. This then allows us to find a sweet spot on i
that minimizes the AMSE. Details are formally stated below.

Theorem 1 Assume that g, .., are i.id. samples drawn from an unknown pdf f. Let
Y := 1{Y > 7}. We define Kernel Density Estimator (KDE) w.r:t. § as:
A 1 & g — g
= — 1
UEFIWACS m

where fi indicates a kernel function (see Definition 4 in the main manuscript). Then the asymptotic
mean squared error (AMSE) w.r.t. an estimate of Py can be computed as:

AMSE — %4(]“(7'))20,% + Py (0)(1 - 15}7(0)) . 2nf(r) ffcoo tF(t) fi(t)dt

2

m m

where o7 := [12 fi.(t)dt and Fy(t) := fioo frx(w)du. This then yields the optimal bandwidth that
minimizes the AMSE as:

o (20(0) [R0 fi(dr\ F 1
= (F(r))207) ®

Wl

m

"Here the AMSE refers to an approximated MSE which neglects some higher-order terms w.r.t. h that arise
in applying Taylor series expansions.

Proof: We employ the KDE (T)) to derive an estimate of Py (0):

s = [" f@)ds
L

@ 1 Z/ y(”
(b)*z (T—y”)

where (a) is due to the change of Varlable; and (b) comes from Fy(y) == [Y__ fi(§)dj. We next

“4)

compute the mean squared error (MSE) w.r.t. 1537 (0) to represent it as the sum of the squared bias
and variance:

MSE := E {(P?(O) - P;,(O))z]

— (&[0)] - 7)) +E {(P?(O) ~E[P(0)])1 ©)
= bias® + var.

Let us now analyze bias so as to represent it as a function of h. To this end, we first compute the
expectation of Py (0):

E [15?(0)} (@ nlzi]E |:Fk (r hyu)ﬂ

P, (ff”) - /_O;Fk (T;@) F(5)dg

© /_Oo Fiu(t)f(r — ht)hdt

—~{ROF(-)=+ [AOFG - o

W [~ AP = e

Q / o) (P = e tr) + 20 o07))

=) [~ = ns) [tnas S [enmanon)

D pr)+ 2 r)ot + o(h2)

2
= Po(0) + ' f(r)o} + o)
where (a) comes from @); (b) is due to the i.i.d. assumption made on §’s; (c) is because of
the change of variable ¢ = *¥; (d) follows from Fy(—o00) = F(—o00) = 0 (here F(t) :=
f_ u)du); (e) is because of Taylor series expansion; (f) follows from the property of a kernel
functlon I yfe(y)dy = 0 and our definition: o := [*_#? f;,(t)dt. Plugging this into bias :=
]E[P;/(O)} ISY(O), we get:
2

bias = %f’(ﬂai + o(h?). (6)

We next consider var := E[(]ADY,(O) -]E[P;(O)})Q]. Using @), we get:

var=E[P2(0)] - (B [Py(O)bz

(iiFk (—hy<>)>]) (;iu«; [(—:H)D

Exefn (58] ()]
e S0t (50)] + e £ e [m (5 e[(5]

S () e e (e[()
A () <[+ ()
()] ([(7))

where (a) is due to the i.i.d. assumption made on ¢()’s. Here we manipulate the Ist term further to
express it as:

P (T) [(5) s
—/OO_OO FZ(t) f(r — ht)hdt
/Z F? (t)dF (T — ht)

)

I
S

EOPFe -2 [RORORC-ma

9 / T RO f(0)(F() — BE () + olh))dt
—9F(r / T Bt fu(t)dt — 21F () /_ T B () fu(D)dy + o(h)

Y pir) - 2nF' (1) / tF (1) fu ()t + o(h)

— Py (0) = 20f() / EFL () f (1)t + o)
where (a) comes from the integral by part; (b) is because of [Fy () fx(t)dt = § (see below).

/_oo Fi () fi(t)dt = /_OO Filt)dFi(t) = TFR(0)|% = 5.

