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Abstract

The classical theory of reinforcement learning (RL) has focused on tabular and
linear representations of value functions. Further progress hinges on combining
RL with modern function approximators such as kernel functions and deep neural
networks, and indeed there have been many empirical successes that have exploited
such combinations in large-scale applications. There are profound challenges,
however, in developing a theory to support this enterprise, most notably the need to
take into consideration the exploration-exploitation tradeoff at the core of RL in
conjunction with the computational and statistical tradeoffs that arise in modern
function-approximation-based learning systems. We approach these challenges
by studying an optimistic modification of the least-squares value iteration algo-
rithm, in the context of the action-value function represented by a kernel function
or an overparameterized neural network. We establish both polynomial runtime
complexity and polynomial sample complexity for this algorithm, without addi-
tional assumptions on the data-generating model. In particular, we prove that
the algorithm incurs an Õ(δFH

2
√
T ) regret, where δF characterizes the intrinsic

complexity of the function class F , H is the length of each episode, and T is the
total number of episodes. Our regret bounds are independent of the number of
states, a result which exhibits clearly the benefit of function approximation in RL.

1 Introduction

Reinforcement learning (RL) algorithms combined with modern function approximators such as
kernel functions and deep neural networks have produced empirical successes in a variety of appli-
cation problems [e.g., 27, 60, 61, 72, 70]. However, theory has lagged, and when these powerful
function approximators are employed, there is little theoretical guidance regarding the design of RL
algorithms that are efficient computationally or statistically, or regarding whether they even converge.
In particular, function approximation blends statistical estimation issues with dynamical optimization
issues, resulting in the need to balance the bias-variance tradeoffs that arise in statistical estimation
with the exploration-exploitation tradeoffs that are inherent in RL. Accordingly, full theoretical
treatments are mostly restricted to the tabular setting, where both the state and action spaces are
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discrete and the value function can be represented as a table [see, e.g., 33, 52, 6, 35, 50, 56], and
there is a disconnect between theory and the most compelling applications.

Provably efficient exploration in the function approximation setting has been addressed only recently,
with most of the existing work considering (generalized) linear models [78, 77, 36, 12, 80, 73]. These
algorithms and their analyses stem from classical upper confidence bound (UCB) or Thompson
sampling methods for linear contextual bandits [11, 41] and it seems difficult to extend them beyond
the linear setting. Unfortunately, the linear assumption is rather rigid and rarely satisfied in practice;
moreover, when such a model is misspecified, sublinear regret guarantees can vanish. There has been
some recent work that has presented sample-efficient algorithms with general function approximation.
However, these methods are either computationally intractable [39, 34, 20, 22] or hinge on strong
assumptions on the transition model [75, 24]. Thus, the following question remains open:

Can we design RL algorithms that incorporate powerful nonlinear function approximators such as
neural networks or kernel functions and provably achieve both computational and statistical

efficiency?

In this work, we provide an affirmative answer to this question. Focusing on the setting of an
episodic Markov decision process (MDP) where the value function is represented by either a kernel
function or an overparameterized neural network, we propose an RL algorithm with polynomial
runtime complexity and sample complexity, without imposing any additional assumptions on the
data-generating model. Our algorithm is relatively simple—it is an optimistic modification of the
least-squares value iteration algorithm (LSVI) [10]—a classical batch RL algorithm—to which we
add a UCB bonus term to each iterate. Specifically, when using a kernel function, each LSVI update
becomes a kernel ridge regression, and the bonus term is derived from that proposed for kernelized
contextual bandits [62, 67, 18]. For the neural network setting, motivated by the NeuralUCB algorithm
for contextual bandits [84], we construct a UCB bonus from the tangent features of the neural network
and we perform the LSVI updates via projected gradient descent. In both of these settings, the usage
of the UCB bonus ensures that the value functions constructed by the algorithm are always optimistic
in the sense that they serve as uniform upper bounds of the optimal value function. Furthermore, for
both the kernel and neural settings, we prove that the proposed algorithm incurs an Õ(δFH

2
√
T )

regret, where H is the length of each episode, T is the total number of episodes, and δF quantifies
the intrinsic complexity of the function class F . Specifically, as we will show in §4, δF is determined
by the interplay between the `∞-covering number of the function class used to represent the value
function and the effective dimension of function class F . (See Table 1 for a summary.)

A key feature of our regret bounds is that they depend on the complexity of the state space only
through δF and thus allow the number of states to be very large or even divergent. This clearly
exhibits the benefit of function approximation by tying it directly to sample efficiency. To the best of
our knowledge, this is the first provably efficient framework for reinforcement learning with kernel
and neural network function approximations.

Related Work. There is a vast literature on establishing provably efficient RL methods in the absence
of a generative model or an explorative behavioral policy. Much of this literature has focused on the
tabular setting; see [33, 52, 6, 21, 65, 35, 56] and the references therein. In particular, [6, 35] prove that
an RL algorithm necessarily incurs a Ω(

√
SAT ) regret under the tabular setting, where S and A are

the cardinalities of the state and action spaces, respectively. Thus, algorithms designed for the tabular
setting cannot be directly applied to the function approximation setting, where the number of effective
states is large. A recent literature has accordingly focused on the function approximation setting,
specifically the (generalized) linear setting where the value function (or the transition model) can be
represented using a linear transform of a known feature mapping [77, 78, 36, 12, 80, 73, 5, 83, 37].
Among these papers, our work is most closely related to [36]. In particular, in our kernel setting
when the kernel function has a finite rank, both our LSVI algorithm and the corresponding regret
bound reduce to those established in [36]. However, the sample complexity and regret bounds in
[36] diverge when the dimension of the feature mapping goes to infinity and thus cannot be directly
applied to the kernel setting.
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function class F regret bound
general RKHSH H2 ·

√
deff · [deff + logN∞(ε∗)] ·

√
T

γ-finite spectrum H2 ·
√
γ3T · log(γTH)

γ-exponential decay H2 ·
√

(log T )3/γ · T · log(TH)

overparameterized neural network H2 ·
√
deff · [deff + logN∞(ε∗)] ·

√
T + poly(T,H) ·m−1/12

Table 1: Summary of the main results. Here H is the length of each episode, T is the number of
episodes in total, and 2m is the number of neurons of the overparameterized networks in the neural
setting. For an RKHS H in general, deff denotes the effective dimension of H and N∞(ε∗) is the
`∞-covering number of the value function class, where ε∗ = H/T . Note that to obtain concrete
bounds, we apply the general result to RKHS’s with various eigenvalue decay conditions. Here γ is a
positive integer in the case of γ-finite spectrum and is a positive number in the case of γ-exponential
decay. Finally, in the last case we present the regret bound for the neural setting in general, where
deff is the effective dimension of the neural tangent kernel (NTK) induced by the overparameterized
neural network with 2m neurons and poly(T,H) is a polynomial in T and H . Such a general regret
bound can be expressed concretely as a function of the spectrum of the NTK.

Also closely related to our work is [71], which studies a similar optimistic LSVI algorithm for
general function approximation. This work focuses on value function classes with bounded eluder
dimension [57, 51]. It is unclear whether whether this formulation can be extended to the kernel
or neural network settings. [78] studies a kernelized MDP model where the transition model can
be directly estimated. Under a slightly more general model, [5] recently propose an optimistic
model-based algorithm via value-targeted regression, where the model class is the set of functions
with bounded eluder dimension. In other recent work, [37] studies a nonlinear control formulation in
which the transition dynamics belongs to a known RKHS and can be directly estimated from the data.
Our work differs from this work in that we impose an explicit assumption on the transition model and
our proposed algorithm is model-free.

Other authors who have presented regret bounds and sample complexities beyond the linear setting
include [39, 34, 20, 22]. These algorithms generally involve either high computational costs or
require possibly restrictive assumptions on the transition model [74, 75, 24].

Our work is also related to the literature on contextual bandits with either kernel function classes [62,
38, 63, 67, 18, 28] or neural network function classes [84]. Our construction of a bonus function
for the RL setting has been adopted from this previous work. However, while contextual bandits
can be viewed formally as special cases of our episodic MDP formulation with the episode length
equal to one, the temporal dependence in the MDP setting raises significant challenges. In particular,
the covering number N∞(ε∗) in Table 1 arises as a consequence of the fundamental challenge of
performing temporally extended exploration in RL.

Finally, our analysis of the optimistic LSVI algorithm is related to recent work on optimization and
generalization in overparameterized neural networks within the framework of the neural tangent
kernel [32]. See also [19, 32, 76, 25, 26, 3, 2, 85, 17, 44, 4, 15, 16, 43]. This literature focuses
principally on supervised learning, however; in the RL setting we need an additional bonus term in
the least-squares problem and thus require a novel analysis.

2 Background

In this section, we provide essential background on reinforcement learning, reproducing kernel
Hilbert space (RKHS), and overparameterized neural networks.

Episodic Markov Decision Processes

We focus on episodic MDPs, denoted MDP(S,A, H,P, r), where S and A are the state and action
spaces, respectively, the integer H > 0 is the length of each episode, P = {Ph}h∈[H] and r =
{rh}h∈[H] are the Markov transition kernel and the reward functions, respectively, where we let [n]
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denote the set {1, . . . , n} for integers n ≥ 1. We assume that S is a measurable space of possibly
infinite cardinality whileA is a finite set. Finally, for each h ∈ [H], Ph(· |x, a) denotes the probability
transition kernel when action a is taken at state x ∈ S in timestep h ∈ [H], and rh : S ×A → [0, 1]
is the reward function at step h which is assumed to be deterministic for simplicity.

A policy π of an agent is a set of H functions π = {πh}h∈[H] such that each πh(· |x) is a probability
distribution over A. Here πh(a |x) is the probability of the agent taking action a at state x at the h-th
step in the episode.

The agent interacts with the environment as follows. For any t ≥ 1, at the beginning of the t-th
episode, the agent determines a policy πt = {πth}h∈[H] while an initial state xt1 is picked arbitrarily
by the environment. Then, at each step h ∈ [H], the agent observes the state xth ∈ S , picks an action
ath ∼ πth(· |xth), and receives a reward rh(xth, a

t
h). The environment then transitions into a new state

xth+1 that is drawn from the probability measure Ph(· |xth, ath). The episode terminates when the
H-th step is reached and rH(xtH , a

t
H) is thus the final reward that the agent receives.

The performance of the agent is captured by the value function. For any policy π, and h ∈ [H], we
define the value function V πh : S → R as

V πh (x) = Eπ

[
H∑

h′=h

rh′(xh′ , ah′)

∣∣∣∣xh = x

]
, ∀x ∈ S, h ∈ [H],

where Eπ[·] denotes the expectation with respect to the randomness of the trajectory {(xh, ah)}Hh=1

obtained by following the policy π. We also define the action-value function Qπh : S × A → R as
follows:

Qπh(x, a) = Eπ
[ H∑
h′=h

rh′(xh′ , ah′)
∣∣∣xh = x, ah = a

]
.

Moreover, let π? denote the optimal policy which by definition yields the optimal value function,
V ?h (x) = supπ V

π
h (x), for all x ∈ S and h ∈ [H]. To simplify the notation, we write

(PhV )(x, a) := Ex′∼Ph(· | x,a)[V (x′)],

for any measurable function V : S → [0, H]. Using this notation, the Bellman equation associated
with a policy π becomes

Qπh(x, a) = (rh + PhV πh+1)(x, a), V πh (x) = 〈Qπh(x, ·), πh(· |x)〉A, V πH+1(x) = 0.
(2.1)

Here we let 〈·, ·〉A denote the inner product over A. Similarly, the Bellman optimality equation is
given by

Q?h(x, a) = (rh + PhV ?h+1)(x, a), V ?h (x) = max
a∈A

Q?h(x, a), V ?H+1(x) = 0. (2.2)

Thus, the optimal policy π? is the greedy policy with respect to {Q?h}h∈[H]. Moreover, we define the
Bellman optimality operator T?h by letting

(T?hQ)(x, a) = r(x, a) + (PhV )(x, a) for all Q : S ×A → R,
where V (x) = maxa∈AQ(x, a). By definition, the Bellman equation in (2.2) is equivalent to
Q?h = T?hQ?h+1, ∀h ∈ [H]. The goal of the agent is to learn the optimal policy π?. For any policy
π, the difference between V π1 and V ?1 quantifies the sub-optimality of π. Thus, for a fixed integer
T > 0, after playing for T episodes, the total (expected) regret [11] of the agent is defined as

Regret(T ) =

T∑
t=1

[
V ?1 (xt1)− V π

t

1 (xt1)
]
,

where πt is the policy executed in the t-th episode and xt1 is the initial state.

3 Optimistic Least-Squares Value Iteration Algorithms

In this section, we introduce the optimistic least-squares value iteration algorithm where the action-
value functions are estimated using a class of functions defined on Z = S ×A. The value iteration
algorithm [53, 66] is one of the most classical method in reinforcement learning, which finds
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{Q?h}h∈[H] by applying the Bellman equation in (2.2) recursively. Specifically, value iteration
constructs a sequence of action-value functions {Qh}h∈[H] via

Qh(x, a)← (T?hQh+1) =
[
rh + PhVh+1

]
(x, a), (3.1)

Vh+1(x)← max
a′∈A

Qh+1(x, a′), ∀(x, a) ∈ S ×A,∀h ∈ [H],

where QH+1 is set to be the zero function. However, this algorithm is impractical to implement in
real-world RL problems due to the following two reasons: (i) the transition kernel Ph is unknown and
(ii) we can neither iterate over all state-action pairs nor store a table of size |S ×A| when the number
of states is large. To tackle these challenges, the least-squares value iteration [10, 52] algorithm
implements the update in (3.1) approximately by solving a least-squares regression problem based
on historical data, which consists of the trajectories generated by the RL agent in previous episodes.
Specifically, let F be a function class. Before the beginning of the t-th episode, we have observed
t − 1 transition tuples {(xτh, aτh, xτh+1)}τ∈[n]. Then, for estimating Q?h, LSVI proposes to replace
(3.1) with a least-squares regression problem

Q̂th ← minimize
f∈F

{ t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)− f(xτh, a

τ
h)
]2

+ pen(f)

}
, (3.2)

where pen(f) is a regularization term. Moreover, to foster exploration, following the principle of
optimism in the face of uncertainty [66], we further incorporate a bonus function bth : Z → R and
define

Qth(·, ·) = min
{
Q̂th(·, ·) + β · bth(·, ·), H − h+ 1

}+
, V th(·) = max

a∈A
Qth(·, a), (3.3)

where β > 0 is a parameter and min{·, H−h+1}+ denotes the truncation to the interval [0, H−h−1].
Here we truncate the value function to [0, H − h+ 1] as each reward function is bounded in [0, 1].
Then, in the t-the episode, we let πt be the greedy policy with respect to {Qth}h∈[H] and execute πt.
Hence, combining (3.2) and (3.3) yields the optimistic least-squares value iteration algorithm, whose
details are given in Algorithm 1.

Algorithm 1 Optimistic Least-Squares Value Iteration with Function Approximation
1: Input: Function class F , penalty function pen(·), and parameter β.
2: for episode t = 1, . . . , T do
3: Receive the initial state xt1.
4: Set V tH+1 as the zero function.
5: for step h = H, . . . , 1 do
6: Obtain Qth and V th according to (3.2) and (3.3).
7: end for
8: for step h = 1, . . . ,H do
9: Take action ath ← argmaxa∈AQ

t
h(xth, a).

10: Observe the reward rh(xth, a
t
h) and the next state xth+1.

11: end for
12: end for

We note that the both the bonus function bth in (3.3) and the penalty function in (3.2) relies on the
choice of function class F . The optimistic LSVI in Algorithm 1 is only implementable when F is
specified. For instance, when F consists of functions of linear the form θ>φ(z), where φ : Z → Rd
is a known feature mapping and θ ∈ Rd is the parameter, we choose the ridge penalty ‖θ‖22 in (3.2)
and define bth(z) as [φ(z)>Athφ(z)]1/2 for some invertible matrix Ath. Then, Algorithm 1 recovers
the LSVI-UCB algorithm studied in [36], which further reduces to the tabular UCBVI algorithm [6]
when φ is the canonical basis.

In the rest of this section, we instantiate the optimistic LSVI framework by setting F as an RKHS
and the class of overparameterized neural networks.
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3.1 The Kernel Setting

In the following, we consider the case where function class F is an RKHS H with kernel K. In
this case, by setting pen(f) as the ridge penalty, (3.2) reduces to a kernel ridge regression problem.
Besides, we define bth in (3.3) as the UCB bonus function that also appears in kernelized contextual
bandit [62, 67, 18, 28, 78, 58, 14]. With these two modifications, we obtain the Kernel Optimistic
Least-Squares Value Iteration (KOVI) algorithm, which is summarized in Algorithm 2.

Specifically, for each t ∈ [T ], before the beginning of the t-th episode, we first obtain value functions
{Qth}h∈[H] by solving a sequence of kernel ridge regressions with the data obtained from the previous
t− 1 episodes. In particular, we let QtH+1 be a zero function. For any h ∈ [H], we replace (3.2) by a
kernel ridge regression given by

Q̂th ← minimize
f∈H

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)− f(xτh, a

τ
h)
]2

+ λ · ‖f‖2H, (3.4)

where λ > 0 is the regularization parameter. Then, we obtain Qth and V th as in (3.3), where the bonus
function bth will be specified later. That is,

Qth(s, a) = min
{
Q̂th(s, a) + β · bth(s, a), H − h+ 1

}+
, V th(s) = max

a
Qth(s, a), (3.5)

where β > 0 is a parameter.

The solution to (3.4) can be written in closed-form as follows. We define the response vector
yth ∈ Rt−1 by letting its τ -th entry be

[yth]τ = rh(xτh, a
τ
h) + V th+1(xτh+1), ∀τ ∈ [t− 1]. (3.6)

Recall that we denote z = (x, a) and Z = S × A. Besides, based on the kernel function K of the
RKHS, we define the Gram matrix Kt

h ∈ R(t−1)×(t−1) and function kth : Z → Rt−1 respectively as

Kt
h = [K(zτh, z

τ ′

h )]τ,τ ′∈[t−1] ∈ R(t−1)×(t−1), kth(z) =
[
K(z1

h, z), . . .K(zt−1
h , z)

]> ∈ Rt−1.
(3.7)

Then Q̂th in (3.4) can be written as Q̂th(z) = kth(z)>αth, where we define αth = (Kt
h + λ · I)−1yth.

Using Kt
h and kth defined in (3.7), the bonus function is defined as

bth(x, a) = λ−1/2 ·
[
K(z, z)− kth(z)>(Kt

h + λI)−1kth(z)
]1/2

, (3.8)
which can be interpreted as the posterior variance of Gaussian process regression and characterizes
the uncertainty of Q̂th [55]. Such a bonus term also appears in the literature on kernelized contextual
bandits [62, 67, 18, 28, 78, 58, 14] and is reduced to the UCB bonus proposed for linear bandits
[11, 41] when the feature mapping φ of the RKHS is finite-dimensional. In this case, KOVI reduces
to the LSVI-UCB algorithm proposed in [36] for linear value functions.

Furthermore, we remark that the bonus defined in (3.8) is called the UCB bonus because, when added
by such a bonus function, Qth defined in (3.5) serves as an upper bound of Q?h for all state-action
pair. Intuitively, the target function of the kernel ridge regression in (3.4) is T?hQth+1. However, due
to having limited data, the solution Q̂th has some estimation error, which is quantified bth. Thus,
when β is properly chosen, the bonus term triumphs the uncertainty of estimation, which yields
that Qth ≥ T?hQth+1 elementwisely. Notice that QtH+1 = Q?H+1 = 0. The Bellman equation
Q?h = T?hQ?h+1 directly implies that Qth is an elementwise upper bound of Q?h for all h ∈ [H]. Our
algorithm is called “optimistic value iteration” as the policy πt is greedy with respect to {Qth}h∈[H],
which are upper bounds of the optimal value function. In other words, compared with the standard
value iteration algorithm, we always over-estimate the value function. Such an optimistic approach is
pivotal for the RL agent to perform efficient temporally extended exploration.

4 Theory of Kernel Optimistic Least-Squares Value Iteration

In this section, we prove that KOVI achieves O(δHH
2
√
T )-regret bounds, where δH characterizes

the intrinsic complexity of the RKHSH that is used to approximate {Q?h}h∈[H]. Before presenting
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the theory, we first lay out a structural assumption for the kernel setting, which postulates that the
Bellman operator maps any bounded value function to a bounded RKHS-norm ball.

