
Appendix

1 Cleaner view of Table 2 (Due to Formatting Issues in Main Paper)

cost E runtime(s)
Dataset α us greedy A B us greedy A B us greedy A B
reuters 0.05 1.858 1.593 3.679 1.865 1 18 0 2 77.661 0.173 51.54 61.77

0.20 1.573 1.575 3.278 1.604 1 10 0 0 30.085 0.172 44.68 53.56
0.40 1.540 1.582 3.278 1.604 1 3 0 1 34.922 0.174 47.19 53.26

victorian 0.1 4.698 3.240 6.958 4.602 2 35 0 1 158.2 0.314 89.65 180.3
0.3 3.868 3.108 7.612 4.174 1 21 0 1 81.53 0.309 88.87 165.6
0.5 3.580 3.228 6.958 3.820 1 8 0 0 76.88 0.308 81.16 142.3

4area 0.45 9.421 9.786 19.13 9.768 2 31 0 0 14.51 2.283 393.1 1190
0.60 9.891 9.535 18.90 9.768 0 0 0 0 12.96 2.237 370.4 1276
0.80 9.671 9.762 14.02 9.768 0 0 0 0 12.06 2.224 362.4 1205

bank 0.80 2.914 0.133 N/A 7.450 1 1 N/A 504 2.941 0.292 N/A 117.5
,cost x104 0.90 2.914 0.133 N/A 7.450 1 1 N/A 231 2.940 0.291 N/A 117.9

1.00 0.121 0.127 N/A N/A 0 0 N/A N/A 2.496 0.289 N/A N/A
census 0.86 118.5 58.34 N/A TLE 0 129 N/A TLE 19.83 2.153 N/A TLE

,cost x104 0.90 118.5 57.33 N/A TLE 0 1 N/A TLE 19.63 2.168 N/A TLE
0.94 118.5 59.87 N/A TLE 1 1 N/A TLE 20.11 2.144 N/A TLE

creditcard 0.60 124.5 56.02 N/A TLE 1 15 N/A TLE 26.49 2.472 N/A TLE
,cost x104 0.70 124.5 58.22 N/A TLE 1 1 N/A TLE 26.78 2.456 N/A TLE

0.80 124.5 56.85 N/A TLE 1 1 N/A TLE 26.83 2.485 N/A TLE

Note than in the table above. We bold the winner of cost, E , and runtime between our algorithm, as well as Ahmadian et al and
Bera et al algorithm. The Greedy algorithm is not included as it is not a fair algorithm as seen from its E , but is left for comparison
purposes.

Appendix A

Lemma 1. Given a set of k−centers S, and an associated λ−Venn diagram R. Denote 2S as the powerset of S, then the following
holds

1. For non-empty A,A′ ⊂ S,A 6= A′, we must have JA ∩ JA′ = φ

2. The union of all joiners partitions R: R =
⋃
A∈2S ,A6=φ JA

3. The number of non empty joiners is at most min(2k − 1, N)

Proof. 1) Without loss of generality, assume |A| ≤ |A′|. Since A′ 6= A, there exists an i ∈ A′ such that i 6∈ A, or equivalently, i ∈ S−A.
Now take any point x ∈ JA′ . By definition, x ∈ B(i, λ) must be true. However, using the fact that a point in JA must belong to the
region B(i, λ), it follows that x cannot belong to JA

2) Take any point x ∈ R. Let A be the set of centers A ⊂ S that satisfy d(i, x) ≤ λ. Then the set of centers in j ∈ S − A
satisfy d(i, x) > λ. This implies that x belongs to JA by the definition of JA. Since A ∈ 2S , A 6= φ, then x belongs to the union of
joiners. Also note using (1) that the joiners are disjoint, so they partition R.

3) There are at most 2k − 1 non-empty elements in the power set of S. However, every point from the N points belongs to
one joiner only (using (1)). This means that the number of non empty joiners is bounded by the number of points, N . The result
follows.
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Region, Color Number of Points
J{1},Red 1
J{1},Green 2
J{1},Blue 1
J{2},Red 2
J{2},Green 1
J{2},Blue 1
J{3},Red 1

Region, Color Number of Points
J{3},Green 2
J{3},Blue 1
J{1,3},Blue 1
J{2,3},Red 1
J{2,3},Blue 1
J{1,2,3},Red 1

Table 1: Frequency for each Joiner-color pair.

Appendix B

Lemma 2. The number of variables is at most min(2k−1k|I|, Nk)

Proof. For a fixed signature c ∈ I, and a set A ⊂ S of size i, there are at most i LP variables {xc,A,j |j ∈ A}. There are
(
k
i

)
sets of size

i, so there are at most |I|
(
k
i

)
i variables for sets of size i. Summing this up over the set sizes, we get an upper bound on the number of

variables
k∑
i=1

|I|
(
k

i

)
i = 2k−1k|I|

However, each point in the input belongs to one, and only one set L(a,A) (since a point has 1 signature, and belongs to 1 joiner JA),
leading to at most N pairs (a,A) satisfying |L(a,A)| > 0. For each pair (a,A), there could be at most k variables {xa,A,j |j ∈ A},
which bounds the number of variables by Nk. Combining the two bounds yields the required result.

Now, we bound the number of constraints

Lemma 3. The number of constraints is at most kl +min(2k|I|, Nk) + min(2k−1k|I|, Nk)

Proof. For the set of constraints (1), there are kl constraints.
For the set of constraints (2), There are |I| signatures, and at most 2k possible A, so at most 2k|I| constraints.
However, each point belongs to one, and only one of L(a,A), leading to at most N pairs (a,A) satisfying |L(a,A)| > 0, which bounds
the number of constraints by Nk.
Finally, from Lemma 2, there are at most min(2k−1k|I|, Nk) variables, and thus at most min(2k−1k|I|, Nk) for the set of constraints
(3).
Combining the bounds for all sets of constraints, we get the desired result.