3

Plugging the above (8] into (7), we obtain:

()

= L Bo(0) - 2nf(r) /Oo LB () fu(£)dt + oh) — <E

— 0o

= % {P~ (0) — 2h f(7) /oo tFy(t) frx(t)dt — [312/(0) + O(h)}

— 00

where the last equality follows from taking the expectation on both sides in (@) and the fact that §()’s
are i.i.d. Now this together with (6] and (3)) yields:

MSE = bias? + var

4 P5(0)(1 — Py 2h % tFy(t) fr(t)dt
= h*(f/(T))QU;% + 7 (O y(@) _ 20) Jooo PO 4() +o(h*) + o (h) .
4 m m m
(10)
Ignoring the last two negligible terms in the above, we obtain the desired AMSE:
4 Py (0)(1 - P 2h X tF(t) fu(t)dt
AMSE = hz(f’(r))QaiJr 7 (O = () _ 20) f‘“m GORLICL

One can also readily verify that the optimal bandwidth that minimizes the AMSE is:

(200 [P fuly)dy\ 1
" < 0ot > ~

1
ms3
|

3 Explicit Gradient Formulas

Our KDE-based approach enables us to express the fairness-related regularization term as a function
of model parameters. Hence, we can train a fair classifier using a standard machine learning library
such as PyTorch [26] that comes with an autograd function. Nonetheless, providing an explicit
gradient formula would help readers to better understand our approach. To this end, we first calculate
the gradient of the model output w.r.t. the model parameters:

Vi, (12)

Then using this gradient we provide the closed forms of the gradients of DDP and DEO when we
employ a linear network or a 2-layer NN as a classifier model.

3.1 The gradient of the model output

3.1.1 A linear model
Under a linear classifier, we assume that the model parameters consist of a weight W and a bias b:

w = (W,b) (13)

Then the output of the classifier can be calculated as:
9@ = o(WTz® +b) (14)
where o (-) is a sigmoid function and Z(*) := (z(?), 2()). Now we can compute the gradient of §(*:
Vi@ = o(WTz 4 b) (1 O b)) 0 (15)

Vi@ = o (WT0 4 b) (1 — (WD & b)) . (16)

4

3.1.2 A 2-layer NN classifier
Under a 2-layer NN, model parameters are:

w = (W it w2l pl2l), (17)

where W1 and bl7! are a weight matrix and a bias vector at the j-th layer. Then the forward pass for
the 4-th input data #(*) is:

ol = Wllg® 4 pli] (¢ R, (18)
a1 = (o0 (e RD), (19)
A6 = w26 4 pl2l (e R, (20)
7D = g2 = 521,210 (¢ R) 21

where ol] refers to the intermediate output in the j-th layer, and al’! represents the output of activation
function oVl (-) in the j-th layer. Let o[* be a ReLU function and o[?! be a sigmoid function as we
are interested in a binary classification setting. Applying the back-propagation rule on the model
parameters (WU, [1R bR, we get:

Vi i = ol (o20) (2 (o2)a Ok 22)
Vi = o (o210) (1 = o (o21)) (23)
Vi l(ol?1@) (1 (o) S+ 1{o1® > 0}zOT (24)
YV, g® = ol (o20) (1 — ool m))) WERT 4 1{oU0 > 0} (25)

where .x and 1(-) represent an element-wise multiplication and an indicator function, respectively.

3.2 The gradient of DDP
In our approach, we employ a Gaussian kernel function:

fu) = ——exp (- L 6)
k y L me p 2
and the approximated cdf of f1(4):
Fi(9) = / Frly)dy ~ =0T e @27)
¥

where (a, b, ¢) = (0.4920,0.2887,1.1893). Let us recall the formula of the approximated gradient
of DDP in the main body of the paper. We first estimate Iy »(9]2) using the KDE:

Foail2) = o () (28)

i€l
where I, := {i: 2() = z} and m. := |I.|. This together with ¥ := 1{Y > 7} gives:

— @
Y\Z / fY|Z (T >
zEI

where Fj,(f fe(y

Proposition 1 Since fi.(§) is continuous and each 49 is a differentiable function w.r.t. w, P vz is
also differentiable. Using the chain rule, one can then compute its gradient as:

VD5

— 5@
T Yy ~(i
yiz(12) = Z (> Vg ?. (29)

Then the approximated DDP is:

DDP ~ 3] vz (1 17(1)‘ and Py (1) = Y 25 Py (1]2). (30)
z€EZ z€EZ
For tractability of the non-differentiable absolute function | - |, we employ the Huber loss [13]:
1.2
s _) 3 for |z| < §;
DDP ~ ;HS (Py1z(112) PY(l)) where Hj(x) : { 6(|lz| — 16) otherwise.

This together with (29) and (30) yields an approximation of the gradient of DDP:

VuDDP & 3™ Hj (P, (112) = Py(1)) - Vu (P 1(112) - Py (1)) G31)
2€Z
xz for|z| <
where Hj(z) := { 60 forx >
- forz < 4.

By substituting the gradient of the model output computed in subsection (3.1)) into (29), we can obtain
the closed-form of V,,DDP under a linear network or a 2-layer NN.