Assumption 4.1. Let RQ > 0 be a fixed constant. We define Q? = {f ∈ H : ‖f‖H ≤ RQH}. We
assume that for any h ∈ [H] and any Q : S ×A → [0, H], we have T?hQ ∈ Q?.

Since Q?h is bounded by in [0, H] for each all h ∈ [H], Assumption 4.1 ensures the optimal value
functions are contained in the RKHS-norm ball Q?. Thus, there is no approximation bias when
using functions inH to approximate {Q?h}h∈[H]. Moreover, it is shown in [23] that only assuming
{Q?h}h∈[H] ⊆ Q? is not sufficient for achieving a regret that is polynomial in H . Thus, we further
assume that Q? contains the image of the Bellman operator. A sufficient condition for Assumption
4.1 to hold is that

rh(·, ·), Ph(x′ | ·, ·) ∈ {f ∈ H : ‖f‖H ≤ 1}, ∀h ∈ [H], ∀x′ ∈ S. (4.1)
That is, both the reward function and the Markov transition kernel can be represented by functions
in the unit ball of H. When (4.1) holds, for any V : S → [0, H], it holds that rh + PhV ∈ H with
its RKHS norm bounded by H + 1. Hence, Assumption 4.1 holds with RQ = 2. Moreover, similar
assumptions are also made in [77, 78, 36, 80, 81, 73] for (generalized) linear functions. Also see
[23, 68, 42] for related discussions on the necessity of such an assumption.

Moreover, asQ? contains the image of the Bellman operator, the complexity ofH plays an important
role in the performance of KOVI. To characterize the intrinsic complexity of F , we consider a notion
of effective dimension named the maximal information gain [62], which is defined as

ΓK(T, λ) = sup
D⊆Z

{
1/2 · logdet(I +KD/λ)

}
, (4.2)

where the supremum is taken over all D ⊆ Z with |D| ≤ T . Here in (4.2) KD is the Gram matrix
defined in the same way as in (3.7) based on D, λ > 0 is a parameter, and the subscript K in ΓK
indicates the kernel K. The magnitude of ΓK(T, λ) relies on how fast the the eigenvaluesH decay
to zero and can be viewed as a proxy of the dimension ofH whenH is infinite-dimensional. In the
special case whereH is finite-rank, it holds that ΓK(T, λ) = O(γ · log T ) where γ is the rank ofH.

Furthermore, for any h ∈ [H], note that each Qth constructed by KOVI takes the form of

Q(z) = min
{
Q0(z) + β · λ−1/2

[
K(z, z)− kD(z)>(KD + λI)−1kD(z)

]1/2
, H − h+ 1

}+

,

(4.3)

where Q0 ∈ H, similar to Q̂th in (3.4), is the solution to a kernel ridge regression problem and
D ⊆ Z is a discrete subset of Z with no more than T state-action pairs. Moreover, KD and kD are
defined similarly as in (3.7) based on data in D. Then, for any R,B > 0, we define a function class
Qucb(h,R,B) as
Qucb(h,R,B) =

{
Q : Q takes the form of (4.3) with ‖Q0‖H ≤ R, β ∈ [0, B], |D| ≤ T

}
. (4.4)

As we will show in Lemma H.1, we have ‖Q̂th‖H ≤ RT for all (t, h) ∈ [T ] × [H], where
RT = 2H

√
ΓK(T, λ). Thus, when B exceeds parameter β in (3.5), each Qth is contained in

Qucb(h,RT , B).

Moreover, since rh + PhV th+1 = T?hQth+1 is the population ground truth of the ridge regression
in (3.4), the complexity of Qucb(h+ 1, RT , B) naturally appears when quantifying the uncertainty
of Q̂th. To this end, for any ε > 0, let N∞(ε;h,B) be the ε-covering number of Qucb(h,RT , B)
with respect to the `∞-norm on Z , which is also determined by the spectral structure of H and
characterizes the complexity of the value functions constructed by KOVI.

Now we are ready to present the regret bound of KOVI.

Theorem 4.2. Assume that there exists BT > 0 satisfying
8 · ΓK(T, 1 + 1/T ) + 8 · logN∞(ε∗;h,BT ) + 16 · log(2TH) + 22 + 2R2

Q ≤ (BT /H)2 (4.5)
for all h ∈ [H], where ε∗ = H/T . We set λ = 1 + 1/T and β = BT in Algorithm 2. Then, under
Assumption 4.1, with probability at least 1− (T 2H2)−1, we have

Regret(T ) ≤ 5βH ·
√
T · ΓK(T, λ). (4.6)
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As shown in (D.6), the regret can be written as O(H2 · δH ·
√
T ), where δH = BT /H ·

√
ΓK(T, λ)

reflects the complexity of H and BT satisfies (4.5). Specifically, δH involves (i) the `∞-covering
number N∞(ε∗, h,BT ) of Qucb(h,RT , BT ) and (ii) the effective dimension ΓK(T, λ), both charac-
terize the intrinsic complexity ofH. Moreover, when neglecting the constant and logarithmic terms
in (4.5), it suffices to choose BT satisfying

BT /H �
√

ΓK(T, λ) + max
h∈[H]

√
logN∞(ε∗, h,BT ),

which reduces the regret bound in (D.6) to

Regret(T ) = Õ
(
H2 ·

[
ΓK(T, λ) + max

h∈[H]

√
ΓK(T, λ) · logN∞(ε∗, h,BT )

]
·
√
T
)
. (4.7)

To further obtain some intuition of (4.7), let us consider the tabular case where Q? consists of all
measurable functions defined on S × A with range [0, H]. In this case, the value function class
Qucb(h,RT , BT ) can be set to Q?, whose `∞-covering number N∞(ε∗, h,BT ) ≤ |S × A| · log T .
Moreover, it can be shown that the effective dimension is also O(|S ×A| · log T ). Thus, ignoring the
logarithmic terms, Theorem 4.2 implies that by choosing β � H · |S × A|, optimistic least-squares
value iteration achieves an Õ(H2 · |S × A| ·

√
T ) regret.

Furthermore, we remark that the regret bound in (D.6) holds for any RKHS in general. It hinges on
(i) Assumption 4.1, which postulates that the RKHS-norm ball {f ∈ H : ‖f‖H ≤ RQH} contains
the image of the Bellman operator, and (ii) the inequality in (4.5) admits a solution BT , which is set
to be β in Algorithm 2. Here we set β to be sufficiently large so as to dominate the uncertainty of Q̂th,
whereas to quantify such uncertainty, we utilize the uniform concentration over the value function
class Qucb(h+ 1, RT , β) whose complexity metric, the `∞-covering number, in turn depends on β.
Such an intricate desideratum leads to (4.5) which determines β implicitly.

It is worth noting that the uniform concentration is unnecessary when H = 1. In this case, it suffices
to choose β = Õ(

√
ΓK(T, λ)) and KOVI incurs an Õ(ΓK(T, λ) ·

√
T ) regret, which matches the

regret bounds of UCB algorithms for kernelized contextual bandits in [62, 18]. Here Õ(·) omits
logarithmic terms. Thus, the covering number in (4.7) is specific for MDPs and arises due to the
temporal dependence within an episode.

Furthermore, to obtain a concrete regret bound from (D.6), it remains to further characterize ΓK(T, λ)
and logN∞(ε∗, h,BT ) using characteristics of H. To this end, in the following, we specify the
eigenvalue decay property ofH.

Assumption 4.3 (Eigenvalue Decay of H). Recall that the integral operator TK defined in (B.1)
has eigenvalues {σj}j≥1 and eigenfunctions {ψj}j≥1. We assume that {σj}j≥1 satisfies one of the
following two eigenvalue decay conditions for some constant γ > 0:

(i) γ-finite spectrum: we have σj = 0 for all j > γ, where γ is a positive integer.

(ii) γ-exponential decay: there exist absolute constantsC1 andC2 such that σj ≤ C1 ·exp(−C2 ·
jγ) for all j ≥ 1.

Moreover, for case (ii), we further assume that there exist constants τ ∈ [0, 1/2) Cψ > 0 such that
supz∈Z σ

τ
j · |ψj(z)| ≤ Cψ for all j ≥ 1.

Case (i) implies thatH is a γ-dimensional RKHS. When this is the case, under Assumption 4.1, there
exists a feature mapping φ : Z → Rγ such that, for any V : S → [0, H], rh+PhV is a linear function
of φ. Such a property is satisfied by the linear MDP model studied in [77, 78, 36, 80]. Moreover,
whenH satisfies case (i), KOVI reduces to the LSVI-UCB algorithm studied in [36]. In addition, case
(ii) postulates that the eigenvalues of TK decays exponentially fast, where γ is a constant that might
depend on the input dimension d, which is assumed fixed throughout this paper. For example, the
squared exponential kernel belongs to case (ii) with γ = 1/d [62]. Moreover, we assume that there
exists τ ∈ [0, 1/2) such that στj · ‖ψj‖∞ is universally bounded. Since K(z, z) ≤ 1, this condition is
naturally satisfied for τ = 1/2. However, here we assume that τ ∈ (0, 1/2), which is satisfied when
the magnitudes of the eigenvectors do grow not too fast compared with the decay of the eigenvalues.
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Such a condition is significantly weaker than assuming ‖ψj‖∞ is universally bounded, which is also
commonly made in the literature of nonparametric statistics [40, 59, 82, 45, 79]. It can be shown that
the squared exponential kernel on unit sphere in Rd satisfy this condition for any τ > 0. See [46] for
a more detailed discussion.

Now we present the regret bounds for the two eigenvalue decay conditions separately.

Corollary 4.4. Under Assumptions 4.1 and 4.3, we set λ = 1 + 1/T and β = BT in Algorithm 2,
where BT is defined as

BT =

{
Cb · γH ·

√
log(γ · TH) γ-finite spectrum,

Cb ·H
√

log(TH) · (log T )1/γ γ-exponential decay
(4.8)

Here Cb is an absolute constant that does not depend on T or H . Then, there exists an absolute
constant Cr such that, with probability at least 1− (T 2H2)−1, we have

Regret(T ) ≤

{
Cr ·H2 ·

√
γ3T · log(γTH) γ-finite spectrum,

Cr ·H2 ·
√

(log T )3/γ · T · log(TH) γ-exponential decay.
(4.9)

Corollary 4.4 asserts that when β is chosen properly according to the eigenvalue decay property of
H, KOVI incurs a sublinear regret under both the two cases specified in Assumption 4.3. Note that
the linear MDP [36] satisfies the γ-finite spectrum condition and KOVI recovers the LSVI-UCB
algorithm studied in [36] when restricted to this setting. Moreover, our Õ(H2 ·

√
γ3T ) also matches

the regret bound in [36]. In addition, under the γ-exponential eigenvalue decay condition, as we will
show in §I, the log-covering number and the effective dimension are bounded by (log T )1+2/γ and
(log T )1+1/γ , respectively. Plugging these facts into (4.7), we obtain the sublinear regret in (D.6).
As a concrete example, for the squared exponential kernel, we obtain an O(H2 · (log T )1+1.5d ·

√
T )

regret, where d is the input dimension. This such a regret is (log T )d/2 worse than that in [62] for
kernel contextual bandits, which is due to bounding the log-covering number. See §G.1 for details.

Furthermore, similarly to the discussion in Section 3.1 of [35], the regret bound in (D.6) directly
translates to an upper bound on the sample complexity as follows. When the initial state is fixed
for all episodes, for any fixed ε > 0, with at least a constant probability, KOVI returns a policy π
satisfying V ?1 (x1)− V π1 (x1) ≤ ε using O(H4B2

T · ΓK(T, λ)/ε2) samples. Specifically, for the two
cases considered in Assumption 4.3, such a sample complexity guarantee reduces to Õ

(
H4 · γ3/ε2

)
and Õ

(
H4 · (log T )2+3/γ/ε2

)
, respectively. Moreover, similar to [36], our analysis can also be

extended to the misspecified setting where inff∈Q? ‖f − T ?h Q‖∞ ≤ errmis for all Q : Z → [0, H].
Here errmis is the model misspecification error. Under this setting, KOVI will suffer from an extra
errmis · TH regret. The analysis for the misspecified setting is similar to that for the neural setting
that will be presented in §D.

5 Conclusion

In this paper, we have presented an algorithmic framework for reinforcement learning with general
function approximation. Such a framework is based on an optimistic least-squares value iteration
algorithm that incorporates an additional bonus term in the solution to a least-squares value estimation
problem. The bonus term promotes exploration. When deploying this framework in the settings
of kernel function and overparameterized neural networks, respectively, we obtain two algorithms
KOVI and NOVI. Both algorithms are provably efficient, both computationally and in terms of the
number of samples. Specifically, under the kernel and neural network settings respectively, KOVI and
NOVI both achieve sublinear regret, Õ(δFH

2
√
T ), where δF is a quantity that characterizes the

intrinsic complexity of the function class F . To the best of our knowledge, this is the first provably
efficient reinforcement learning algorithm in the general settings of kernel and neural function
approximations.
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Broader Impact

This is a theoretical paper. We do not foresee our work directly having any societal consequences.
However, reinforcement learning is a tool that is increasingly used in practical machine learning
applications, especially in the setting where nonlinear function approximation is involved. Theoret-
ical explorations related to reinforcement learning with function approximation may help provide
frameworks through which to reason about, and design safer and more reliable practical systems.
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A Related Work

Our work belongs to the vast literature on establishing provably efficient RL methods without having
access to a generative model or a explorative behavioral policy. The tabular setting is well studied the
existing works. See, e.g., [33, 52, 6, 21, 65, 35, 56] and the references therein. It is shown in [6, 35]
that any RL algorithm necessarily incurs a Ω(

√
SAT ) regret under the tabular setting, where S and

A are the cardinalities of the state and action spaces, respectively. Thus, the algorithms designed for
the tabular setting cannot be directly applied to the function approximation setting where the number
of states is gigantic. When function approximation is employed, [77, 78, 36, 12, 80, 73, 5, 83, 37]
focus on the (generalized) linear setting where the value function (or the transition model) can be
represented using a linear transform of a known feature mapping. Among these works, our work
is most related to [36]. In particular, in our kernel setting, when kernel function has a finite rank,
both our LSVI algorithm and the corresponding regret bound are reduced to the those established
in [36]. However, their sample complexity or regret bounds all diverge when the dimension of the
feature mapping goes to infinity and thus cannot be directly extended to the kernel setting. Another
closely related work is [71], which studies a similar optimistic LSVI algorithm for general function
approximation. Their work focuses on value function classes with bounded eluder dimensions
[57, 51] and it is unclear whether their construction of the bonus function can be extended to the
kernel or neural settings. Besides, [78] also study a kernelized MDP model where the transition
model can be directly estimated. Under a slightly more general model, [5] recently propose an
optimistic model-based algorithm via value-targeted regression, where the model class is allowed to
be general functions with bounded eluder dimension. In another recent work, [37] study a nonlinear
control problem where the system dynamics belongs to a known RKHS and can be directly estimated
from the data. As opposed to these works, we do not pose an explicit assumption on the transition
model and our proposed algorithm is model-free. Furthermore, regret or sample complexity results
have also been studied beyond linear function approximation. However, these algorithms are either
computational challenging [39, 34, 20, 22] or require additional assumptions on the transition model
that might be restrictive [74, 75, 24]

In addition, our work is also related to the literature on contextual bandits with kernel or [62, 38,
63, 67, 18, 28] neural network functions [84], which are special cases of our episodic MDP with
the episode length equal to one. The construction of our bonus function are adopted from these
works. However, our reinforcement learning problem has temporal dependence caused by state
transitions according to the Markov transition kernel, which is absent in bandit models. Specifically,
the covering number N∞(ε∗) in Table 1 arises due to such an additional structure captures the
fundamental challenge of temporally extended exploration in RL. When applying our algorithm to
kernel contextual bandits, the regret bound reduces to deff ·

√
T where deff is the effective dimension

of the RKHS. Such a regret bound matches those in [62, 18].

Furthermore, our analysis of the optimistic LSVI algorithm is akin to the recent study of
the optimization and generalization of over-parameterized neural networks via the framework
of the neural tangent kernel [32]. Most of these works focus on the supervised learning
[19, 32, 76, 25, 26, 3, 2, 85, 17, 44, 4, 15, 16, 43]. In contrast, our algorithm incorporates an
additional bonus term in the least-squares problem and thus requires novel analysis.

B Additional Background

In this section, we present the background of reproducing kernel Hilbert space and overparameterized
neural networks.

B.1 Reproducing Kernel Hilbert Space

In the next section, we aim to estimate the optimal value function Q?h using functions in a reproducing
kernel Hilbert space (RKHS) [31]. To this end, hereafter, to simplify the notation, we let z = (x, a)
denote a state-action pair and denote Z = S × A. Without loss of generality, we regard Z as
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a compact subset of Rd where the dimension d is assumed fixed. This can be achieved if there
exists a known embedding mapping ψembed : Z → Rd that pre-processes the input (x, a). Let H
be an RKHS defined on Z with kernel function K : Z × Z → R, which contains a family of
functions defined on Z . Let 〈·, ·〉H : H×H → R and ‖ · ‖H : H → R denote the inner product and
RKHS norm on H, respectively. Since H is an RKHS, there exists a feature mapping φ : Z → H
such that f(z) = 〈f(·), φ(z)〉H for all f ∈ H and all z ∈ Z . Moreover, for any x, y ∈ Z , we
have K(x, y) = 〈φ(x), φ(y)〉H. In this work, we assume that the kernel function K is uniformly
bounded in the sense that supz∈Z K(z, z) < ∞. Without loss of generality, we assume that
supz∈Z K(z, z) ≤ 1, which implies that ‖φ(z)‖H ≤ 1 for all z ∈ Z .

Furthermore, let L2(Z) be the space of square-integrable functions on Z with respect to the Lebesgue
measure and let 〈·, ·〉L2 be the inner product on L2(Z). The kernel function K induces a integral
operator TK : L2(Z)→ L2(Z) defined as

TKf(z) =

∫
Z
K(z, z′) · f(z′) dz′, ∀f ∈ L2(Z). (B.1)

By Mercer’s Theorem [64], the integral operator TK has countable and positive eigenvalues {σi}i≥1

and the corresponding eigenfunctions {ψi}i≥1 form an orthonormal basis of L2(Z). Moreover, the
kernel function admits a spectral expansion

K(z, z′) =

∞∑
i=1

σi · ψi(z) · ψj(z′). (B.2)

Then, the RKHSH can be written as a subset of L2(Z) as

H =

{
f ∈ L2(Z) :

∞∑
i=1

〈f, ψi〉2L2

σi
<∞

}
,

and the inner product ofH can be written as

〈f, g〉H =

∞∑
i=1

1/σi · 〈f, ψi〉L2 · 〈g, ψi〉L2 , for all f, g ∈ H.

By such a construction, the scaled eigenfunctions {√σiψi}i≥1 form an orthogonal basis of RKHSH
and the feature mapping φ(z) ∈ H can be written as φ(z) =

∑∞
i=1 σiψi(z) · ψi for any z ∈ Z .

B.2 Overparameterized Neural Networks

In addition to RKHS, we also study the setting where the value functions are approximated by
overparameterized neural networks. In the sequel, we define the class of neural networks that will be
used in the algorithm.

Recall that we denote Z = S × A and view it as a subset of Rd. For neural networks, we further
regard Z as a subset of the unit sphere in Rd. That is, ‖z‖2 = 1 for all z = (x, a) ∈ Z . A two-layer
neural network f(·; b,W ) : Z → R with 2m neurons and weights (b,W ) is defined as

f(z; b,W ) =
1√
2m

2m∑
j=1

bj · act(W>j z), ∀z ∈ Z. (B.3)

Here act : R → R is the activation function, bj ∈ R and Wj ∈ Rd for all j ∈ [2m], and b =
(b1, . . . , b2m)> ∈ R2m and W = (W1, . . . ,W2m) ∈ R2dm. During training, we initialize (b,W ) via
the symmetric initialization scheme [30, 9] as follows. For any j ∈ [m], we set bj

i.i.d.∼ Unif({−1, 1})
and Wj

i.i.d.∼ N(0, Id/d), where Id is the identity matrix in Rd. For any j ∈ {m+ 1, . . . , 2m}, we set
bj = −bj−m and Wj = Wj−m. We remark that such an initialization implies that the initial neural
network is a zero function, which is used only to simply the theoretical analysis. Besides, for ease of
presentation, during training we fix b at its initial value and only optimize over W . Moreover, we
denote f(z; b,W ) by f(z;W ) to simplify the notation.