Appendix C

In this section, we show the frequency-distributor linear program for the example in Figure 1 in the paper. There are 3 non
overlapping groups, Red, Green, and Blue. Thus, the signature of any point is of length 1. We also set F = C, k = 3, βg = 0, αg = α.
Suppose that the initial centers returned by the greedy algorithm are the points S = {3, 7, 13}.

For each point xi, make a list S′ ⊂ S of cluster centers j such that d(xi, j) ≤ λ ⇐⇒ j ∈ S′ In other words, S′ are the
cluster centers reachable from xi. Associate the point xi and its color with S′. A straightforward implementation with a hash map
would take O(Nk) time. Table 1 shows a summary after the O(Nk) computation. Notice that J{1,2} is missing from the hash map.
This is because no point belongs to J{1,2}.

Finally, we define the corresponding 18 LP variables to the region color pairs in Table 1 (We abbreviate Red, Green, and Blue with
R,G,B respectively):

{xR,{1},1,xG,{1},1,xB,{1},1,xR,{2},2,xG,{2},2,xB,{2},2,xR,{3},3,xG,{3},3,xB,{3},3,xB,{1,3},1,xB,{1,3},3
xR,{2,3},2,xR,{2,3},3,xB,{2,3},2,xB,{2,3},3,xR,{1,2,3},1,xR,{1,2,3},2,xR,{1,2,3},3}
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These define the following frequency-distributor LP:

min 1
xR,{1,2,3},1 + xR,{1},1 ≤ α(xR,{1,2,3},1 + xR,{1},1 + xG,{1},1 + xB,{1},1 + xB,{1,3},1)
xG,{1},1 ≤ α(xR,{1,2,3},1 + xR,{1},1 + xG,{1},1 + xB,{1},1 + xB,{1,3},1)
xB,{1},1 + xB,{1,3},1 ≤ α(xR,{1,2,3},1 + xR,{1},1 + xG,{1},1 + xB,{1},1 + xB,{1,3},1)

xR,{2,3},2 + xR,{1,2,3},2 + xR,{2},2 ≤ α(xR,{2,3},2 + xR,{1,2,3},2 + xR,{2},2 + xG,{2},2 + xB,{2,3},2 + xB,{2},2)
xG,{2},2 ≤ α(xR,{2,3},2 + xR,{1,2,3},2 + xR,{2},2 + xG,{2},2 + xB,{2,3},2 + xB,{2},2)
xB,{2,3},2 + xB,{2},2 ≤ α(xR,{2,3},2 + xR,{1,2,3},2 + xR,{2},2 + xG,{2},2 + xB,{2,3},2 + xB,{2},2)

xR,{2,3},3 + xR,{1,2,3},3 + xR,{3},3 ≤ α(xR,{2,3},3 + xR,{1,2,3},3 + xR,{3},3 + xG,{3},3 + xB,{1,3},3 + xB,{2,3},3 + xB,{3},3)
xG,{3},3 ≤ α(xR,{2,3},3 + xR,{1,2,3},3 + xR,{3},3 + xG,{3},3 + xB,{1,3},3 + xB,{2,3},3 + xB,{3},3)
xB,{1,3},3 + xB,{2,3},3 + 1 ≤ α(xR,{2,3},3 + xR,{1,2,3},3 + xR,{3},3 + xG,{3},3 + xB,{1,3},3 + xB,{2,3},3 + xB,{3},3)

xB,{1,3},1 + xB,{1,3},3 = 1
xB,{2,3},2 + xB,{2,3},3 = 1
xR,{2,3},2 + xR,{2,3},3 = 1
xR,{1,2,3},1 + xR,{1,2,3},2 + xR,{1,2,3},3 = 1

xR,{1},1 = 1, xG,{1},1 = 2, xB,{1},1 = 1
xR,{2},2 = 2, xG,{2},2 = 1, xB,{2},2 = 1
xR,{3},3 = 1, xG,{3},3 = 1, xB,{3},3 = 1

x ≥ 0

Once we have solved the linear program, then for each point xi ∈ C, suppose the point has color c, and belongs to JA. Then assign
the point to cluster j ∈ A with probability xc,A,j

|L(c,A| . Then on expectation, each cluster would receive xc,A,j points from L(c, A). This
leads to a solution that respects the constraints on expectation. Indeed solving the LP above and doing the randomized assignment
results in E = 0 in 1000 random assignments.

Appendix D: Runtime Analysis
Denote LP (m,n) as the time needed to solve a linear programming problem with m variables and n constraints. In Algorithm 1, The
basic implementation of the greedy k−center algorithm takes O(Nkd) time, where d is the dimension of the input points. The distance
matrix distance_matrix(X,S) calculation takesO(Nkd) time. In addition, there areO(log max(d)

ε ) binary search iterations. In each iter-
ation, Lines 8−11 of Algorithm 1 takes O(Nk) time. The frequency-distributor LP can be constructed in O(Nkl) time (basic implementa-
tion without any special data structures to build the LP) and solved in LP (min(2k−1k|I|, Nk), kl+min(2k|I|, Nk)+min(2k−1k|I|, Nk)).
For small k, I, l, the number of variables and constraints is very small which leads to a very fast construction and feasability check for
the LP.

Hence, the entire algorithm takes on a worse case scenario O(Nkd+ log(max(d)
ε )(Nkl + LP (Nk, 3Nk))).
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