3.3 The gradient of DEO
Taking the KDE approach, similarly we obtain:

— 4
N T y
Py y(lzy) = > F < ; > (32)
Y iel,,
where I, := {i : 2 = 2,y = y} and m,,, := |, |. We can then compute the gradient w.r.t. w:
— @
T A (i
v PY|ZY(1|Z Y) h (Y) V. (33)
1€1.y

Again using the KDE together with the Huber loss, we approximate:

DEO ~ Z ZH5(YizY (Lzy) — fqy(”y)) (34)

y€{0,1}z€2

where PY‘Y(1|y) = %%If’g‘z’y(l\z,y) and m, := |{i : y) = y}|. This then yields:
ze

VWDEO~ 37 3" Hj (Pyizy (lzy) = Py () - Vo (P (112,9) = Py (1)) -
ye{0,1} z€Z
(35)
By substituting the gradient of the model output computed in subsection (3.1)) into (33), we can obtain
the closed-form of V,,DEQO under a linear network or a 2-layer NN.

4 Synthetic Data Experiments

We provide details on how unfair synthetic datasets are generated and demonstrate accuracy-fairness
tradeoff performance.

4.1 Binary classification

There are two unfair synthetic datasets that we used in our paper: one based on the Moon dataset [10]
and the other for 3-way classification. For the former, we first get a dataset {(.Z'(i), y(i)}}i’looo
using the make_moons function of Scikit-learn [10], an open source machine learning library.
For indices of positive examples (y(Y) = 1), we generate z(*) as per a multinomial distribution
Multinomial(0.5,0.2, 0.3) with a single trial; otherwise, z() follows Multnomial(0.2,0.3,0.5) with
a single trial. Note that the conditional probabilities Pr(Y = 1|Z = z) are distinct across dif-
ferent demographics z. This way, we could generate a balanced yet unfair dataset in which
Pr(Y = 1|Z = 0) = 0.720, Pr(Y = 1|Z = 1) = 0.396, and Pr(Y = 1|Z = 2) =~ 0.379
while respecting Y ~ Bern(0.5). The generated dataset is visualized in Fig. 2 of our main paper.

4.2 Multiclass classification

The other synthetic dataset that we used for the multiclass classification is generated as fol-
lows: we first create a mixture of three Gaussians Normal((2,2), I3), Normal((—2,2), I5), and
Normal((0, —2), I) with label values of 0, 1, and 2, respectively. Then for examples with (y(*) = 0),
we assign a sensitive attribute z as per Bern(0.8), while we use Bern(0.2) for the remaining
examples. This way, we could get an unfair dataset in which Pr(Y = 0|Z = 0) =~ 0.102,
Pr(Y = 0|Z = 1) ~ 0.665, Pr(Y = 1|Z = 0) ~ 0450, Pr(Y = 1|Z = 1) ~ 0.166,
Pr(Y = 2|Z = 0) ~ 0.448, and Pr(Y = 2|Z = 1) ~ 0.169. The generated dataset is visual-
ized in Fig. 5 of our main paper.

S Real Data Experiments

We now present accuracy-fairness tradeoff performances on two additional real benchmark datasets:
Law School Admissions [36] and Credit Card Default [6, 39]. To compare the computational
complexity of our algorithm with others, we also include a comprehensive table presenting the
running times of all the baseline algorithms on all benchmark datasets.

5.1 Performances on Law School Admissions [36] and Credit Card Default [6, 39]

0.084
& Hardtetal. [12] ’ 0.2001 ¢ Hardtetal. [12]
0.074 Narasimhan [25] .‘\A. 0.175 Narasimhan [25]
| m Zafaretal. [42] A B Zafaretal. [41]
0.06 &
A Zhang et al. [44] A o 0.1501 A Zhang et al. [44]
N 0.051 Agarwal et al. [1] A : o 0125 Agarwal et al. [1] N
Qoos] ©® Proposed []] @® Proposed
[ahe A ® QA 0.100 ®
| | .. - o
0.031 - 0.075 Ay e
0.02 mat A > " 3
:) 0.050 ™ My aA
A4 o 400
0.014 N ’ 0.025 | []
0.00
0.782 0.784 0.786 0.788 0.790 0.782 0.784 0.786 0.788 0.790
Accuracy Accuracy

Figure 1: (Left) Accuracy-fairness tradeoff w.r.t. Demographic Parity evaluated on the Law School Admissions

dataset; (Right) Equalized Odds counterpart.