Furthermore, we assume that the neural network in is overparameterized in the sense that the width
2m is much larger than the number of episodes T . Overparameterization is shown to be pivotal for
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neural training in both theory and practice [49, 2, 4]. Under the such a regime, the dynamics of
training neural networks are well captured by the framework of neural tangent kernel (NTK) [32].
Specifically, let ϕ(·;W ) : Z → R2md be the gradient of f(;W ) with respect to W , which is given by

ϕ(z;W ) = ∇W f(z;W ) =
(
∇W1

f(z;W ), . . . ,∇W2m
f(z;W )), ∀z ∈ Z. (B.4)

Let W (0) be the initial value of W . Condition on the realization of W (0), we define a kernel matrix
Km : Z → Z as

Km(z, z′) =
〈
ϕ(z;W (0)), ϕ(z′;W (0))

〉
, ∀(z, z′) ∈ Z × Z. (B.5)

When m is sufficiently large, for all W that is in a neighborhood of W (0), it can be shown that
f(·,W ) is close to its linearization at W (0),

f(·;W ) ≈ f̂(·;W ) = f(·,W (0)) +
〈
φ(·;W (0)),W −W (0)

〉
=
〈
φ(·;W (0)),W −W (0)

〉
. (B.6)

The linearized function f̂(·;W ) belongs to the RKHS with kernel Km. Moreover, as m goes to
infinity, due to random initialization, Km converges to a kernel Kntk : Z × Z , dubbed as neural
tangent kernel (NTK), which is given by

Kntk(z, z′) = E
[
act′(w>z) · act′(w>z′) · z>z′

]
, (z, z′) ∈ Z × Z, (B.7)

where act′ is the derivative of the activation function, and the expectation in (B.7) is taken with
respect to w ∼ N(0, Id/d).

C Kernel and Neural Optimistic Least-Squares Value Iteration

In this section, we lay out the details of KOVI and NOVI, which are omitted for brevity. We remark
that the loss function Lth in Line 7 of Algorithm 4 is given in (C.1) and its global minimizer Ŵ t

h can
be efficiently obtained by first-order optimization methods.

Algorithm 2 Kernelized Optimistic Least-Squares Value Iteration (KOVI)
1: Input: Parameters λ and β.
2: for episode t = 1, . . . , T do
3: Receive the initial state xt1.
4: Set V tH+1 as the zero function.
5: for step h = H, . . . , 1 do
6: Compute the response yth ∈ Rt−1, the Gram matrix Kt

h ∈ R(t−1)×(t−1), and function kth
as in (3.6) and (3.7), respectively.

7: Compute
8: αth = (Kt

h + λ · I)−1yth,

9: bth(·, ·) = λ−1/2 ·
[
K(·, ·; ·, ·)− kth(·, ·)>(Kt

h + λI)−1kth(·, ·)
]1/2

.
10: Obtain value functions

Qth(·, ·)← min{kth(·, ·)>αth + β · bth(·, ·), H − h+ 1}+, V th(·) = max
a

Qth(·, a).

11: end for
12: for step h = 1, . . . ,H do
13: Take action ath ← argmaxa∈AQ

t
h(xth, a).

14: Observe the reward rh(xth, a
t
h) and the next state xth+1.

15: end for
16: end for

C.1 Neural Optimistic Value Iteration

In this subsection, we estimate the value functions {Q?h}h∈[H] using overparameterized neural
networks. We aim to estimate each Q?h using a neural network given in (B.3), which is initialized via
the symmetric initialization scheme [30, 9] introduced in §B.2. Moreover, for simplicity, we assume
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Algorithm 3 Neural Optimistic Least-Squares Value Iteration (NOVI)
1: Input: Parameters λ and β.
2: Initialize the network weights (b(0),W (0)) via the symmetric initialization scheme.
3: for episode t = 1, . . . , T do
4: Receive the initial state xt1.
5: Set V tH+1 as the zero function.
6: for step h = H, . . . , 1 do
7: Solve the neural network optimization problem Ŵ t

h = argminW Lth(W ).
8: Update Λth = Λt−1

h + ϕ(xt−1
h , at−1

h ; Ŵ t
h)ϕ(xt−1

h , at−1
h ; Ŵ t

h)>.
9: Obtain the bonus function bth defined in (C.4).

10: Obtain value functions

Qth(·, ·)← min
{
f
(
·, ·; Ŵ t

h

)
+ β · bth(·, ·), H − h+ 1

}+
, V th(·) = max

a
Qth(·, a).

11: end for
12: for step h = 1, . . . ,H do
13: Take action ath ← argmaxa∈AQ

t
h(xth, a).

14: Observe the reward rh(xth, a
t
h) and the next state xth+1.

15: end for
16: end for

that all the neural networks share the same initial weights, denoted by (b(0),W (0)). Besides, we fix
b = b(0) in (B.3) and only update the value of W ∈ R2md.

Under such a neural setting, we replace the least-squares regression in (3.2) by a nonlinear ridge
regression. In particular, for any (t, h) ∈ [T ]× [H], we define the loss function Lth : R2md → R as

Lth(W ) =

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)− f(xτh, a

τ
h;W )

]2
+ λ ·

∥∥W −W (0)
∥∥2

2
, (C.1)

where λ > 0 is the regularization parameter. Then we define Q̂th as

Q̂th(·, ·) = f
(
·, ·; Ŵ t

h

)
, where Ŵ t

h = argmin
W∈R2md

Lth(W ). (C.2)

Here we assume that there is an optimization oracle that returns the global minimizer of the loss
function Lth. It has been shown in a large body of literature that, when m is sufficiently large, with
random initialization, simple optimization methods such as gradient descent provably find the global
minimizer of the empirical loss function at a linear rate of convergence [26, 25, 4]. Thus, such an
optimization oracle can be realized by gradient descent with sufficiently large number of iterations
and the computational cost of realizing such a oracle is polynomial in m, T , and H .

It remains to construct the bonus function bth. Recall that we define ϕ(·;W ) = ∇W f(·;W ) in (B.4).
We define matrix Λth ∈ R2md×2md as

Λth = λ · I2md +

t−1∑
τ=1

ϕ
(
xτh, a

τ
h; Ŵ τ+1

h

)
ϕ
(
xτh, a

τ
h; Ŵ τ+1

h

)>
, (C.3)

which can be recursively computed by letting

Λ1
h = λ · I2md, Λth = Λt−1

h + ϕ
(
xt−1
h , at−1

h ; Ŵ t
h

)
ϕ
(
xt−1
h , at−1

h ; Ŵ t
h

)>
, ∀t ≥ 2.

Then the bonus function bth is defined as

bth(x, a) =
[
ϕ
(
x, a; Ŵ t

h

)>
(Λth)−1ϕ

(
x, a; Ŵ t

h

)]1/2
, ∀(x, a) ∈ S ×A. (C.4)

Finally, we obtain the value functionsQth and V th via (3.5), with Q̂th and bth defined in (C.2) and (C.4),
respectively. By letting πt be the greedy policy with respect to {Qth}h∈[H], we obtain the Neural
Optimistic Least-Squares Value Iteration (NOVI) algorithm, whose details are stated in Algorithm 4
in §F.
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The intuition of the bonus term in (C.4) can be understood via the connection between overparame-
terized neural networks and NTK. Specifically, when m is sufficiently large, it can be shown that
each Ŵ t

h is not far from the initial value W (0). When this is the case, suppose we replace the neural
tangent features {ϕ(·; Ŵ τ

h )}τ∈[T ] in (C.3) and (C.4) by ϕ(·;W (0)), then bth recovers the UCB bonus
in linear contextual bandits and linear MDPs with feature mapping ϕ(·;W (0)) [1, 36, 73]. Moreover,
when m converges to infinity, it will become the UCB bonus defined in (3.8) for the RKHS setting
with the kernel being Kntk. Thus, when the neural networks are overparameterized, value functions
{Qth}h∈[H] are approximately elementwise upper bounds of the optimal value functions and thus we
achieve optimism approximately.

D Theory of Neural Optimistic Least-Squares Value Iteration

In this section, we establish the regret of NOVI. Throughout this subsection, we letH be the RKHS
whose kernel function is Kntk define in (B.7). Also recall that we regard Z = S ×A as a subset of
the unit sphere Sd−1 = {z ∈ Rd : ‖z‖2 = 1}. Moreover, let (b(0),W (0)) be the initial value of the
network weights obtained via the symmetric initialization scheme introduced in §B.2. Conditioning
on the randomness of the initialization, we define a finite-rank kernel Km : Z × Z → R by letting
Km(z, z′) = 〈∇W f(z; b(0),W (0)),∇W f(z′; b(0),W (0))〉. Notice that the rank ofKm ismd, where
m is much larger than T and H and is allowed to increase to infinity. Besides, with a slight abuse of
notation, we define

Q? =

{
fα(z) =

∫
Rd

act′(w>z) · z>α(w) dp0(w) : α : Rd → Rd, ‖α‖2,∞ ≤ RQH/
√
d

}
, (D.1)

where RQ is a positive number, p0 is the density of N(0, Id/d), and we define ‖α‖2,∞ =
supw ‖α(w)‖2. That is, Q? consists of functions that can be expressed as infinite number of random
features. As shown in Lemma C.1 of [30], Q? is a dense subset of the RKHSH. Thus, when RQ is
sufficiently large, Q? in (D.1) is an expressive function class. We impose the following condition
on Q?.
Assumption D.1. We assume that for any h ∈ [H] and anyQ : S×A → [0, H], we have T?hQ ∈ Q?.

Assumption D.1 is in the same vein as Assumption 4.1. Here we focus on Q∗ instead of an RKHS
norm ball of NTK only due to technical considerations. However, since functions of the form in (D.1)
are dense inH, Assumptions D.1 and 4.1 are indeed very similar.

To characterize the value function class associated with NOVI, for any discrete set D ⊆ Z , similar to
(C.3), we define

ΛD = λ · I2md +
∑
z∈D

ϕ(z;W (0))ϕ(z;W (0))>,

where ϕ(·;W (0)) is the neural tangent feature defined in (B.4). With a slight abuse of notation, for
any R,B > 0, we let Qucb(h,R,B) denote that class of functions that take the form of

Q(z) = min
{〈
ϕ(z;W (0)),W 〉+ β ·

[
ϕ(z;W (0))>(ΛD)−1ϕ(z;W (0))

]1/2
, H − h+ 1

}+

,

(D.2)

whereW ∈ R2md satisfies ‖W‖2 ≤ R, β ∈ [0, B], andD has cardinality no more than T . Intuitively,
when both R and B are sufficiently large, Qucb(h,R,B) contains the counterpart of neural-based
value function Qth that is based on neural tangent features. When m is sufficiently large, it is expected
that Qth is well-approximately by functions in Qucb(h,R,B) where the approximation error decays
with m. It is worth noting the class of linear functions of ϕ(·;W (0)) forms an RKHS with kernel
Km in (B.5). Any function f in this class can be written as f(·) = 〈ϕ(·;W (0)),Wf 〉 for some
Wf ∈ R2md. Moreover, the RKHS norm of f is given by ‖Wf‖2. Thus, Qucb(h,R,B) defined
above coincides with the counterpart defined in (4.4) with the kernel function being Km. We set
RT = H

√
2T/λ and let N∞(ε;h,B) denote the ε-covering number ofQucb(h,RT , B) with respect

to the `∞-norm on Z .

In the following theorem, we present a general regret bound for NOVI.
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Theorem D.2. Under Assumptions D.1, We also assume that m is sufficiently large such that
m = Ω(T 13H14 · (logm)3). In Algorithm 4, we let λ be a sufficiently large constant and let β = BT
which satisfies inequality

16ΓKm(T, λ) + 16 · logN∞(ε∗, h+ 1, BT ) + 32 · log(2TH) + 4R2
Q · (1 + λ/d) ≤ (BT /H)2

(D.3)
for all h ∈ [H]. Here ε∗ = H/T and ΓKm(T, λ) is the maximal information gain defined for
kernel Km. In addition, for the neural network in (B.3), we assume the activation function act is
Cact-smooth, i.e., its derivative act′ is Cact-Lipschitz, and m is sufficiently large such that

m = Ω
(
β12 · T 13 ·H14 · (logm)3

)
. (D.4)

Then with probability at least 1− (T 2H2)−1, we have

Regret(T ) = 5βH ·
√
T · ΓKm(T, λ) + 10βTH · ι, (D.5)

where we define ι = T 7/12 ·H1/6 ·m−1/12 · (logm)1/4.

This theorem shows that, when m is sufficiently large, NOVI enjoys a similar regret bound as KOVI.
Specifically, the choice of β in (D.3) is similar to that in (4.5) for kernel Km. Here we set λ to be an
absolute constant as supzKm(z, z) ≤ 1 no longer holds. In addition, here we assume that act′ is
Cact-Lipschitz on R, which can be relaxed to only assuming act′ is Lipschitz continous on a bounded
interval of R that contains w>z with high probability, where w is drawn from the initial distribution
of Wj , j ∈ [m].

Moreover, comparing (D.6) and (D.5) we observe that, when m is sufficiently large, NOVI can
be viewed as a misspecified version of KOVI for the RKHS with kernel Km, where the model
misspecification error is errmis = 10β · ι. Specifically, the first term in (D.5) is the same as that
in (D.6), where the choice of β and ΓKm(T, λ) reflect the intrinsic complexity of Km. Whereas
the second term is equal to errmis · TH , which arises due to approximating neural network value
functions by functions inQucb(h,RT , BT ), which are constructed using kernel functions with feature
mapping ϕ(·;W (0)). Moreover, when β is bounded by a polynomial of TH , to make errmis · TH
negligible, it suffices to letm be a polynomial of TH . That is, when the network width is a polynomial
of the total number of steps, NOVI achieves the same performance as KOVI.

Furthermore, when neglecting the constants and logarithmic terms in (D.3), we simplify the regret
bound in (D.5) into

Regret(T ) = O
(
H2 ·

[
ΓKm(T, λ) + max

h∈[H]

√
ΓKm(T, λ) · logN∞(ε∗, h,BT )

]
·
√
T + errmis · T

)
.

which depends on the intrinsic complexity of Km through both the effective dimension ΓKm(T, λ)
and the log-covering number logN∞(ε∗, h,BT ). To obtain a more concrete regret bounds, in the
following, we pose an assumption on the spectral structure of Km.

Assumption D.3 (Eigenvalue Decay of the Empirical NTK). Conditioning on the randomness of
(b(0),W (0)), let Km be the kernel induced by the neural tangent features ∇f(·; b(0),W (0)). Let
TKm be the integral operator induced by Km and the Lebesgue measure on Z and let {σj}j≥1 and
{ψj}j≥1 be its eigenvalues and eigenvectors, respectively. We assume that {σj}j≥1 and {ψj}j≥1

satisfy either one of the two decay conditions specified in Assumption 4.3. Here we assume the
constants C1, C2, Cψ , γ, and τ do not depend on m.

Here we assume that Km satisfies Assumption 4.3. Since Km depends on the initial network weights,
which are random, this assumption should be better understood in the limit sense. Specifically, as m
goes to infinity, Km converges to Kntk, which is determined by both the activation function and the
distribution of the initial network weights. Thus, if the RKHS with kernel Kntk satisfy Assumption
4.3, when m is sufficiently large, it is reasonable to expect that such a condition also holds for Km.
Due to the space limit, we present concrete examples of Kntk satisfying Assumption 4.3 in §G.3 in
the appendix.

Now we are ready to characterize the performances of NOVI for each case separately.
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Corollary D.4. Under Assumptions D.1 and D.3, we assume the activation function is Cact-smooth
and the number of neurons of the neural network satisfies (D.4). Besides, in Algorithm 4 we let λ be
a sufficiently large constant and set β = BT as in (4.8). Then exists an absolute constant Cr such
that, with probability at least 1− (T 2H2)−1, we have

Regret(T ) ≤

{
Cr ·H2 ·

√
γ3T · log(γTH) + 10βTH · ι γ-finite spectrum,

Cr ·H2 ·
√

(log T )3/γ · T · log(TH) + 10βTH · ι γ-exponential decay,
(D.6)

where we define ι = T 7/12 ·H1/6 ·m−1/12 · (logm)1/4.

Corollary D.4 is parallel to Corollary 4.4, with an additional misspecification error 10βTH · ι.
It remains to see whether there exist concrete neural networks that induce NTKs satisfying each
eigenvalue decay condition. As we will show in §G.3, neural network with quadratic and sine
activation functions induce NTKs satisfying the finite-spectrum and exponential eigenvalue decay
conditions, respectively. Corollary D.4 can be directly applied to these concrete examples to obtain
sublinear regret bounds.

E Proofs of the Main Results

In this section, we provide the proofs of Theorems 4.2 and D.2. The proofs of the supporting lemmas
and auxiliary results are deferred to the appendix.

E.1 Proof of Theorem 4.2

Proof. For simplicity of presentation, we define the temporal-difference (TD) error as
δth(x, a) = rh(x, a) + (PhV th+1)(x, a)−Qth(x, a), ∀(x, a) ∈ S ×A. (E.1)

Here δth is a function on S ×A for all h ∈ [H] and t ∈ [T ]. Note that V th(·) = maxa∈AQ
t
h(·, a). In-

tuitively, {δth}h∈[H] quantifies the how far the {Qth}h∈[H] are from satisfying the Bellman optimality
equation in (2.2). Next, recall that πt is the policy executed in the t-th episode, which generates a
trajectory {(xth, ath)}h∈[H]. For any h ∈ [H] and t ∈ [T ], we further define ζ1

t,h, ζ2
t,h ∈ R as

ζ1
t,h =

[
V th(xth)− V π

t

h (xth)
]
−
[
Qth(xth, a

t
h)−Qπ

t

h (xth, a
t
h)
]
, (E.2)

ζ2
t,h =

[
(PhV th+1)(xth, a

t
h)− (PhV π

t

h+1)(xth, a
t
h)
]
−
[
V th+1(xth+1)− V π

t

h+1(xth+1)
]
. (E.3)

By definition, ζ1
t,h and ζ2

t,h capture two sources of randomness—the randomness of choosing an action
ath ∼ πth(· |xth) and that of drawing the next state xth+1 from Ph(· |xth, ath), respectively. As we will
see in Appendix §H.3, {ζ1

t,h, ζ
2
t,h} form a bounded martingale difference sequence with respect to

a properly chosen filtration, which enables us to bound their total sum via the Azuma-Hoeffding
inequality [7].

To establish an upper bound on the regret, the following lemma first decomposes the regret into three
parts using the notation defined above. Similar regret decomposition results also appear in [12, 29].

Lemma E.1 (Regret Decomposition). The temporal-difference error is the mapping δth : S ×A →
defined in (E.1) for all (t, h) ∈ [T ]× [H]. We can thus write the regret as

Regret(T ) =

T∑
t=1

H∑
h=1

[
Eπ? [δth(xh, ah) |x1 = xt1]− δth(xth, a

t
h)
]

︸ ︷︷ ︸
(i)

+

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)︸ ︷︷ ︸
(ii)

T∑
t=1

H∑
h=1

Eπ?
[〈
Qth(xh, ·), π?h(· |xh)− πth(· |xh)

〉
A

∣∣x1 = xt1
]

︸ ︷︷ ︸
(iii)

, (E.4)

where ζ1
t,h and ζ2

t,h are defined in (E.2) and (E.3), respectively.
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Proof. See Appendix §H.1 for a detailed proof.

Returning to the main proof, notice that πth is the greedy policy with respect to Qth for all (t, h) ∈
[T ]× [H]. We have〈

Qth(xh, ·), π?h(· |xh)− πth(· |xh)
〉
A =

〈
Qth(xh, ·), π?h(· |xh)

〉
A −max

a∈A
Qth(xh, a) ≤ 0,

for all xh ∈ S. Thus, Term (iii) in (E.4) is non-positive. Then, by Lemma E.1, we can upper bound
the regret by

Regret(T ) ≤
{ T∑
t=1

H∑
h=1

[
Eπ? [δth(xh, ah) |x1 = xt1]− δth(xth, a

t
h)
]}

︸ ︷︷ ︸
(i)

+

[ T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)

]
︸ ︷︷ ︸

(ii)

.

(E.5)
For Term (i), since we do not observe trajectories from π∗, which is unknown, it appears that
Eπ∗ [δth(xh, ah) |x1 = xt1] cannot be estimated. Fortunately, however, by adding the bonus term in
Algorithm 2, we ensure that the temporal-difference error δth is a non-positive function, as shown in
the following lemma.

Lemma E.2 (Optimism). Let λ = 1 + 1/T and β = BT in Algorithm 2, where BT satisfies (4.5).
Under Assumptions 4.1, with probability at least 1− (2T 2H2)−1, we have that the following holds
for all (t, h) ∈ [T ]× [H] and (x, a) ∈ S ×A:

−2β · bth(x, a) ≤ δth(x, a) ≤ 0.

Proof. See Appendix §H.2 for a detailed proof.

Applying Lemma E.2 to Term (i) in (E.5), we obtain that

Term (i) ≤
[ T∑
t=1

H∑
h=1

−δth(xth, a
t
h)

]
≤ 2β ·

[ T∑
t=1

H∑
h=1

bth(xth, a
t
h)

]
(E.6)

holds with probability at least 1− (2T 2H2)−1, where β is equal to BT as specified in (4.5).

Finally, it remains to bound the sum of bonus terms in (E.6). As we show in (H.17), using the feature
representation ofH, we can write each bth(xth, a

t
h) as

bth(xth, a
t
h) =

[
φ(xth, a

t
h)>(Λth)−1φ(xth, a

t
h)
]1/2

,

where Λth = λ · IH +
∑t−1
τ=1 φ(xth, a

t
h)φ(xth, a

t
h)> is a self-adjoint and positive-definite operator

on H and IH is the identity mapping on H. Thus, combining the Cauchy-Schwarz inequality and
Lemma J.3, we have, for any h ∈ [H], with probability at least 1− (2T 2H2)−1 the following:

Term (i) ≤ 2β ·
√
T ·

H∑
h=1

[ T∑
t=1

φ(xth, a
t
h)>(Λth)−1φ(xth, a

t
h)

]1/2

≤ 2β ·
H∑
h=1

[
2T · logdet(I +KT

h /λ)
]1/2

= 4βH ·
√
T · ΓK(T, λ), (E.7)

where ΓK(T, λ) is the maximal information gain defined in (4.2) with parameter λ.

It remains to bound Term (ii) in (E.5), which is the purpose of the following lemma.

Lemma E.3. For ζ1
t,h and ζ2

t,h defined respectively in (E.2) and (E.3) and for any ζ ∈ (0, 1), with
probability at least 1− ζ, we have

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h) ≤
√

16TH3 · log(2/ζ).

Proof. See Appendix §H.3 for a detailed proof.
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Setting ζ = (2T 2H2)−1 in Lemma E.3 we obtain that

Term (ii) =

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h) ≤
√

16TH3 · log(4T 2H2) =
√

32TH3 · log(2TH) (E.8)

holds with probability at least 1− (2TH)−1.

Therefore, combining (4.5), (E.5), and (E.8), we conclude that, with probability at least 1−(T 2H2)−1,
the regret is bounded by

Regret(T ) ≤ 4βH ·
√
T · ΓK(T, λ) +

√
32TH3 · log(2TH) ≤ 5βH ·

√
T · ΓK(T, λ),

where the last inequality follows from the choice of β = BT , which implies that
β ≥ H ·

√
16 log(TH) ≥

√
32H · log(2TH).

This concludes the proof of Theorem 4.2.

E.2 Proof of Theorem D.2

Proof. The proof of Theorem D.2 is similar to that of Theorem 4.2. Recall that we letZ denote S×A
for simplicity. Recall also that for all (t, h) ∈ [T ] × [H], we define the temporal-difference (TD)
error δth : Z → R in (E.1) and define random variables ζ1

t,h and ζ2
t,h in (E.2) and (E.3), respectively.

Then, combining Lemma E.1 and the fact that πt is the greedy policy with respect to {Qth}h∈[H], we
bound the regret by

Regret(T ) ≤
{ T∑
t=1

H∑
h=1

[
Eπ? [δth(xh, ah) |x1 = xt1]− δth(xth, a

t
h)
]}

︸ ︷︷ ︸
(i)

+

[ T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)

]
︸ ︷︷ ︸

(ii)

.

(E.9)
Here, Term (ii) is a sum of a martingale difference sequence. By setting ζ = (4T 2H2)−1 in Lemma
E.3, with probability at least 1− (4T 2H2)−1, we have

Term (ii) =

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h) ≤
√

16TH3 · log(8T 2H2) ≤ H ·
√

32TH log(2TH). (E.10)

It remains to bound Term (i) in (E.9). To this end, we aim to establish a counterpart of Lemma
E.2 for neural value functions, which shows that, by adding a bonus term β · bth, the TD error δth is
always a non-positive function approximately. This implies that bounding Term (i) in (E.9) reduces
to controlling

∑T
t=1

∑H
h=1 b

t
h(xth, a

t
h).

Note that the bonus functions bth are constructed based on the neural tangent features ϕ(·; Ŵ t
h) and

the matrix Λth. In order to relate
∑T
t=1

∑H
h=1 b

t
h(xth, a

t
h) to the maximal information gain of the

empirical NTK Km, we define Λ
t

h and b
t

h, by analogy with Λth and bth, as follows:

Λ
t

h = λ · I2md +

t−1∑
τ=1

ϕ(xτh, a
τ
h;W (0))ϕ(xτh, a

τ
h;W (0))>, b

t

h(z) =
[
ϕ(z;W (0))>(Λ

t

h)−1ϕ(z;W (0))
]1/2

.

In the following lemma, we bound the TD error δth using b
t

h and show that bth and b
t

h are close in the
`∞-norm on Z when m is sufficiently large.

Lemma E.4 (Optimism). Let λ be an absolute constant and let β = BT in Algorithm 4, where
BT satisfies (D.3). Under the assumptions made in Theorem D.2, with probability at least 1 −
(2T 2H2)−1 −m2, it holds for all (t, h) ∈ [T ]× [H] and (x, a) ∈ S ×A that

− 5β · ι− 2β · bth(x, a) ≤ δth(x, a) ≤ 5β · ι, sup
(x,a)∈Z

∣∣bth(x, a)− bth(x, a)
∣∣ ≤ 2ι, (E.11)

where we define ι = T 7/12 ·H1/12 ·m−1/12 · (logm)1/4.

Proof. See Appendix §H.4 for a detailed proof.
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Applying Lemma E.2 to Term (i) in (E.5), we obtain that

Term (i) ≤
[ T∑
t=1

H∑
h=1

−δth(xth, a
t
h)

]
+ 5TH · ι ≤ 2β ·

[ T∑
t=1

H∑
h=1

b
t

h(xth, a
t
h)

]
+ 10βTH · ι (E.12)

holds with probability at least 1− (2T 2H2)−1 −m−2, where β = BT . Moreover, combining the
Cauchy-Schwarz inequality and Lemma J.3, we have

T∑
t=1

H∑
h=1

b
t

h(xth, a
t
h) ≤

√
T ·

H∑
h=1

[ T∑
t=1

ϕ(xth, a
t
h;W (0))>(Λ

t

h)−1ϕ(xth, a
t
h;W (0))

]1/2

≤ 2H ·
√
T · ΓKm(T, λ), (E.13)

where ΓK(T, λ) is the maximal information gain defined in (4.2) for kernel Km.

Notice that (2T 2H2)−1 +m−2 + (4T 2H2)−1 ≤ (T 2H2)−1. Thus, combining (E.9), (E.10), (E.12),
and (E.13), we obtain that

Regret(T ) ≤ 4βH ·
√
T · ΓKm(T, λ) + 10βTH · ι+H ·

√
32TH log(2TH)

≤ 5βH ·
√
T · ΓKm(T, λ) + 10βTH · ι

holds with probability at least 1− (2T 2H2)−1. Here the last inequality follows from the fact that

β ≥ H ·
√

32 log(TH) ≥
√

32H log(2TH).

This concludes the proof of Theorem D.2.

F Neural Optimistic Least-Squares Value Iteration

In this section, we provide the pseudocode for NOVI, which was omitted in the main text for brevity.
We remark that the loss function Lth in Line 7 is given in (C.1) and its global minimizer Ŵ t

h can be
efficiently obtained by first-order optimization methods.

Algorithm 4 Neural Optimistic Least-Squares Value Iteration (NOVI)
1: Input: Parameters λ and β.
2: Initialize the network weights (b(0),W (0)) via the symmetric initialization scheme.
3: for episode t = 1, . . . , T do
4: Receive the initial state xt1.
5: Set V tH+1 as the zero function.
6: for step h = H, . . . , 1 do
7: Solve the neural network optimization problem Ŵ t

h = argminW Lth(W ).
8: Update Λth = Λt−1

h + ϕ(xt−1
h , at−1

h ; Ŵ t
h)ϕ(xt−1

h , at−1
h ; Ŵ t

h)>.
9: Obtain the bonus function bth defined in (C.4).

10: Obtain value functions

Qth(·, ·)← min
{
f
(
·, ·; Ŵ t

h

)
+ β · bth(·, ·), H − h+ 1

}+
, V th(·) = max

a
Qth(·, a).

11: end for
12: for step h = 1, . . . ,H do
13: Take action ath ← argmaxa∈AQ

t
h(xth, a).

14: Observe the reward rh(xth, a
t
h) and the next state xth+1.

15: end for
16: end for

G Proofs of the Corollaries

In this section, we prove Corollaries 4.4 and D.4, which establish the regret for KOVI and NOVI under
each specific eigenvalue decay condition. in Appendix §G.3 we provide concrete examples of neural
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tangent kernels that satisfy Assumption 4.3 and show how to apply Corollaries 4.4 and D.4 to these
examples.

G.1 Proof of Corollary 4.4

Proof. To prove this corollary, it suffices to verify that for each eigenvalue decay condition specified
in Assumption 4.3, BT defined in (4.8) satisfies the condition in (4.5). Recall that we set λ = 1+1/T
in Algorithm 2 and denote RT = 2H

√
ΓK(T, λ), ε∗ = H/T . Also recall that we let N∞(ε, h,B)

denote the ε-covering number of Qucb(h,RT , B) with respect to the `∞-norm. In the sequel, we
consider the two cases separately.

Case (i): γ-Finite Spectrum. WhenH has at most γ nonzero eigenvalues, by Lemma I.5, we have
ΓK(T, λ) ≤ CK · γ log T , where CK is an absolute constant. Moreover, by Lemma I.1, for any
h ∈ [H], we have

logN∞(ε∗, h,BT ) ≤ CN · γ ·
{

1 + log
[
2
√

Γ(T, λ) · T
]}

+ CN · γ2 ·
[
1 + log(BT · T/H)

]
≤ 2CN · γ2 + C ′ · γ · log(γT ) + CN · γ2 · log(BT · T/H), (G.1)

where CN > 0 is the absolute constant given in Lemma I.1 and C ′ is an absolute constant that
depends on CN and CK . Thus, setting BT = Cb · γH ·

√
log(dTH) in (G.1), the left-hand side

(LHS) of (4.5) is bounded by
LHS of (4.5) ≤ 8CK · γ log T + 16CN · γ2 + 8C ′ · γ · log(γT )+

8CN · γ2 · log(Cb · γT ·
√

log(dTH)) + 16 · log(TH) + 22 + 2R2
Q

≤ γ2 ·
[
C1 · log(γTH) + 8CN · log(Cb)

]
, (G.2)

where C1 is an absolute constant that depends on C ′, CN , CK , and RQ. Thus, setting Cb as a
sufficiently large constant, by (G.2), we have

LHS of (4.5) ≤ C2
b · γ2 · log(dTH) = (BT /H)2,

which establishes (4.5) for the first case. Thus, applying Theorem 4.2 we obtain that

Regret(T ) ≤ 8BT ·H ·
√
T · ΓK(T, λ) ≤ Cr,1 ·H2 ·

√
γ3T · log(γTH) = Õ(H2

√
γ3T )

holds with probability at least 1− (T 2H2)−1, where Cr,1 is an absolute constant and Õ(·) omits the
logarithmic factor. Therefore, we conclude the first case.

Case (ii): γ-Exponential Decay. For the second case, by Lemma I.5 we have
ΓK(T, λ) ≤ CK · (log T )1+1/γ , (G.3)

where CK is an absolute constant. Thus, by the choice of BT in (4.8), when Cb is sufficiently large,
it holds that RT = 2H

√
ΓK(T, λ) ≤ BT . Then by Lemma I.1 we have

logN∞(h, ε∗, BT ) ≤ CN ·
[
1 + log(RT /ε

∗)
]1+1/γ

+ CN ·
[
1 + log(BT /ε

∗)
]1+2/γ

≤ 2CN ·
[
1 + log(BT /ε

∗)
]1+2/γ

= 2CN ·
{

1 + log
[
CbT ·

√
log(TH) · (log T )1/γ

]}1+2/γ
,

where the absolute constant CN is given by Lemma I.1. By direct computation, there exists an
absolute constant C2 such that

logN∞(h, ε∗, BT ) ≤ 2CN ·
[
1 + log(Cb) + C2 · log T + 1/2 · log logH

]1+2/γ
. (G.4)

Thus, combining (G.3) and (G.4), the left-hand side of (4.5) is bounded by

LHS of (4.5) ≤ 8CK · (log T )1+1/γ + 16C ·
[
1 + log(Cb) + C2 · log T + 1/2 · log logH

]1+2/γ

+ 16 · log(TH) + 22 + 2R2
Q

≤ C3 ·
[
(log T )1+2/γ + (log logH)1+2/γ + log(Cb)

]
, (G.5)

where C3 is an absolute constant that does not depend on Cb. Thus, when Cb is sufficiently large,
(G.5) implies that
LHS of (4.5) ≤ C3 ·

[
(log T )1+2/γ + (log logH)1+2/γ + log(Cb)

]
≤ C2

b · (log T )2/γ · log(TH) = (BT /H)2.

Thus, for the case of γ-exponential eigenvalue decay, (4.5) holds true for BT defined in (4.8).
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Finally, applying Theorem 4.2 and combining (4.8) and (G.3), we obtain that

Regret(T ) ≤ Cr,2 ·H2 · log(TH) ·
√

(log T )3/γ · T ,
where Cr,2 is an absolute constant. Thus we conclude the second case. Therefore, we conclude the
proof of Corollary 4.4.

G.2 Proof of Corollary D.4

Proof. By Theorem D.2, we have
Regret(T ) = 5βH ·

√
T · ΓKm(T, λ) + 10βTH · ι, (G.6)

where β = BT satisfies (D.3) and ι = T 7/12 ·H1/6 ·m−1/12 · (logm)1/4. When Assumption D.3
holds, thanks to the similarity between (4.5) and (D.3), it can be similarly shown that BT defined in
(4.8) satisfies the inequality in (D.3) when Cb is sufficiently large. Moreover, Lemma I.5 provides
upper bounds on ΓKm(T, λ) for the two eigenvalue decay conditions. Finally, combining (4.8), (G.6),
and Lemma I.5, we conclude the proof of Corollary D.4.

G.3 Examples of Kernels Satisfying Assumption 4.3

In the following, we introduce concrete kernels and neural tangent kernels that satisfy Assumption
4.3. We consider each eigenvalue decay condition separately.

Case (i): γ-Finite Spectrum. Consider the polynomial kernel K(z, z′) = (1 + 〈z, z′〉)n defined on
the unit ball {z ∈ Rd : ‖z‖2 ≤ 1}, where n is a fixed number. By direct computation, the kernel
function can be written as

K(z, z′) =
∑

α : ‖α‖1≤n

zα · z′α,

where α = (α1, . . . , αd) ∈ Nd is a multi-index and zα is a monomial with degree α. It can be shown
that all monomials in Rd with degree no more than n are linearly independent. Thus, the dimension
of such an RKHS is

(
n+d
d

)
; i.e., it satisfies the γ-finite spectrum condition with γ =

(
n+d
d

)
.

Furthermore, for a finite-dimensional NTK, we consider the quadratic activation function act(u) = u2.
Note that we assumeZ = Sd−1 for the neural network setting. Moreover, in (B.3), instead of sampling
Wj ∼ N(0, Id/d) for all j ∈ [d], we draw Wj uniformly over the unit sphere Sd−1. Then it holds
that |W>j z| ≤ 1 for all j ∈ [2m] and z ∈ Sd−1. Here we let the distribution be Unif(Sd−1) in order
to ensure that the act′ is Lipschitz continuous on {W>j z : z ∈ Sd−1} ⊆ [−1, 1] for any Wj sampled
from the initial distribution, which is required when utilizing Proposition C.1 in [30] in the proof of
Lemma E.4. Note that the covariance of Wj is still Id/d. Then by (B.7), the NTK is given by
Kntk(z, z′) = Ew∼Unif(Sd−1)[2(w>z) · 2(w>z′) · (z>z′)] = 4/d · (z>z′)2, ∀z, z′ ∈ Sd−1.

(G.7)
Thus, Kntk(z, z′) can be written as a univariate function of the inner product 〈z, z′〉. To characterize
the spectral property Kntk, we first introduce some background on spherical harmonic functions on
Sd−1, which are closely related to inner product kernels on Sd−1 × Sd−1.

Let µ be the uniform measure on Sd−1. For any j ≥ 0, let Yj(d) be the set of all homogeneous
harmonics of degree j on Sd−1, which is a finite-dimensional subspace of L2

µ(Sd−1), the space of
square-integrable functions on Sd−1 with respect to µ. It can be shown that the dimensionality of
Yj(d) is given by N(d, j), which is defined as

N(d, j) =
(2j + d− 2)(d+ j − 3)!

j!(d− 2)!
. (G.8)

In addition, let {Yj,`}`∈[N(d,j)] be an orthonormal basis of Yj(d), then {Yj,`}`∈[N(d,j)],j∈N form an
orthonormal basis of L2

µ(Sd−1). In the next lemma, we present the Funk-Hecke formula [48, page
30], which relates spherical harmonics to inner product kernels.
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Lemma G.1 (Funk-Hecke formula). Let k : [−1, 1]→ R be a continuous function, which gives rise
to an inner product kernel K(z, z′) = k(〈z, z′〉) on Sd−1 × Sd−1. For any ` ≥ 2, let |S`−1| be the
Lebesgue measure of S`−1, which is given by |S`−1| = 2π`/2/Γ(`/2), where Γ(·) is the Gamma
function. Moreover, for any j ≥ 0, let Yj : Sd−1 → R be any function in Yj(d). Then for any
z ∈ Sd−1, we have∫

Sd−1

K(z, z′)Yj(z
′) dµ(z′) =

[
|Sd−2|
|Sd−1|

·
∫ 1

−1

k(u) · Pj(u; d) · (1− u2)(d−3)/2 du

]
· Yj(z),

(G.9)
where Pj(·; d) is the j-th Legendre polynomial in dimension d, which is given by

Pj(u; d) =
(−1/2)j · Γ(d−1

2 )

Γ( 2j+d−1
2 )

· (1− u2)(3−d)/2 ·
(

d

du

)j[
(1− u2)j+(d−3)/2

]
.

Thus, by the Funk-Hecke formula, for any inner product kernel K, its integral operator
TK : L2

µ(Sd−1)→ L2
µ(Sd−1) has eigenvalues

%j =
|Sd−2|
|Sd−1|

·
∫ 1

−1

k(u) · Pj(u; d) · (1− u2)(d−3)/2 du, ∀j ≥ 1, (G.10)

each with multiplicity N(d, j). Moreover, for each eigenvalue %j , the corresponding eigenfunctions
are spherical harmonics {Yj,`}`∈[N(d,j)]. Furthermore, to compute the eigenvalues in (G.10), we can
use Rodrigues’ rule [48, page 23], as follows.

Lemma G.2 (Rodrigues’ Rule). For any j ≥ 0, let f : [−1, 1] → R be any j-th continuously
differentiable function. Then we have∫ 1

−1

f(t) · Pj(u; d) · (1− u2)(d−3)/2 du = Rj(d) ·
∫ 1

−1

f (j)(u) · (1− u2)(2j+d−3)/2 dt,

where f (j) is the j-th order derivative of f and Rj(d) = 2−j · Γ((d− 1)/2) · [Γ((2j + d− 1)/2)]−1

is the j-th Rodrigues constant.