0.040 0.10
A, ¢ Hardtetal. [12]
0.035 Narasimhan [25]
0.030 A‘A AA 0.08 m Zafaretal. [41] :
S Hardt.et al. [12] AAA % Agarwal et al. [1]
N 0.025 Narasimhan [25] N S 0.06{ A Zhangetal. [44] ’
Oo.020]| ™ Zafaretal. [42] =5 A A“ % 8 ® Proposed é
=) Agarwal et al. [1] :A =) Ag
0015/ A Zhang et al.[44] AA ?‘ 0.04 s,
@® Proposed 2,00
0.010 A (]
) 0.02]
[}
0.005 . o -
0.000 0.00.
0.800 0.805 0.810 0.815 0.820 0.825 0.800 0.805 0.810 0.815 0.820 0.825
Accuracy Accuracy

Figure 2: (Left) Accuracy-fairness tradeoff w.r.t. Demographic Parity evaluated on the Credit Card Default
dataset; (Right) Equalized Odds counterpart.

Fig. [2| shows accuracy-fairness tradeoff evaluated on Credit Card Default w.r.t. DDP and DEO.
Each point corresponds to a particular tuning knob and it represents an average value over 5 trials
with different random seeds. Off-the-scale curves for low-performance baselines are not shown. We
employ a 2-layer NN with 32 hidden nodes for all baselines but logistic regression for Zafar et al. [42]
and Narasimhan [25]. For Zhang et al. [44], we use a linear discriminator that turns out to yield more
stable training. The tradeoff performance of ours w.r.t. DDP shows respectful margins compared
to other baselines but Zhang et al. [44] also yields relatively good performance in respecting DEO.
However, note that ours achieves slightly better tradeoff performance in the non-perfect fairness
regime that favors the accuracy performance relative to the fairness performance. Fig. [T presents the

same performances as in Fig. 2] yet on Law School Admissions dataset. The only distinction in an
experimental setting is that the 2-layer NN classifiers now have 16 hidden nodes.

5.2 Training Details

Below we leave two tables: one that contains hyperparameters for our approach used in real data
experiments (See Table[T)), and the other that includes the running times for all baseline algorithms
under the considered benchmark datasets (See Table[2)).

Table 1: Hyperparameters used for real data experiments. Each entry includes hyperparameters for experiments
w.r.t. DDP/DEO

Law School Credit Card

Datasets Admissions Adult Census Y COMPAS
missions Default
h (bandwidth of KDE) 0.170.1 0.170.1 0.170.1 0.1/0.1
0 (of Huber function) 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
7 (threshold for hard decision of) 05705 0.5/0.5 0.5/0.5 0.5/0.5
Batch size 2048 /2048 5127512 2048 /2048 2048 /2048
(B1, B2) (for Adam optimizer) (0.9, 0.999) 7 (0.9,0.999) | (0.9,0.999)/(0.9,0.999) | (0.9,0.999)/(0.9,0.999) | (0.9,0.999)/ (0.9, 0.999)
Learning rate 2e-4 /2e-4 le-1/1e-1 Se-4/5e-4 Se-4/2e-4
Exponential decay factor (for LR scheduler) None / None 0.98/0.96 None / None None / None
Number of epochs 200 /200 200 /200 300 /300 500 /500

Table 2: The amount of time (in seconds) to obtain a single point on the accuracy-DDP tradeoff curve. Each
number indicates an average of 5 trials for a specific tuning knob.

Dataset Hardt et al. [12] | Narasimhan [25] | Zafar et al. [42] | Zhang et al. [44] | Agarwal et al. [1] | Proposed
Law School 16.7 58.7 13.6 79.1 4239 157.0
dmissions
Adult Census 11.1 435 13.1 77.8 334.1 111.1
Credit Card 129 163 13.9 94.8 353.5 755
Default
COMPAS 10.9 4.0 13.1 51.7 171.1 25.3

Table P]emphasizes a computational challenge that arises in Agarwal et al. [1], a baseline algorithm
that also shows outstanding performances across different datasets. It turns out that proposed
algorithm takes only about 15~37% amount of time, as compared to [1], while being comparable to
Zhang et al. [44]. We observe similar tendencies for experiments w.r.t. DEO. All the algorithms are
trained until a training loss converges while other hyperparameters are chosen so as to achieve the
best tradeoff.

Experiments on synthetic and four real benchmark datasets demonstrate that the proposed algorithm
consistently achieves near best accuracy-fairness tradeoff performance with a reasonable amount of
computational time.

	Outline
	Theoretical Insights on the Choice of the Bandwidth h
	Explicit Gradient Formulas
	The gradient of the model output
	A linear model
	A 2-layer NN classifier

	The gradient of DDP
	The gradient of DEO

	Synthetic Data Experiments
	Binary classification
	Multiclass classification

	Real Data Experiments
	Performances on Law School Admissions [36] and Credit Card Default [6, 39]
	Training Details