Now we consider the NTK given in (G.7), which is the inner product kernel induced by the univariate
function k1(u) = 4/d · u2. Note that k(3)

1 is a zero function. Combining Lemma G.2 and (G.10), we
observe that %j = 0 for all j ≥ 3. In addition, by direct computation, we have that

%1 = R1(d) · (8/d) ·
∫ 1

−1

u · (1− u2)(d−1)/2 du = 0,

and %0, %2 > 0. Thus, Kntk given in (G.7) has N(d, 0) +N(d, 2) = d(d+ 1)/2 nonzero eigenvalues,
each with value %2. This implies that the NTK induced by neural networks with quadratic activation
satisfies the γ-finite spectrum condition with γ = d(d+ 1)/2. For such a class of neural networks,
Corollary D.4 asserts that the regret of NOVI is Õ(H2d3 ·

√
T + βTH · ι).

Case (ii): γ-exponential Decay. Now we consider the squared exponential kernel
K(z, z′) = exp(−‖z − z′‖22 · σ−2) = k2(〈z, z′〉), ∀z, z′ ∈ Sd−1, (G.11)

where σ > 0 is an absolute constant and we define k2(u) = exp[−2σ−2 · (1 − u)]. Note that d is
regarded as a fixed number. Applying Lemmas G.1 and G.2, we obtain the following lemma that
bounds the eigenvalues of TK .

Lemma G.3 (Theorem 2 in [47]). For the squared quadratic kernel in (G.11), the corresponding
integral operator has eigenvalues {ρj}j≥0, where each ρj is defined in (G.10) with k replaced by k2.
Moreover, each %j has multiplicityN(d, j) and the corresponding eigenfunctions are {Yj,`}`∈[N(d,j)].
Finally, when σ in (G.11) satisfy σ2 ≥ 2/d, {%j}j≥0 form a decreasing sequence that satisfy

A1 · (2e/σ2)j · (2j + d− 2)−(2j+d−1)/2 < %j < A2 · (2e/σ2)j · (2j + d− 2)−(2j+d−1)/2

(G.12)
for all j ≥ 0, where A1, A2 are absolute constants that only depend on d and σ.

The `∞-norm of each eigenfunction Yj,` is given by the following lemma.
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Lemma G.4 (Lemma 3 in [47]). For any d ≥ 2, j ≥ 0, and any ` ∈ [N(d, j)], we have

‖Yj,`‖∞ = sup
z∈Sd−1

|Yj,`(z)| ≤
√
N(d, j)/|Sd−1|.

Now, let τ > 0 be a sufficiently small constant. Combining Lemmas G.3 and G.4, we have

%τj · ‖Yj,`‖∞ ≤ C ·
( 2e

σ2 · (2j + d− 2)

)−j·τ
·
√
N(d, j) · (2j + d− 2)−(d−1)·τ , (G.13)

where C is a constant depending on d and σ. By the definition of N(d, j) in (G.8), when j is
sufficiently large, it holds that

N(d, j) � (2j + d− 2) ·
√
d+ j − 3 · [(d+ j − 3)/e]d+j−3

√
j · (j/e)j

� jd−2, (G.14)

where we utilize the Stirling’s formula and neglect constants involving d. Then, combining (G.13)
and (G.14), we have

sup
j≥0

sup
`∈[N(d,j)]

%τj · ‖Yj,`‖∞ ≤ C%, (G.15)

for some absolute constant C% > 0. Renaming the eigenvalues and eigenvectors as {σj , ψj}j≥1 in
the descending order of the eigenvalues, (G.15) equivalently states that supj≥1 σ

τ
j · ‖ψj‖∞ ≤ C%.

Furthermore, to show that the squared exponential kernel satisfy the γ-exponential decay condition,
we notice that

σj = %t for
t−1∑
i=1

N(d, i) ≤ j <
t∑
i=1

N(d, i). (G.16)

Then by (G.14), this implies that σj � ρt for (t − 1)d−1 ≤ j ≤ td−1 when j is sufficiently large.
Thus, by Lemma G.3 we further obtain that

σj � (2e/σ2)j
1
d−1 · (2j

1
d−1 + d− 2)−j

1
d−1−(d−1)/2

� exp
(
c1 · j

1
d−1
)
· exp

(
c2 − j

1
d−1 · log j

)
≤ exp(−c · j1/d),

where c, c1, and c2 are constants depending on d. Therefore, we have shown that the squared
exponential kernel satisfies the γ-exponential decay condition with γ = 1/d. Combining this with
(G.15), we conclude that it satisfies Assumption 4.3.

In the sequel, we construct an NTK that satisfies Assumption 4.3. Specifically, we adopt the sine
activation function and slightly modify the neural network in (B.3) by employing an intercept for
each neuron. That is,

f(z; b,W, θ) =
1√
m

m∑
j=1

bj · sin(W>j z + θj).

To initialize the network weights (b,W, θ), we set bj = −bj−m, Wj = Wj−m, and θj = θj−m
for any j ∈ {m + 1, . . . , 2m}. For any j ∈ [m], we independently sample bj ∼ Unif({−1, 1}),
Wj ∼ N(0, Id), and θj ∼ Unif([0, 2π]). Only W is updated during training.

For such a neural network, the corresponding NTK is given by
Kntk(z, z′) = 2E

[
(z>z′) · cos(w>z + θ) · cos(w>z′ + θ)

]
= (z>z′) · exp(−‖z − z′‖22/2) = (z>z′) · exp[(z>z′)− 1] = k3(〈z, z′〉), (G.17)

where we define k3(u) = u ·exp(u−1). Here the second equality follows from [54]. By construction,
such an NTK is closely related to the squared quadratic kernel in (G.11). To see that it satisfy the
γ-exponential decay condition, let {%j}j≥0 and {%̃j}j≥0 denote the eigenvalues of the NTK in (G.17)
and the inner product kernel induced by k2(u) = exp(u− 1), respectively. By Lemma G.1, we have

ρj = C1 ·
∫ 1

−1

k3(u) · Pj(u; d) · (1− u2)(d−3)/2 du = C1 ·
∫ 1

−1

k2(u) · u · Pj(u; d) · (1− u2)(d−3)/2 du

= C2 · j/(2j + d− 2) · %̃j−1 + C2 · (j + d− 2)/(2j + d− 2) · %̃j+1 ≤ C2(ρ̃j−1 + ρ̃j+1),
(G.18)
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where C1 and C2 are constants and in the second equality, we utilize the following recurrence relation
of Legendre polynomials:

u · Pj(u; d) = j/(2j + d− 2) · Pj−1(u; d) + (j + d− 2)/(2j + d− 2) · Pj+1(u; d).

Notice that {%̃j}j≥0 satisfy (G.12). Thus, combining (G.12) and (G.18), we obtain (G.15). Moreover,
when ordering all the eigenvalues of Kntk in the descending order and renaming them as {σj}j≥1,
similar to (G.16), we have

σj ≤ C2 · (ρ̃t−1 + ρ̃t+1) for
t−1∑
i=1

N(d, i) ≤ j <
t∑
i=1

N(d, i). (G.19)

Using a similar analysis, we can show that {σj}j≥1 satisfy the γ-exponential eigenvalue decay condi-
tion with γ = 1/d. Therefore, we have shown that the NTK given in (G.17) satisfy Assumption 4.3.

H Proofs of the Supporting Lemmas

H.1 Proof of Lemma E.1

Proof. For ease of presentation, before presenting the proof, we first define two operators J?h and Jt,h
respectively by letting

(J?hf)(x) = 〈f(x, ·), π?h(· |x)〉A, (Jt,hf)(x) = 〈f(x, ·), πth(· |x)〉A, (H.1)
for any (t, h) ∈ [T ]× [H] and any function f : S ×A → R. Moreover, for any (t, h) ∈ [T ]× [H]
and any state x ∈ S, we define

ξth(x) = (JhQth)(x)− (Jt,hQth)(x) = 〈Qth(x, ·), π?h(· |x)− πth(· |x)〉A. (H.2)
After introducing this notation, to prove (E.4) we decompose the instantaneous regret at the t-th
episode into the following two terms,

V ?1 (xt1)− V π
t

1 (xt1) = V ?1 (xt1)− V t1 (xt1)︸ ︷︷ ︸
(i)

+V t1 (xt1)− V π
t

1 (xt1)︸ ︷︷ ︸
(ii)

. (H.3)

In the sequel, we consider the two terms in (H.3) separately.

Term (i). By the definitions of the value function V ?h in (2.2) and the operator J?h in (H.1), we have
V ?h = J?hQ?h. Similarly, for all the algorithms, we have V th(x) = 〈Qth(x, ·), πth(· |x)〉 for all x ∈ S.
Thus, by the definition of Jt,h in (H.1), we have V th = Jt,hQth. Thus, using ξth defined in (H.2), for
any (t, h) ∈ [T ]× [H], we have

V ?h − V th = J?hQ?h − Jt,hQth =
(
J?hQ?h − J?hQth

)
+
(
J?hQth − Jt,hQth

)
= J?h(Q?h −Qth) + ξth, (H.4)

where the last equality follows from the definition of ξth in (H.2) and the fact that J?h is a linear
operator. Moreover, by the definition of the temporal-difference error δth in (E.1) and the Bellman
optimality condition, we have

Q?h −Qth =
(
rh + PhV ?h+1

)
−
(
rh + PhV th+1 − δth

)
= Ph(V ?h+1 − V th+1) + δth. (H.5)

Thus, combining (H.4) and (H.5), we obtain that
V ?h − V th = J?hPh(V ?h+1 − V th+1) + J?hδth + ξth, ∀(t, h) ∈ [T ]× [H]. (H.6)

Equivalently, for all x ∈ S, and all (t, h) ∈ [T ]× [H], we have
V ?h (x)− V th(x) =Ea∼π?h(· | x)

{
E
[
V ?h+1(xh+1)− V th+1(xh+1)

∣∣xh = x, ah = a
]}

+ Ea∼π?h(· | x)

[
δth(x, a)

]
+ ξth(x).

Then, by recursively applying (H.6) for all h ∈ [H], we have

V ?1 − V t1 =
( H∏
h=1

J?hPh
)

(V ?H+1 − V kH+1) +

H∑
h=1

(h−1∏
i=1

J?iPi
)
J?hδth +

H∑
h=1

(h−1∏
i=1

J?iPi
)
ξth. (H.7)
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Furthermore, notice that we have V ?H+1 = V kH+1 = 0. Thus, (H.7) can be equivalently written as

V ?1 (x)− V t1 (x) =Eπ?
[ H∑
h=1

〈
Qth(xh, ·), π?h(· |xh)− πth(· |xh)

〉
A + δth(xh, ah)

∣∣∣∣x1 = x

]
,

where we utilize the definition of ξth given in (H.2). Thus, we can write Term (i) on the right-hand
side of (H.3) as

V ?1 (xtt)− V t1 (xtt) =

H∑
h=1

Eπ?
[
〈Qth(xh, ·), π?h(· |xh)− πth(· |xh)〉A

∣∣x1 = xtt
]

+

H∑
h=1

Eπ? [δth(xh, ah) |x1 = xtt], ∀t ∈ [T ]. (H.8)

Term (ii). It remains to bound the second term on the right-hand side of (H.3). By the definition of
the temporal-difference error δth in (E.1), for any (t, h) ∈ [T ]× [H], we have
δth(xth, a

t
h) = rh(xth, a

t
h) + (PhV th+1)(xth, a

t
h)−Qth(xth, a

t
h)

=
[
rh(xth, a

t
h) + (PhV th+1)(xth, a

t
h)−Qπ

t

h (xth, a
t
h)
]

+
[
Qπ

t

h (xth, a
t
h)−Qth(xth, a

t
h)
]

=
(
PhV th+1 − PhV π

t

h+1

)
(xth, a

t
h) + (Qπ

t

h −Qth)(xth, a
t
h), (H.9)

where the last equality follows from the Bellman equation (2.1). Morerover, recall that we define ζ1
t,h

and ζ2
t,h in (E.2) and (E.3), respectively. Thus, from (H.9) we obtain that

V th(xth)− V π
t

h (xth) (H.10)

= V th(xth)− V π
t

h (xth) + (Qπ
t

h −Qth)(xth, a
t
h) +

(
Ph(V th+1 − V π

t

h+1)
)
(xth, a

t
h)− δth(xth, a

t
h),

=
(
V th − V π

t

h

)
(xth)− (Qth −Qπ

t

h )(xth, a
t
h)

+
(
Ph(V th+1 − V π

t

h+1)
)
(xth, a

t
h)− (V th+1 − V π

t

h+1)(xth+1) + (V th+1 − V π
t

h+1)(xth+1)− δth(xth, a
t
h)

=
[
V th+1(xth+1)− V π

t

h+1(xth+1)
]

+ ζ1
t,h + ζ2

t,h − δth(xth, a
t
h).

Thus, recursively applying (H.10) for all h ∈ [H], we obtain that

V t1 (xt1)− V π
t

1 (xt1) = V tH+1(xkH+1)− V π
k,k

H+1 (xtH+1) +

H∑
h=1

(ζ1
t,h + ζ2

t,h)−
H∑
h=1

δth(xth, a
t
h)

=

H∑
h=1

(ζ1
t,h + ζ2

t,h)−
H∑
h=1

δth(xth, a
t
h), ∀t ∈ [T ], (H.11)

where the last equality follows from the fact that V tH+1(xtH+1) = V π
t

H+1(xtH+1) = 0. Thus, we have
simplified Term (ii) defined in (H.3).

Thus, combining (H.3), (H.8), and (H.11), we obtain that

Regret(T ) =

T∑
t=1

[
V ?1 (xt1)− V π

t

1 (xt1)
]

=

T∑
t=1

H∑
h=1

Eπ? [δth(xh, ah) |x1 = xtt] +

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)−
T∑
t=1

H∑
h=1

δth(xth, a
t
h)

+

T∑
t=1

H∑
h=1

Eπ?
[〈
Qth(xh, ·), π?h(· |xh)− πth(· |xh)

〉
A

∣∣x1 = xtt
]
.

Therefore, we conclude the proof of this lemma.

H.2 Proof of Lemma E.2

Proof. For ease of presentation, we utilize the feature representation induced by the kernel K. Let
φ : Z → H be the feature mapping such that K(z, z′) = 〈φ(z), φ(z′)〉H. For simplicity, we formally
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view φ(z) as a vector and write 〈φ(z), φ(z′)〉H = φ(z)>φ(z′). Then, any function f : Z → R in the
RKHS satisfies f(z) = 〈φ(z), f〉H = f>φ(z). Using the feature representation, we can rewrite the
kernel ridge regression in (3.4) as

minimize
θ∈H

L(θ) =

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)− 〈φ(xτh, a

τ
h), θ〉H

]2
+ λ · ‖θ‖2H. (H.12)

We define the feature matrix Φth : H → Rt−1 and “covariance matrix” Λth : H → H respectively as

Φth =
[
φ(z1

h)>, . . . , φ(zt−1
h )>

]>
, Λth =

t−1∑
τ=1

φ(zτh)φ(zτh)> + λ · IH = λ · IH + (Φth)>Φth,

(H.13)

where IH is the identity mapping on H. Thus, the Gram matrix Kt
h in (3.7) is equal to Φth(Φth)>.

More specifically, here Λth is a self-adjoint and positive-definite operator. For any f1, f2 ∈ H, we
denote

Λthf1 = λ · f1 +

t−1∑
τ=1

φ(zτh) · f1(xτh) ∈ H, f>1 Λthf2 = 〈f1,Λ
t
hf〉H.

It is not hard to see that all the eigenvalues of Λth are positive and at least λ. Thus, the inverse operator
of Λth, denoted by (Λth)−1, is well-defined, which is also a self-adjoint and positive-definite operator
onH. Similarly, for any f1, f2 ∈ H, we let f>1 (Λth)−1f2 denote 〈f1, (Λ

t
h)−1f2〉H. The eigenvalues

of (Λth)−1 are all bounded in interval [0, 1/λ].

In addition, using the feature matrix Φth defined in (H.13) and yth defined in (3.6), we can write
(H.12) as

minimize
θ∈H

L(θ) = ‖yth − Φthθ‖22 + λ · θ>θ,

whose solution is given by θ̂th = (Λth)−1(Φth)>yth. and Q̂th in (3.4) satisfies Q̂th(z) = φ(z)>θ̂th.

In the sequel, to further simplify the notation, we let Φ denote Φth when its meaning is clear from the
context. Since both (ΦΦ> + λ · I) and (Φ>Φ + λ · IH) are strictly positive definite and

(Φ>Φ + λ · IH)Φ> = Φ>(ΦΦ> + λ · I),

which implies that
(Λth)−1Φ> = (ΦΦ> + λ · IH)−1Φ> = Φ>(ΦΦ> + λ · I)−1 = Φ>(Kt

h + λ · I)−1. (H.14)

Here I is the identity matrix in R(t−1)×(t−1). Thus, by (H.14) we have
θ̂th = (Λth)−1Φ>yth = Φ>(Kt

h + λ · I)−1yth = Φ>αth. (H.15)
Moreover, kth defined in (3.7) can be written as kth(z) = Φφ(z), which, combined with (H.14),
implies

φ(z) = (Λth)−1Λthφ(z) = (Λth)−1(Φ>Φ + λ · IH)φ(z)

= (Λth)−1(Φ>Φ)φ(z) + λ · (Λth)−1φ(z)

= Φ>(Kt
h + λ · I)−1kth(z) + λ · (Λth)−1φ(z). (H.16)

Thus, we can write ‖φ(z)‖2H = φ(z)>φ(z) as
‖φ(z)‖2H = φ(z)> ·

[
Φ>(Kt

h + λ · I)−1kth(z) + λ · (Λth)−1φ(z)
]

= kth(z)>(Kt
h + λ · I)−1kth(z) + λ · φ(z)(Λth)−1φ(z),

which implies that we can equivalently write the bonus bth defined in (3.8) as

bth(x, a) =
[
φ(x, a)>(Λth)−1φ(x, a)

]1/2
= ‖φ(x, a)‖(Λth)−1 . (H.17)

Combining (H.15) and (H.17), we equivalently write Qth in (3.5) as

Qth(x, a) = min
{
Q̂th(x, a) + β · bth(x, a), H − h+ 1

}+

= min
{
φ(x, a)>θ̂th + β · ‖φ(x, a)‖(Λth)−1 , H − h+ 1

}+
. (H.18)

31



Now we are ready to bound the temporal-difference error ξth defined in (E.1). Noticing that V th(x) =
maxaQ

t
h(x, a) for all (t, h) ∈ [T ]× [H], we have

δth = rh + PhV th+1 −Qth = T?hQth+1 −Qth,
where T?h is the Bellman optimality operator. Under the Assumption 4.1, for all (t, h) ∈ [T ]× [H],
since Qth+1 ∈ [0, H], we have T?hQth+1 ∈ Q?. Using the feature representation of RKHS, there

exists θ
t

h ∈ Q? such that (T?hQth+1)(z) = φ(z)>θ
t

h for all z ∈ Z .

In the sequel, we consider the difference between φ(z)>θ̂th and φ(z)>θ
t

h. To begin with, using
(H.16), we can write φ(z)>θ

t

h as

φ(z)>θ
t

h = kth(z)>(Kt
h + λ · I)−1Φθ

t

h + λ · φ(z)>(Λth)−1θ
t

h. (H.19)
Hence, combining (H.15) and (H.19), we have

φ(z)>θ̂th − φ(z)>θ
t

h = kth(z)>(Kt
h + λ · I)−1

(
yth − Φθ

t

h

)︸ ︷︷ ︸
(i)

−λ · φ(z)>(Λth)−1θ
t

h︸ ︷︷ ︸
(ii)

. (H.20)

We bound Term (i) and Term (ii) on the right-hand side of (H.20) separately. For Term (ii), by the
Cauchy-Schwarz inequality, we have∣∣λ · φ(z)>(Λth)−1θ

t

h

∣∣ ≤ ∥∥λ · (Λth)−1φ(x)
∥∥
H · ‖θ

t

h‖H ≤ RQH ·
∥∥λ · (Λth)−1φ(x)

∥∥
H (H.21)

= RQH ·
√
λ · φ(z)>(Λth)−1 · λ · IH · (Λth)−1φ(x)

≤ RQH ·
√
λ · φ(z)(Λth)−1 · Λth · (Λth)−1φ(z) =

√
λRQH · bth(z).

Here the first inequality follows from the Cauchy-Schwarz inequality and the second inequality
follows from the fact that θ

t

h ∈ Q?, which implies that ‖θth‖H ≤ RQH . Moreover, the last inequality
follows from the fact that Λth − λ · IH is a self-adjoint and positive-semidefinite operator, which
means that f>(Λth − λ · IH)f ≥ 0 for all f ∈ H, and the last equality follows from (H.17).

Furthermore, for Term (i), by the Bellman equation in (2.2) and the definition of yth in (3.6), for any
τ ∈ [t− 1], the τ -th entry of (yth − Φθ

t

h

)
can be written as

[yth]τ − [Φθ
t

h]τ = rh(xτh, a
τ
h) + V th+1(xτh+1)− φ(xτh, a

τ
h)>θ

t

h

= rh(xτh, a
τ
h) + V th+1(xτh+1)− (T?hQth+1)(xτh, a

τ
h)

= V th+1(xτh+1)− (PhV th+1)(xτh, a
τ
h). (H.22)

Thus, combining (H.14), (H.20), and (H.22) we have∣∣kth(z)>(Kt
h + λ · I)−1

(
yth − Φθ

t

h

)∣∣
=

∣∣∣∣φ(z)>(Λth)−1

{ t−1∑
τ=1

φ(xτh, a
τ
h) ·

[
V kh+1(xτh+1)− (PhV kh+1)(xτh, a

τ
h)
]}∣∣∣∣

≤ ‖φ(z)‖(Λth)−1 ·
∥∥∥∥t−1∑
τ=1

φ(xτh, a
τ
h) ·

[
V th+1(xτh+1)− (PhV th+1)(xτh, a

τ
h)
]∥∥∥∥

(Λth)−1

, (H.23)

where the last inequality follows from the Cauchy-Schwarz inequality. In the following, we aim to
bound (H.23) by the concentration of self-normalized stochastic processes in the RKHS. However,
here V th+1 depends on the historical data in the first (t− 1) episodes and is thus not independent of
{(xτh, aτh, xτh+1)}τ∈[t−1]. To bypass this challenge, in the sequel, we combine the concentration of
self-normalized processes and uniform convergence over the function classes that contain each V th+1.

Specifically, recall that we define function classes Qucb(h,R,B) in (4.4) for any h ∈ [H], and any
R,B > 0. We define Vucb(h,R,B) as

Vucb(h,R,B) =
{
V : V (·) = max

a∈A
Q(·, a) for some Q ∈ Qucb(h,R,B)

}
. (H.24)

In the following, we find a parameter RT such that V th ∈ Vucb(h,RT , BT ) holds for all h ∈ [H] and
t ∈ [T ], where BT is specified in (4.5). Here both RT and BT depend on T . By (4.4) and (H.18), it
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suffices to set RT as an upper bound of ‖θ̂th‖H for all (t, h) ∈ [T ]× [H]. In the following lemma,
we bound the RKHS norm of each θ̂th.

Lemma H.1 (RKHS Norm of θ̂th). When λ ≥ 1, for any (t, h) ∈ [T ] × [H], θ̂th defined in (H.15)
satisfies ∥∥θ̂th∥∥H ≤ H√2/λ · logdet(I +Kt

h/λ) ≤ 2H
√

ΓK(T, λ),

where Kt
h is defined in (3.7) and ΓK(T, λ) is defined in (I.16).

Proof. See §J.1 for a detailed proof.

By this lemma, in the sequel, we set RT = 2H
√

ΓK(T, λ). To conclude the proof, we show that
the sum of the two terms in (H.20) is bounded by β · ‖φ(z)‖(Λth)−1 , where we set β = BT . To
this end, for any two value functions V, V ′ : S → R, we define their distance as dist(V, V ′) =
supx∈S |V (x)− V ′(x)|. For any ε ∈ (0, 1/e), any B > 0, and any h ∈ [H], we let Ndist(ε;h,B) be
the ε-covering number of Vucb(h,RT , B) with respect to distance dist(·, ·). Recall that we define
N∞(ε;h,B) as the ε-covering number of Qucb(h,RT , B) with respect to the `∞-norm on Z . Note
that for any Q,Q′ : Z → R, we have

sup
x∈S

∣∣∣max
a∈A

Q(x, a)−max
a∈A

Q′(x, a)
∣∣∣ ≤ sup

(x,a)∈S×A
|Q(x, a)−Q′(x, a)| = ‖Q−Q′‖∞.

By (H.24) we have Ndist(ε;h,B) ≤ N∞(ε;h,B). Then, by applying Lemma J.2 with δ =
(2T 2H3)−1 and taking a union bound over h ∈ [H], we obtain that∥∥∥∥t−1∑

τ=1

φ(xτh, a
τ
h) ·

[
V th+1(xτh+1)− (PhV th+1)(xτh, a

τ
h)
]∥∥∥∥2

(Λth)−1

≤ sup
V ∈Vucb(h+1,RT ,BT )

∥∥∥∥t−1∑
τ=1

φ(xτh, a
τ
h) ·

[
V (xτh+1)− (PhV )(xτh, a

τ
h)
]∥∥∥∥2

(Λth)−1

≤ 2H2 · logdet(I +Kt
h/λ) + 2H2t · (λ− 1) + 8t2ε2/λ

+ 4H2 ·
[
logN∞(ε;h+ 1, BT ) + log(2T 2H3)

]
(H.25)

holds uniformly for all (t, h) ∈ [T ]× [H] with probability at least 1− (2T 2H2)−2, where we utilize
the fact that V th+1 ∈ Vucb(h + 1, RT , BT ). Note that we set λ = 1 + 1/T . Then, setting ε as
ε∗ = H/T , (H.25) is further reduced to∥∥∥∥t−1∑

τ=1

φ(xτh, a
τ
h) ·

[
V th+1(xτh+1)− (PhV th+1)(xτh, a

τ
h)
]∥∥∥∥2

(Λth)−1

≤ 4H2 · ΓK(T, λ) + 11H2 + 4H2 · logN∞(ε∗;h+ 1, BT ) + 8H2 · log(TH). (H.26)
Thus, combining (H.17), (H.20), (H.21), (H.23), and (H.26), we obtain that∣∣φ(z)>(θ̂th − θ

t

h)
∣∣

≤ H ·
{[

4 · ΓK(T, λ) + 4 · logN∞(ε∗;h+ 1, BT ) + 8 · log(TH) + 11]1/2 +
√
λRQ

}
· bth(z)

≤ H ·
[
8 · ΓK(T, λ) + 8 · logN∞(ε∗;h+ 1, BT ) + 16 · log(TH) + 22 + 2R2

Qλ
]1/2 · bth(z)

≤ BT · bth(z) = β · bth(z) (H.27)
holds uniformly for all (t, h) ∈ [T ]× [H] with probability at least 1− (2T 2H2)−1, where the second
inequality follows from the elementary inequality

√
a+
√
b ≤

√
2(a2 + b2), and the last inequality

follows from the assumption on BT given in (4.5).

Finally, by (H.27) and the definition of the temporal-difference error δth in (E.1), we have

−δth(z) = Qth(z)− φ(z)>θ
t

h ≤ φ(z)>(θ̂th − θ
t

h) + β · bth(z) ≤ 2β · bth(z). (H.28)
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In addition, since Qth+1(z) ≤ H − h for all z ∈ Z , we have (T?hQth+1) ≤ H − h+ 1. Hence, we
have

δth(z) = φ(z)>θ
t

h −min
{
φ(z)>θ̂th + β · bth(z), H − h+ 1

}+

≤ max
{
φ(z)>θ

t

h − φ(z)>θ̂th − β · bth(z), φ(z)>θ
t

h − (H − h+ 1)
}
≤ 0. (H.29)

Therefore, combining (H.28) and (H.29), we conclude the proof of Lemma E.2.

H.3 Proof of Lemma E.3

Proof. Following [12], we prove this lemma by showing that {ζ1
t,h, ζ

2
t,h}(t,h)∈[T ]×[H] can be written

as a bounded martingale difference sequence with respect to a filtration. In particular, we construct
the filtration explicitly as follows. For any (t, h) ∈ [T ]× [H], we define σ-algebras Ft,h,1 and Ft,h,2
as follows:

Ft,h,1 = σ
(
{(xτi , aτi )}(τ,i)∈[t−1]×[H] ∪ {(xti, ati)}i∈[h]

)
,

Ft,h,2 = σ
(
{(xτi , aτi )}(τ,i)∈[t−1]×[H] ∪ {(xti, ati)}i∈[h] ∪ {xth+1}

)
,

(H.30)

where σ(·) denotes the σ-algebra generated by a finite set. Moreover, for any t ∈ [T ], h ∈ [H] and
m ∈ [2], we define the timestep index τ(t, h,m) as

τ(t, h,m) = (t− 1) · 2H + (h− 1) · 2 +m, (H.31)
which offers an partial ordering over the triplets (t, h,m) ∈ [T ] × [H] × [2]. Moreover, by the
definitions in (H.30), for any (t, h,m) and (t′, h′,m′) satisfying τ(k, h,m) ≤ τ(k′, h′,m′), it holds
that Fk,h,m ⊆ Fk′,h′,m′ . Thus, the sequence of σ-algebras {Ft,h,m}(t,h,m)∈[T ]×[H]×[2] forms a
filtration.

Furthermore, for any (t, h) ∈ [T ]× [H], since both Qth and V th are obtained based on the trajectories
of the first (t − 1) episodes, they are both measurable with respect to Ft,1,1, which is a subset of
Ft,h,m for all h ∈ [H] and m ∈ [2]. Thus, by (H.30), ζ1

t,h defined in (E.2) and ζ2
t,h defined in (E.3)

are measurable with respect to Ft,h,1 and Ft,h,2, respectively. In addition, note that ath ∼ πth( |xth)
and that xth+1 ∼ Ph(· |xth, ath). Thus, we have

E
[
ζ1
t,h

∣∣Ft,h−1,2

]
= 0, E

[
ζ2
t,h

∣∣Ft,h,1] = 0, (H.32)
where we identify Ft,0,2 with Ft−1,H,2 for all t ≥ 2 and let F1,0,2 be the empty set. Combining
(H.31) and (H.32), we can define a martingale {Mt,h,m}(t,h,m)∈[T ]×[H]×[2] indexed by τ(t, k,m),
defined in (H.31), as follows. For any (t, h,m) ∈ [T ]× [H]× [2], we define

Mt,h,m =

{ ∑
(s,g,`)

ζ`s,g : τ(s, g, `) ≤ τ(t, h,m)

}
; (H.33)

that is, Mt,h,m is the sum of all terms of the form ζ`s,g defined in (E.2) or (E.3) such that its timestep
index τ(s, g, `) is no greater than τ(t, h,m). By definition, we have

MK,H,2 =

T∑
t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h). (H.34)

Moreover, since V th , Qth, V π
t

h , and Qπ
t

h all takes values in [0, H], we have |ζ1
t,h| ≤ 2H and |ζ2

t,h| ≤
2H for all (t, h) ∈ [T ]× [H]. This means that the martingale Mt,h,m defined in (H.33) has uniformly
bounded differences. Thus, applying the Azuma-Hoeffding inequality [7] to MT,H,2 in (H.34), we
obtain that

P
(∣∣∣∣ T∑

t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)

∣∣∣∣ > t

)
≤ 2 exp

(
−t2

16TH3

)
(H.35)

holds for all t > 0. Finally, we set the right-hand side of (H.35) to ζ for some ζ ∈ (0, 1), which
yields t =

√
16TH3 · log(2/ζ). Thus, we obtain that∣∣∣∣ T∑

t=1

H∑
h=1

(ζ1
t,h + ζ2

t,h)

∣∣∣∣ ≤√16TH3 · log(2/ζ),

with probability at least 1− ζ, which concludes the proof.
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H.4 Proof of Lemma E.4

Proof. The proof of this lemma utilizes the connection between overparameterized neural networks
and NTKs. Recall that we denote z = (x, a) and Z = S × A. Also recall that (b(0),W (0)) is the
initial value of the network parameters obtained by the symmetric initialization scheme introduced
in §B.2. Thus, f(·;W (0)) is a zero function. For any (t, h) ∈ [T ] × [H], since Ŵ t

h is the global
minimizer of loss function Lth defined in (C.1), we have

Lth
(
Ŵ t
h

)
=

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)− f(xτh, a

τ
h; Ŵ t

h)
]2

+ λ ·
∥∥Ŵ t

h −W (0)
∥∥2

2

≤ Lth
(
W (0)

)
=

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)

]2 ≤ (H − h+ 1)2 · (t− 1) ≤ TH2,

(H.36)
where the second-to-last inequality follows from the facts that V th+1 is bounded by H − h and that
rh ∈ [0, 1]. Thus, (H.36) implies that∥∥Ŵ t

h −W (0)
∥∥2

2
≤ TH2/λ, ∀(t, h) ∈ [T ]× [H]. (H.37)

That is, each Ŵ t
h belongs to the Euclidean ball B = {W ∈ R2md : ‖W −W (0)‖2 ≤ H

√
T/λ}.

Here the regularization parameter λ is does not depend on m and will be determined later. Notice
that the radius of B does not depend on m. When m is sufficiently large, it can be shown that
f(·,W ) is close to its linearization, f̂(·;W ) = 〈ϕ(·;W (0)),W −W (0)〉, for all W ∈ B, where
ϕ(·;W ) = ∇W f(·;W ).

Furthermore, recall that the temporal-difference error δth is defined as
δth = rh + PhV th+1 −Qth = T?hQth+1 −Qth.

Under Assumption D.1, we have T?hQth+1 ∈ Q? for all (t, h) ∈ [T ]× [H], where Q? is defined in
(D.1). That is, for all (t, h) ∈ [T ]× [H], there exists a function αth : Rd → Rd such that

(T?hQth+1)(z) =

∫
Rd

act′(w>z) · z>αth(w) dp0(w), ∀(t, h) ∈ [T ]× [H],∀z ∈ Z. (H.38)

Moreover, it holds that ‖αth‖2,∞ = supw ‖αth(w)‖2 ≤ RQH/
√
d.

Now we are ready to bound the temporal-difference error δth defined in (E.1). Our proof is decomposed
into three steps.

Step I. In the first step, we show that, with high probability, T?hQth+1 can be well-approximated by
the class of linear functions of ϕ(·;W (0)) with respect to the `∞-norm.

Specifically, by Proposition C.1 in [30], with probability at least 1−m−2 over the randomness of
initialization, for any (t, h) ∈ [T ]× [H], there exists a function Q̃th : Z → R that can be written as

Q̃th(z) =
1√
m

m∑
j=1

act′
(
〈W (0)

j , z〉
)
· z>αj , (H.39)

where ‖αj‖2 ≤ RQ/
√
dm for all j ∈ [m] and {W (0)

j }j∈[2m] are the random weights generated in
the symmetric initialization scheme. Moreover, Q̃th satisfies that

‖Q̃th − T?hQth+1‖∞ ≤ 10CactRQH ·
√

log(mTH)/m. (H.40)

Also, for any j ∈ [2m], let W (0)
j and b(0)

j be the j-th component of b(0) and W (0), respectively.

Now we show that Q̃th in (H.39) can be written as ϕ(·;W (0))>(W̃ t
h −W (0)) for some W̃ t

h ∈ R2md.
To this end, we define W̃ t

h = (W̃1, . . . W̃2m) ∈ R2md as follows. For any j ∈ [m], we let
W̃j = W

(0)
j +b

(0)
j ·αj/

√
2, and for any j ∈ {m+1, . . . , 2m}, we let W̃j = W

(0)
j +b

(0)
j ·αj−m/

√
2.

35



Then, by the symmetric initialization scheme, we have

Q̃th(z) =
1√
2m

m∑
j=1

√
2 · (b(0)

j )2 · act′
(
〈W (0)

j , z〉
)
· z>αj

=
1√
2m

m∑
j=1

1/
√

2 · (b(0)
j )2 · act′

(
〈W (0)

j , z〉
)
· z>αj

+
1√
2m

m∑
j=1

1/
√

2 · (b(0)
j )2 · act′

(
〈W (0)

j , z〉
)
· z>αj−m

=
1√
2m

2m∑
j=1

b
(0)
j · act′

(
〈W (0)

j , z〉
)
· z>

(
W̃j −W (0)

j

)
= ϕ(z;W (0))>

(
W̃ t
h −W (0)

)
.

(H.41)

Moreover, since ‖αj‖2 ≤ RQH/
√
dm, we have ‖W̃ t

h −W (0)‖2 ≤ RQH/
√
d.

Therefore, for all (t, h) ∈ [T ]× [H], we have constructed Q̃th to be linear in ϕ(·;W (0)). Moreover,
with probability at least 1−m−2 over the randomness of initialization, Q̃th is close to T?hQth+1 in
the sense that (H.40) holds uniformly for all (t, h) ∈ [T ]× [H]. Thus, we conclude the first step.

Step II. In the second step, we show that Qth used in Algorithm 4 can be well approximated by
functions based on the feature mapping ϕ(·;W (0)).

Recall that the bonus in Qth utilizes matrix Λth defined in (C.3), which involves the neural tangent
features {ϕ(·; Ŵ τ

h )}τ∈[T ]. Similar to Λth, we define Λ
t

h as

Λ
t

h = λ · I2md +

t−1∑
τ=1

ϕ(xτh, a
τ
h;W (0))ϕ(xτh, a

τ
h;W (0))>, (H.42)

which adopts the same feature mapping ϕ(·;W (0)). To simplify the notation, hereafter, we use ϕ(·)
to denote ϕ(·;W (0)) when its meaning is clear from the text. Moreover, for any (t, h) ∈ [T ]× [H],
we define the response vector yth ∈ Rt−1 by letting its entries be

[yth]τ = rh(xτh, a
τ
h) + V th+1(xτh+1), ∀τ ∈ [t− 1]. (H.43)

We define the feature matrix Φth ∈ R(t−1)×2md by

Φth =
[
ϕ(x1

h, a
1
h)>, . . . , ϕ(xt−1

h , at−1
h )>

]>
. (H.44)

Hence, by (H.42) and (H.44), we have Λ
t

h = λ · I2md + (Φth)>Φth. Similar to the bonus function bth
defined in (C.4), we define

b
t

h =
[
ϕ(x, a)>(Λ

t

h)−1ϕ(x, a)
]1/2

= ‖ϕ(x, a)‖
(Λ
t
h)−1 . (H.45)

Similar to Lth defined in (C.1), we define another least-squares loss function L
t

h : R2md → R as

L
t

h(W ) =

t−1∑
τ=1

[
rh(xτh, a

τ
h) + V th+1(xτh+1)−

〈
ϕ(xτh, a

τ
h),W −W (0)

〉]2
+ λ · ‖W −W (0)‖22

(H.46)

and let W
t

h be its global minimizer. By direct computation, W
t

h can be written in closed form as

W
t

h = W (0) + (Λ
t

h)−1(Φth)>yth, (H.47)

where Λ
t

h, Φth, and yth are defined respectively in (H.42), (H.44), and (H.43). Similar to (H.36),
utilizing the fact that L

t

h(W
t

h) ≤ Lth(W (0)), we also have ‖W t

h −W (0)‖2 ≤ H
√
T/λ. Then, in a

manner similar to the construction of Qth in Algorithm 4, we combine b
t

h in (H.45) and W
t

h in (H.47)
to define Q

t

h : Z → R as

Q
t

h(x, a) = min
{
ϕ(x, a)>(W

t

h −W (0)) + β · bth(x, a), H − h+ 1
}+
. (H.48)
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Note that Q
t

h share the same form as Q in (D.2). Thus, we have Q
t

h ∈ Qucb(h,H
√
T/λ,B) for any

B ≥ β. Moreover, we define V
t

h(·) = maxa∈AQ
t

h(·, a).

In the following, we aim to show that Q
t

h is close to Qth when m is sufficiently large. When this is
true, V

t

h is also close to V th . To bound Qth −Q
t

h, since the truncation operator is non-expansive, by
the triangle inequality we have

‖Qth −Q
t

h‖∞ ≤
∥∥f(·; Ŵ t

h)− ϕ(·)>(W
t

h −W (0))
∥∥
∞︸ ︷︷ ︸

(i)

+β · ‖bth − b
t

h‖∞︸ ︷︷ ︸
(ii)

. (H.49)

Recall that we define B = {W ∈ R2md : ‖W −W (0)‖2 ≤ H
√
T/λ}. To bound the two terms

on the right-hand side of (H.49), we utilize the following lemma that quantifies the perturbation of
f(·;W ) and ϕ(·;W ) within W ∈ B.

Lemma H.2. When TH2 = O(m · log−6m), with probability at least 1−m−2 with respect to the
randomness of initialization, for any W ∈ B and any z ∈ Z , we have∣∣f(z,W )− ϕ(z,W (0))>(W −W (0))

∣∣ ≤ C · T 2/3 ·H4/3 ·m−1/6 ·
√

logm,∥∥ϕ(z,W )− ϕ(z,W (0))
∥∥

2
≤ C · (TH2/m)1/6 ·

√
logm, ‖ϕ(z,W )‖2 ≤ C.

Proof. See [3, 30, 13] for a detailed proof. More specifically, this lemma is obtained from Lemmas
F.1 and F.2 in [13], which are further based on results in [3, 30].

By Lemma H.2 and triangle inequality, Term (i) on the right-hand side of (H.49) is bounded by

Term (i) ≤
∥∥f(·; Ŵ t

h)− ϕ(·)>(Ŵ t
h −W (0))

∥∥
∞ +

∥∥ϕ(·)>(Ŵ t
h −W

t

h)
∥∥
∞

≤ C · T 2/3 ·H4/3 ·m−1/6 ·
√

logm+ C ·
∥∥Ŵ t

h −W
t

h

∥∥
2
. (H.50)

To bound
∥∥Ŵ t

h −W
t

h

∥∥
2
, notice that Ŵ t

h and W
t

h are the global minimizers of Lth in (C.1) and L
t

h in
(H.46), respectively. Thus, by the first-order optimality condition, we have

λ ·
(
Ŵ t
h −W (0)) =

t−1∑
τ=1

{
[yth]τ − f(zτh; Ŵ t

h)
}
· ϕ(zτh; Ŵ t

h), (H.51)

λ · (W t

h −W (0)) =

t−1∑
τ=1

{
[yth]τ −

〈
ϕ(zτh;W (0)),W

t

h −W (0)
〉}
· ϕ(zτh;W (0)), (H.52)

where [yth]τ is defined in (H.43) and zτh = (xτh, a
τ
h). In addition, by the definition of Λ

t

h in (H.42),
(H.52) can be equivalently written as

Λ
t

h

(
W

t

h −W (0)
)

=

t−1∑
τ=1

[yth]τ · ϕ(zτh;W (0)). (H.53)

Similarly, for (H.51), by direct computation we have

Λ
t

h

(
Ŵ t
h −W (0)

)
=

t−1∑
τ=1

[yth]τ · ϕ (zτh; Ŵ t
h) (H.54)

+

t−1∑
τ=1

[〈
ϕ(zτh;W (0)), Ŵ t

h −W (0)
〉
· ϕ(zτh;W (0))− f(zτh; Ŵ t

h) · ϕ(zτh; Ŵ t
h)
]
.

For any τ ∈ [t− 1], we have〈
ϕ(zτh;W (0)), Ŵ t

h −W (0)
〉
· ϕ(zτh;W (0))− f

(
zτh; Ŵ t

h

)
· ϕ(zτh; Ŵ t

h)

=
〈
ϕ(zτh;W (0)), Ŵ t

h −W (0)
〉
·
[
ϕ(zτh;W (0))− ϕ(zτh; Ŵ t

h)
]

+
[〈
ϕ(zτh;W (0)), Ŵ t

h −W (0)
〉
− f(zτh; Ŵ t

h)
]
· ϕ(zτh; Ŵ t

h). (H.55)
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Thus, applying Lemma H.2 to (H.55), we have∥∥〈ϕ(zτh;W (0)), Ŵ t
h −W (0)

〉
· ϕ(zτh;W (0))− f(zτh; Ŵ t

h) · ϕ(zτh; Ŵ t
h)
∥∥

2

≤
∥∥ϕ(zτh;W (0))

∥∥
2
·
∥∥Ŵ t

h −W (0)
∥∥

2
·
∥∥ϕ(zτh;W (0))− ϕ(zτh; Ŵ t

h)
∥∥

+
∣∣〈ϕ(zτh;W (0)), Ŵ t

h −W (0)
〉
− f(zτh; Ŵ t

h)
∣∣ · ∥∥ϕ(zτh; Ŵ t

h)
∥∥

2

≤ 2C
2 · T 2/3 ·H4/3 ·m−1/6 ·

√
logm · λ−1/2, (H.56)

where we utilize the fact that ‖Ŵ t
h−W (0)‖2 ≤ H

√
T/λ ≤ H

√
T . Then, combining (H.53), (H.54),

and (H.56), we have∥∥Λ
t

h

(
Ŵ t
h −W

t

h

)∥∥
2

≤
∥∥∥∥ t−1∑
τ=1

[yth]τ ·
[
ϕ
(
zτh; Ŵ t

h

)
− ϕ(zτh;W (0))

]∥∥∥∥
2

+ 2C
2 · T 5/3 ·H4/3 ·m−1/6 ·

√
logm

≤ C · T 7/6 ·H4/3 ·m−1/6 ·
√

logm+ 2C
2 · T 5/3 ·H4/3 ·m−1/6 ·

√
logm, (H.57)

where in the last inequality we utilize the fact that [yth]τ ∈ [0, H]. When T is sufficiently large, the
second term in (H.57) dominates. Since the eigenvalues of (Λ

t

h)−1 are all bounded by 1/λ, we have∥∥Ŵ t
h −W

t

h

∥∥
2
≤
∥∥(Λ

t

h)−1
∥∥

op
·
∥∥Λ

t

h

(
Ŵ t
h −W

t

h

)∥∥
2
≤ 1/λ ·

∥∥Λ
t

h

(
Ŵ t
h −W

t

h

)∥∥
2
. (H.58)

In the sequel, we set λ as

λ = C
2 · (1 + 1/T ) ∈

[
C

2
, 2C

2]
. (H.59)

Thus, combining (H.50), (H.57), (H.58), and (H.59), we have
Term (i) ≤ 4 · T 5/3 ·H4/3 ·m−1/6 ·

√
logm (H.60)

where we use the fact that C
2
/λ ≤ 1.

Furthermore, to bound Term (ii), by the definitions of bth and b
t

h, for any z ∈ Z , we have∣∣bth(z)− bth(z)
∣∣ =

∣∣∣√ϕ(z; Ŵ t
h)>(Λth)−1ϕ(z; Ŵ t

h)−
√
ϕ(z;W (0))>(Λ

t

h)−1ϕ(z;W (0))
∣∣∣

≤
√∣∣ϕ(z; Ŵ t

h)>(Λth)−1ϕ(z; Ŵ t
h)− ϕ(z;W (0))>(Λ

t

h)−1ϕ(z;W (0))
∣∣, (H.61)

where the inequality follows from the elementary inequality |
√
x−√y| ≤

√
|x− y|. By the triangle

inequality∣∣ϕ(z; Ŵ t
h)>(Λth)−1ϕ(z; Ŵ t

h)− ϕ(z;W (0))>(Λ
t

h)−1ϕ(z;W (0))
∣∣

≤
∣∣[ϕ(z; Ŵ t

h)− ϕ(z;W (0))
]>

(Λth)−1ϕ(z; Ŵ t
h)
∣∣+
∣∣ϕ(z;W (0))>

[
(Λth)−1 − (Λ

t

h)−1
]
ϕ(z; Ŵ t

h)
∣∣

+
∣∣ϕ(z;W (0))>(Λ

t

h)−1
[
ϕ(z; Ŵ t

h)− ϕ(z;W (0))
]∣∣. (H.62)

Combining Hölder’s inequality and Lemma H.2, we bound the first term on the right-hand side of
(H.62) by∣∣[ϕ(z; Ŵ t

h)− ϕ(z;W (0))
]>

(Λth)−1ϕ(z; Ŵ t
h)
∣∣ (H.63)

≤
∥∥ϕ(z; Ŵ t

h)− ϕ(z;W (0))
∥∥

2
·
∥∥(Λth)−1

∥∥
op
·
∥∥ϕ(z; Ŵ t

h)
∥∥

2
≤ C2 · T 1/6 ·H1/3 ·m−1/6 · λ−1 ·

√
logm,

where ‖(Λth)−1‖op is the matrix operator norm of (Λth)−1, which is bounded by 1/λ. Similarly, for
the third term, we also have∣∣ϕ(z;W (0))>(Λ

t

h)−1
[
ϕ(z; Ŵ t

h)− ϕ(z;W (0))
]∣∣ ≤ C2 · T 1/6 ·H1/3 ·m−1/6 · λ−1 ·

√
logm.

(H.64)

For the second term, since both Λth and Λ
t

h are invertible, we have∥∥(Λth)−1 − (Λ
t

h)−1
∥∥

op
=
∥∥(Λth)−1(Λth − Λ

t

h)(Λ
t

h)−1
∥∥

op

≤ ‖(Λth)−1‖op · ‖(Λ
t

h)−1‖op · ‖Λth − Λ
t

h‖op ≤ λ−2 · ‖Λth − Λ
t

h‖fro.
(H.65)
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By direct computation, we have

‖Λth − Λ
t

h‖fro

=

∥∥∥∥t−1∑
τ=1

[
ϕ(zτh; Ŵ τ+1

h )ϕ(zτh; Ŵ τ+1
h )> − ϕ(zτh;W (0))ϕ(zτh;W (0))>

]∥∥∥∥
fro

≤
t−1∑
τ=1

∥∥ϕ(zτh; Ŵ τ+1
h )ϕ(zτh; Ŵ τ+1

h )> − ϕ(zτh;W (0))ϕ(zτh;W (0))>
∥∥

fro

≤
t−1∑
τ=1

∥∥[ϕ(zτh; Ŵ τ+1
h )− ϕ(zτh;W (0))

]
ϕ(zτh; Ŵ τ+1

h )>

+ ϕ(zτh;W (0))
[
ϕ(zτh; Ŵ τ+1

h )− ϕ(zτh;W (0))
]>∥∥

fro
.

Hence, by Lemma H.2 we can bound ‖Λth − Λ
t

h‖fro by

‖Λth − Λ
t

h‖fro ≤ 2(t− 1) · C2 · T 1/6 ·H1/3 ·m−1/6 ·
√

logm

≤ 2C
2 · T 7/6 ·H1/3 ·m−1/6 ·

√
logm. (H.66)

Hence, combining (H.65) and (H.66), the second term on the right-hand side of (H.62) can be
bounded by ∣∣ϕ(z;W (0))>

[
(Λth)−1 − (Λ

t

h)−1
]
ϕ(z; Ŵ t

h)
∣∣

≤
∥∥ϕ(z;W (0))

∥∥
2
·
∥∥ϕ(z; Ŵ t

h)
∥∥

2
·
∥∥(Λth)−1 − (Λ

t

h)−1
∥∥

op

≤ 2C
4 · T 7/6 ·H1/3 ·m−1/6 · λ−2 ·

√
logm. (H.67)

Notice that λ defined in (H.59) satisfies that λ ≥ C
2
. Thus, combining (H.61)-(H.64), and (H.67),

we have∣∣bth(z)− bth(z)
∣∣ ≤ 2 · T 7/12 ·H1/6 ·m−1/12 · (logm)1/4, ∀(t, h) ∈ [T ]× [H], (H.68)

which establishes the second inequality in (E.11). Finally, combining (H.49), (H.60), and (H.68), we
conclude that
‖Qth −Q

t

h‖∞ ≤ 4 · T 5/3 ·H4/3 ·m−1/6 ·
√

logm+ 2β · T 7/12 ·H1/6 ·m−1/12 · (logm)1/4.

Note that β > 1. When m = Ω(β12 · T 13 ·H14 · (logm)3), the second term in the above inequality
is the dominating term. Thus, we have

sup
x∈S

∣∣V th(x)− V th(x)
∣∣ ≤ ‖Qth −Qth‖∞ ≤ 4β · T 7/12 ·H1/6 ·m−1/12 · (logm)1/4. (H.69)

This concludes the second step.

Step III. In the last step, we establish optimism by comparing ϕ(·)>(W
t

h −W (0)) and the function
Q̃th defined in (H.39), where ϕ(·) denotes ϕ(·;W (0)). By the definition of Λ

t

h in (H.42), we have

W̃ t
h −W (0) = (Λ

t

h)−1 ·
[
λ ·
(
W̃ t
h −W (0)

)
+ (Φth)>Φth

(
W̃ t
h −W (0)

)]
,

where W̃ t
h is given in (H.41). Hence, combining (H.47), we have

W
t

h − W̃ t
h = −λ · (Λth)−1

(
W̃ t
h −W (0)

)
+ (Λ

t

h)−1(Φth)>
[
yth − Φth

(
W̃ t
h −W (0)

)]
. (H.70)

Thus, for any z ∈ Z , by (H.70) we have

ϕ(z)>
(
W

t

h − W̃ t
h

)
= −λ · ϕ(z)>(Λ

t

h)−1 ·
(
W̃ t
h −W (0)

)︸ ︷︷ ︸
(iii)

+ϕ(z)>(Λ
t

h)−1(Φth)>
[
yth − Φth

(
W̃ t
h −W (0)

)]︸ ︷︷ ︸
(iv)

.

(H.71)
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For Term (iii) on the right-hand side of (H.71), by the Cauchy-Schwarz inequality, we have∣∣λ · ϕ(z)>(Λ
t

h)−1 ·
(
W̃ t
h −W (0)

)∣∣ ≤ λ · ∥∥W̃ t
h −W (0)

∥∥
2
·
∥∥(Λ

t

h)−1ϕ(z)
∥∥

2

≤ λ ·RQH/
√
d ·
√
ϕ(z)>(Λ

t

h)−1(Λ
t

h)−1ϕ(z) ≤ RQH ·
√
λ/d · bth(z). (H.72)

For Term (iv) in (H.71), recall that Q̃th(z) = ϕ(z)>(W̃ t
h −W (0)). To simplify the notation, let

q? ∈ Rt−1 denote the vector whose τ -th entry is (T?hQth+1)(xτh, a
τ
h) for any τ ∈ [t− 1]. Then, by

(H.40), for any τ ∈ [t− 1], the τ -th entry of Φth(W̃ t
h −W (0)) satisfies∣∣[Φth(W̃ t

h −W (0)
)
]τ − [q?]τ

∣∣ =
∣∣[Φth(W̃ t

h −W (0)
)]
τ
− (T?hQth+1)(xτh, a

τ
h)
∣∣

≤ 10Cact ·RQH ·
√

log(mTH)/m.

Moreover, for any τ ∈ [t− 1], the τ -th entry of (yth − q?) can be written as

[yth]τ − [q?]τ = rh(xτh, a
τ
h) + V th+1(xτh+1)− ϕ(xτh, a

τ
h)>θ

t

h

= rh(xτh, a
τ
h) + V th+1(xτh+1)− (T?hQth+1)(xτh, a

τ
h)

= V th+1(xτh+1)− (PhV th+1)(xτh, a
τ
h). (H.73)

Then, by the triangle inequality and (H.73), we have∣∣ϕ(z)>(Λ
t

h)−1(Φth)>
[
yth − Φth

(
W̃ t
h −W (0)

)]∣∣
≤
∣∣ϕ(z)>(Λ

t

h)−1(Φth)>
[
yth − q?

]∣∣+∣∣ϕ(z)>(Λ
t

h)−1(Φth)>
[
q? − Φth

(
W̃ t
h −W (0)

)]∣∣
≤ ‖ϕ(z)‖

(Λ
t
h)−1 ·

∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h) ·

[
V th+1(xτh+1)− (PhV th+1)(xτh, a

τ
h)
]∥∥∥∥

(Λ
t
h)−1

+ 10Cact ·RQH ·
√

log(mTH)/m · ‖ϕ(z)‖
(Λ
t
h)−1 . (H.74)

Recall that we have shown in Step II that, with probability at least 1 − m2 with respect to the
randomness of initialization, (H.69) holds for all (t, h) ∈ [T ] × [H]. To simplify the notation, we
denote

Err = 4β · T 7/12 ·H1/6 ·m−1/12 · (logm)1/4. (H.75)

Moreover, we define functions ∆V1 = V th+1 − V
t

h+1 and ∆V2 = Ph(V th+1 − V
t

h+1). Then (H.69)
implies that supx∈S |∆V1(x)| ≤ Err and supz∈Z |∆V2(z)| ≤ Err. By the elementary inequality
(a+ b)2 ≤ 2a2 + 2b2, we have∥∥∥∥t−1∑

τ=1

ϕ(xτh, a
τ
h) ·

[
V th+1(xτh+1)− (PhV th+1)(xτh, a

τ
h)
]∥∥∥∥2

(Λ
t
h)−1

≤ 2

∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h) ·

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(xτh, a
τ
h)
]∥∥∥∥2

(Λ
t
h)−1︸ ︷︷ ︸

(v)

+ 2

∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h) ·

[
∆V1(xτh+1)−∆V2(xτh, a

τ
h)
]∥∥∥∥2

(Λ
t
h)−1

≤ 2 · Term (v) + 8 · Err2 · T 2, (H.76)
where the last inequality follows from the fact that∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h) ·

[
∆V1(xτh+1)−∆V2(xτh, a

τ
h)
]∥∥∥∥2

(Λ
t
h)−1

≤ 4Err2 ·
∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h)

∥∥∥∥2

(Λ
t
h)−1

≤ 4 · Err2 · (t− 1) · λ−1 ·
t−1∑
τ=1

‖ϕ(xτh, a
τ
h)‖22 ≤ 4 · Err2 · (t− 1)2 · C2 · λ−1 ≤ 4 · Err2 · T 2.

Here the second-to-last inequality follows from Lemma H.2 and the definition of λ.
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Recall that we define b
t

h(z) = ‖ϕ(z)‖
(Λ
t
h)−1 . Combining (H.73), (H.74), and (H.77), we have∣∣ϕ(z)>(Λ

t

h)−1(Φth)>
[
yth − Φth

(
W̃ t
h −W (0)

)]∣∣
≤ bth(z) ·

[
10Cact ·RQH ·

√
log(mTH)/m+

√
2 · Term (v) + 2

√
2 · Err · T

]
≤ bth(z) ·

[
RQH +

√
2 · Term (v)

]
, (H.77)

where we apply the elementary inequality
√
a+ b ≤

√
a+
√
b. Here in the last inequality we let m

be sufficiently large such that
10Cact ·RQH ·

√
log(mTH)/m+ 2

√
2 · Err · T ≤ RQH.

In the following, we aim to bound Term (v) in (H.77) by combining the concentration of the self-
normalized stochastic process and uniform concentration. To characterize the function class that
contains each V

t

h, we define ϕ̃ : Z → R by ϕ̃(z) = ϕ(z)/C. Then, conditioning on the event where
the statements in Lemma H.2 are true, we have ‖ϕ̃(z)‖2 ≤ 1 for all z ∈ Z . Furthermore, we define a
kernel function K̃ : Z × Z → R by letting K̃(z, z′) = ϕ̃(z)>ϕ̃(z′) for all z, z′ ∈ Z . That is, K̃ is
the normalized version of the empirical NTK Km. By construction, K̃ is a bounded kernel such that
supz∈Z K̃(z, z) ≤ 1. We can also consider the maximal information gain in (4.2) for K̃ and Km.
These two quantities are linked via

ΓK̃(T, σ) = ΓKm
(
T,C

2
σ
)
, ∀σ > 0. (H.78)

Furthermore, we define λ̃ = λ/C
2

and Λ̃th = Λ
t

h//C
2

for all (t, h) ∈ [T ]× [H]. By the definition
of λ in (H.59), we have λ̃ = 1 + 1/T ∈ [1, 2]. Moreover, by (H.42) we have

Λ̃th = λ̃ · I2md +

t−1∑
τ=1

ϕ̃(xτh, a
τ
h)ϕ̃(xτh, a

τ
h)>.

Since λ̃ > 1, Λ̃th is an invertible matrix and the eigenvalues of (Λ̃th)−1 are all bounded above by one.

Using ϕ̃ and Λ̃th, we rewrite each Q
t

h as follows. For W
t

h defined in (H.47), we have

ϕ(x, a)>
(
W

t

h −W (0)) = C · ϕ̃(x, a)>
(
W

t

h −W (0)
)
, (H.79)

where C · ‖W t

h −W (0)‖2 ≤ C ·H
√
T/λ ≤ H

√
T since λ ≥ (C)2. Meanwhile, we also have

b
t

h(z) = ‖ϕ(z)‖
(Λ
t
h)−1 =

[
ϕ̃(z)>

(
Λ̃th
)−1

ϕ̃(z)
]1/2

. (H.80)

Thus, combining (H.79) and (H.80), Q
t

h defined in (H.48) can be written equivalently as

Q
t

h(z) = min
{
ϕ̃(z)>ϑ

t

h + β ·
∥∥ϕ̃(z)

∥∥
(Λ̃th)−1 , H − h+ 1

}+
,

where θ
t

h = C · (W t

h −W (0)), which satisfies ‖ϑth‖2 ≤ H
√
T .

Let D be a finite subset of Z with no more than T elements. For any fixed D, we define

Λ̃D = λ̃ · I2dm +
∑
z∈D

ϕ̃(z)ϕ̃(z)> ∈ R2md×2md. (H.81)

For any h ∈ [H], R,B > 0, we let Q̃ucb(h,R,B) consists of functions that take the form of

Q(·) = min
{
ϕ̃(·)>ϑ+ β ·

∥∥ϕ̃(·)
∥∥

(Λ̃D)−1 ;H − h+ 1
}+
,

for some ϑ ∈ R2md with ‖ϑ‖2 ≤ R and some D ⊆ Z . Then Q̃ucb(h,R,B) corresponds to the
function class in (4.4) with the kernel being K̃. Moreover, we define Ṽucb(h,R,B) as

Ṽucb(h,R,B) =
{
V : V (·) = max

a
Q(·, a) for some Q ∈ Q̃ucb(h,R,B)

}
.

By definition, for all h ∈ [H] and any R,B > 0, we have that Qucb(h,R,B) = Q̃ucb(h,CR,B).
Meanwhile, since (C)2 ≤ λ ≤ 2(C)2, for all R > 0, we have

Qucb(h,R,B) ⊆ Q̃ucb(h,R
√
λ,B) ⊆ Qucb(h,

√
2R,B). (H.82)

Recall that we define RT = H
√

2T/λ and let N∞(ε;h,B) denote the ε-covering number of
Qucb(h,RT , B) with respect to the `∞-norm on Z . Moreover, hereafter, we denote ε∗ = H/T
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and set B = BT which satisfy (D.3). Since we set β = BT in Algorithm 4, it holds for all
(t, h) ∈ [T ]× [H] that

Q
t

h ∈ Q̃ucb(h,H
√
T ,B) ⊆ Qucb(h,RT , B), V

t

h ∈ Ṽucb(h,H
√
T ,B).

Now, to bound Term (v) in (H.77), similar to the analysis the proof of Lemma E.2, we apply the con-
centration of self-normalized stochastic process and uniform concentration over Ṽucb(h,H

√
T ,BT ).

Specifically, similar to (H.25) and (H.26), with probability at least 1− (2T 2H2)−1, we have

Term (v) =

∥∥∥∥t−1∑
τ=1

ϕ(xτh, a
τ
h) ·

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(xτh, a
τ
h)
]∥∥∥∥2

(Λ
t
h)−1

=

∥∥∥∥t−1∑
τ=1

ϕ̃(xτh, a
τ
h) ·

[
V
t

h+1(xτh+1)− (PhV
t

h+1)(xτh, a
τ
h)
]∥∥∥∥2

(Λ̃th)−1

≤ 4H2 · ΓK̃(T, λ̃) + 11H2 + 4H2 · logN∞(ε∗, h+ 1, BT ) + 8H2 · log(TH).
(H.83)

Thus, combining (H.71), (H.72), (H.77), and (H.83), we obtain that∣∣ϕ(z)>(W
t

h − W̃ t
h)
∣∣

≤
∣∣Term (iii)

∣∣+
∣∣Term (iv)

∣∣ ≤ [RQH +
√

2 · Term (v) +RQH ·
√
λ/d

]
· bth(z)

≤ H ·
{[

8ΓKm(T, λ) + 22 + 8 · logN∞(ε∗, h+ 1, BT ) + 16 · log(TH)
]1/2

+RQ · (1 +
√
λ/d)

}
· bth(z).

Using the elementary inequality a+ b ≤
√

2(a2 + b2), we have∣∣ϕ(z)>(W
t

h − W̃ t
h)
∣∣

≤ H ·
[
16ΓKm(T, λ) + 16 · logN∞(ε∗, h+ 1, BT ) + 32 · log(TH) + 2R2

Q · (1 +
√
λ/d)2

]1/2 · bth(z)

≤ H ·
[
16ΓKm(T, λ) + 16 · logN∞(ε∗, h+ 1, BT ) + 32 · log(TH) + 4R2

Q · (1 + λ/d)
]1/2 · bth(z).

By the choice of BT in (D.3), we have that∣∣ϕ(z)>(W
t

h − W̃ t
h)
∣∣ =

∣∣ϕ(z)>(W
t

h −W (0))− Q̃th(z)
∣∣ ≤ β · bth(z)

holds simultaneously for all (t, h) ∈ [T ]× [H] and z ∈ Z with probability at least 1− (2T 2H2)−1.

Thus, combining this with (H.39) and (H.40), we have∣∣ϕ(z)>(W
t

h −W (0))− T?hQth+1(z)
∣∣ ≤ β · bth(z) + 10Cact ·RQH ·

√
log(mTH)/m. (H.84)

By the definition of Q
t

h in (H.48), we have

Q
t

h(z)− T?hQth+1(z) ≤ ϕ(z)>(W
t

h −W (0))− T?hQth+1(z) + β · bth(z)

≤ 2β · bth(z) + 10Cact ·RQ ·
√

log(mTH)/m. (H.85)
Moreover, since T?hQth+1 ≤ H − h+ 1, by (H.84) we have

T?hQth+1(z)−Qth(z) = T?hQth+1(z)−min
{
ϕ(x, a)>

(
W

t

h −W (0)
)

+ β · bth(x, a), H − h+ 1
}+

= max
{
T?hQth+1(z)− ϕ(z)>

(
W

t

h −W (0)
)
− β · bth(z), 0

}+

≤ 10Cact ·RQ ·
√

log(mTH)/m. (H.86)

Let ι denote T 7/12 ·H1/12 ·m−1/12 · (logm)1/4. When m is sufficiently large, it holds that

10Cact ·RQ ·
√

log(mTH)/m ≤ ι ≤ β · ι.
Meanwhile, combining the definition of the TD error δth in (E.1) and (H.69), we have∣∣δth(z)−

[
T?hQth+1(z)−Qth(z)]

∣∣ =
∣∣Qth(z)−Qth(z)

∣∣
≤ 4β · T 7/12 ·H1/12 ·m−1/12 · (logm)1/4. (H.87)
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Finally, combining (H.85), (H.86), and (H.87), we establish that, with probability at least 1 −
(2T 2H2)−1,

δth(z) ≤ [T?hQth+1(z)−Qth(z)] + 4β · ι ≤ 5β · ι

δth(z) ≥ [T?hQth+1(z)−Qth(z)]− 4β · ι ≥ −2β · bth(z)− 5β · ι
hold for all (t, h) ∈ [T ]× [H] simultaneously. Finally, combining this with (H.68), we have

−2β · bth − 9β · ι ≤ −2β · bth − 5β · ι ≤ δth(z) ≤ 5β · ι,
which, together with (H.68), concludes the proof of Lemma E.4.

I Covering Number and Effective Dimension

In this section, we present results on the covering number of the class of value functions that we
study and the effective dimension of the corresponding RKHS. Both of these results play a key role
in establishing our regret bounds.

I.1 Covering Number of the Classes of Value Functions

For any R,B > 0, any h ∈ [H], and fixed D, we define Qucb(h,R,B) as the function class that
contains functions on Z that take the following form:

Q(z) = min
{
θ(z) + β · λ−1/2

[
K(z, z)− kt(z)>(Kt + λI)−1kt(z)

]1/2
, H − h+ 1

}+
, (I.1)

where θ ∈ H satisfies ‖θ‖H ≤ R, β ∈ [0, B], h ∈ [H], and D = {zτ = (xτ , aτ ), }τ∈[t] is a finite
subset of Z with t elements, where t ≤ T . Here T is the total number of the episodes. Moreover,
Kt ∈ Rt×t and kt : Z → Rt are defined similarly as in (3.7) based on state-action pairs in D, that is,

Kt = [K(zτ , zτ
′
)]τ,τ ′∈[t] ∈ Rt×t, kt(z) =

[
K(z1, z), . . .K(zt, z)

]> ∈ Rt.
By definition, Q in (I.1) is determined by Q0 ∈ H and a bonus term constructed using D. Thus,
the function Qth constructed in Algorithm 2 belongs to Qucb(h,R,B) when β ≤ B and ‖αth‖H ≤
R. In the following, for any ε ∈ (0, 1), we let C(Qucb(h,R,B), ε) be the minimal ε-cover of
Qucb(h,R,B) with respect to the `∞-norm on Z . That is, for any Q ∈ Qucb(h,R,B), there
exists Q′ ∈ C(Qucb(h,R,B), ε) satisfying ‖Q−Q′‖∞ ≤ ε. Moreover, among all function classes
that possess such a property, C(Qucb(h,R,B), ε) has the smallest cardinality. Thus, by definition,
|C(Qucb(h,R,B), ε)| is the ε-covering number of Qucb(h,R,B) with respect to the `∞-norm on Z .

In addition, based on Qucb(h,R,B), we define the function class Vucb(h,R,B) as
Vucb(h,R,B) =

{
V : V (·) = max

a
Q(·, a) for some Q ∈ Qucb(h,R,B)

}
. (I.2)

For any two value functions V1, V2 : S → R, we denote their supremum norm distance as
dist(V1, V2) = sup

x∈S

∣∣V1(x)− V2(x)
∣∣. (I.3)

For any ε ∈ (0, 1), we let C(Vucb(h,R,B), ε) denote the minimal ε-cover of Vucb(h,R,B) with
respect to dist(·, ·) defined in (I.3).

The main result of this section is a set of upper bounds on the size of C(Vucb(h,R,B), ε) under the
two eigenvalue decay conditions specified in Assumption 4.3.

Lemma I.1. Let Assumption 4.3 hold and λ be bounded in [c1, c2], where both c1 and c2 are absolute
constants. Then, for any h ∈ [H], anyR,B > 0, and any ε ∈ (0, 1/e), there exists a positive constant
CN such that

log
∣∣C(Vucb(h,R,B), ε

)∣∣ ≤ log
∣∣C(Qucb(h,R,B), ε

)∣∣ (I.4)

≤

{
CN · γ ·

[
1 + log(R/ε)

]
+ CN · γ2 ·

[
1 + log(B/ε)

]
case (i),

CN ·
[
1 + log(R/ε)

]1+1/γ
+ CN ·

[
1 + log(B/ε)]1+2/γ case (ii),

(I.5)

where cases (i) and (ii) above correspond to the two eigenvalue decay conditions specified in
Assumption 4.3, respectively. Moreover, here CN in (I.4) is independent of T , H , R, and B, and
only depends on Cψ , C1, C2, c1, c2, γ, and τ .
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Proof. For any fixed subset D = {zτ}τ∈[t] of Z with size t ∈ [T ], we define ΦD : H → Rt and
ΛD : H → H respectively as

ΦD =
[
φ(z1)>, φ(z2)> . . . , φ(zt)>

]>
,

ΛD =

t∑
τ=1

φ(zτ )φ(zτ )> + λ · IH = λ · IH + (ΦD)>ΦD, (I.6)

where φ : Z → H is the feature mapping ofH and IH is the identity mapping onH. Then, we can
equivalently write Q1 ∈ Qucb(h,R,B) as

Q1(z) = φ(z)>θ1 + β ·
√
φ(z)>Λ−1

D1
φ(z), (I.7)

where θ1 ∈ H has an RKHS norm bounded byR, β1 ∈ [0, B], andD1 is a finite subset of Z with size
t1 ≤ T . Let V1(·) = maxa∈AQ1(·, a). Combining (I.2) and (I.7), we can write V1 ∈ Vucb(h,R,B)
as

V1(·) = min
{

max
a

{
φ(·, a)>θ1 + β1 ·

√
φ(·, a)>Λ−1

D1
φ(·, a)

}
, H − h+ 1

}+

, (I.8)

Similar to V1 in (I.8), consider any V2 : S → R that can be written as

V2(·) = min
{

max
a

{
f1(·, a) + β2 · f2(·, a)

}
, H − h+ 1

}+

, (I.9)

where Q2 = f1 + β2 · f2 for some f1, f2 : Z → R and β2 ∈ [0, B]. Since both min{·, H − h+ 1}+
and maxa are contractive mappings, by (I.8) and (I.9) we have

dist(V1, V2) ≤ sup
(x,a)∈Z

∣∣∣[φ(x, a)>θ1 + β1 ·
√
φ(x, a)>Λ−1

D1
φ(x, a)

]
−
[
f(x, a) + β2 · f2(x, a)

]∣∣∣ = ‖Q1 −Q2‖∞,
which implies that

log
∣∣C(Vucb(h,R,B), ε

)∣∣ ≤ log
∣∣C(Qucb(h,R,B), ε

)∣∣.
Moreover, by the triangle inequality, we have

‖Q1 −Q2‖∞ ≤ sup
(x,a)∈Z

∣∣φ(x, a)>θ1 − f2(x, a)
∣∣+ |β1 − β2| · sup

(x,a)∈Z

∥∥φ(x, a)
∥∥

Λ−1
D1

+B · sup
(x,a)∈Z

∣∣∥∥φ(x, a)
∥∥

Λ−1
D1

− f2(x, a)
∣∣, (I.10)

where we denote ‖φ(x, a)
∥∥2

Λ−1
D1

= φ(x, a)>Λ−1
D1
φ(x, a). Notice that by the reproducing property we

have φ(x, a)>θ = 〈θ, φ(x, a)〉H = θ(x, a) for all θ ∈ H and (x, a) ∈ Z . Also note that

‖φ(x, a)
∥∥2

Λ−1
D1

≤ 1/λ · ‖φ(x, a)‖2 ≤ 1/λ ·K(z, z) ≤ 1/λ.

Thus, by (I.10) we have
‖Q1 −Q2‖∞ ≤ sup

(x,a)∈Z

∣∣θ1(x, a)− f1(x, a)
∣∣+ |β1 − β2|/λ

+B · sup
(x,a)∈Z

∣∣∥∥φ(x, a)
∥∥

Λ−1
D1

− f2(x, a)
∣∣. (I.11)

Thus, by (I.11), to get the covering number of Qucb(h,R,B) with respect to dist(·, ·), it suffices to
bound the covering numbers of the RKHS norm ball {f ∈ H : ‖f‖H ≤ R}, the interval [0, B], and
the set of functions that are of the form of ‖φ(·)‖Λ−1

D
, respectively.

Notice that, by the definition in (I.6), ΛD : H → H is a self-adjoint operator onH with eigenvalues
bounded in [0, 1/λ]. To simplify the notation, we define the function class F(λ) as

F(λ) =
{
‖φ(·)‖Υ =

[
φ(·)>Υφ(·)

]1/2
: ‖Υ‖op ≤ 1/λ

}
, (I.12)

where Υ: H → H in (I.12) is a self-adjoint operator onH whose eigenvalues are all bounded by 1/λ
in magnitude. Here, the operator norm of Υ is defined as

‖Υ‖op = sup
{
f>Υf : f ∈ H, ‖f‖H = 1

}
= sup

{
〈f,Υf〉H : f ∈ H, ‖f‖H = 1

}
.

Thus, by definition, for any finite subset D of Z , ‖φ(·)‖Λ−1
D

belongs to F(λ), where ΛD is defined
in (I.6). For any ε ∈ (0, 1), we let N∞(ε,F , λ) denote the ε-covering number of F(λ) in (I.12)
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with respect to the `∞-norm. Moreover, let N∞(ε,H, R) denote the ε-covering number of {f ∈
H : ‖f‖H ≤ R} with respect to the `∞-norm and let N(ε, B) denote the ε-covering number of the
interval [0, B] with respect the Euclidean distance. Then, by (I.11) we obtain that∣∣C(Qucb(h,R,B), ε

)∣∣ ≤ N∞(ε/3,H, R) ·N(ε · λ/3, B) ·N∞
(
ε/(3B),F , λ

)
. (I.13)

As shown in [69, Corollary 4.2.13], it holds that
N(ε · λ/3, B) ≤ 1 + 6B/(ε · λ) ≤ 1 + 6B/ε, (I.14)

where the last inequality follows from the fact that λ ∈ [1, 2].

It remains to bound the first and the third terms on the right-hand side of (I.13) separately. We establish
the `∞-covering of the RKHS norm ball and F (λ) in the following two lemmas, respectively.

Lemma I.2 (`∞-norm covering number of RKHS ball). For any ε ∈ (0, 1), we let N∞(ε,H, R)
denote the ε-covering number of the RKHS norm ball {f ∈ H : ‖f‖H ≤ R} with respect to the
`∞-norm. Consider the two eigenvalue decay conditions given in Assumption 4.3. Then, under
Assumption 4.3, there exist absolute constants C3 and C4 such that

logN∞(ε,H, R) ≤

{
C3 · γ ·

[
log(R/ε) + C4

]
γ-finite spectrum,

C3 ·
[
log(R/ε) + C4

]1+1/γ
γ-exponential decay,

where C3 and C4 are independent of T , H , R, and ε, and only depend on absolute constants Cψ , C1,
C2, γ, and τ specified in Assumption 4.3.

Proof. See §J.2 for a detailed proof.

Lemma I.3. For any ε ∈ (0, 1/e), let N∞(ε,F , λ) be the ε-covering number of function class F(λ)
with respect to the `∞-norm, where F(λ) is defined in (I.12). Here we assume that λ is bounded
in [c1, c2], where both c1 and c2 are absolute constants. Then, under Assumption 4.3, there exist
absolute constants C5 and C6 such that

logN∞(ε,F , λ) ≤

{
C5 · γ2 ·

[
log(1/ε) + C6

]
γ-finite spectrum,

C5 ·
[
log(1/ε) + C6]1+2/γ γ-exponential decay

where C5 and C6 only depend on Cψ , C1, C2, γ, τ , c1, and c2, and do not rely on T , H , or ε.

Proof. See §J.3 for a detailed proof.

Finally, we conclude the proof by combining Lemmas I.2 and I.3. Specifically, by (I.13) and (I.14),
we have
log
∣∣C(Qucb(h,R,B), ε

)∣∣ ≤ logN∞(ε/3,H, R) + logN(ε · λ/3, B) + logN∞
(
ε/(3B),F , λ

)
(I.15)

≤ log
[
1 + 6B/(ε · λ)

]
+ logN∞(ε/3,H, R) + logN∞

(
ε/(3B),F , λ

)
.

We consider the two eigenvalue decay conditions separately. For the γ-finite spectrum case, by
Lemmas I.2 and I.3 and (I.15) we have

log
∣∣C(Qucb(h,R,B), ε

)∣∣
≤ log

[
1 + 6B/(ε · λ)

]
+ C3 · γ ·

[
log(3R/ε) + C4

]
+ C5 · γ2 ·

[
log(3B/ε) + C6

]
≤ CN · γ ·

[
1 + log(R/ε)

]
+ CN · γ2 ·

[
1 + log(B/ε)

]
,

where CN is an absolute constant. Similarly, for the case where the eigenvalues satisfy the γ-
exponential decay condition, by Lemmas I.2 and I.3 we have

log
∣∣C(Qucb(h,R,B), ε

)∣∣
≤ log

[
1 + 6B/(ε · λ)

]
+ C3 ·

[
log(3R/ε) + C4

]1+1/γ
+ C5 ·

[
log(3B/ε) + C6]1+2/γ

≤ CN ·
[
1 + log(R/ε)

]1+1/γ
+ CN ·

[
1 + log(B/ε)

]1+2/γ

for some absolute constant CN > 0. Therefore, we conclude the proof.
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I.2 Effective Dimension of RKHS

Definition I.4 (Maximal information gain). For any fixed integer T and any σ > 0, we define the
maximal information gain associated with the RKHSH as

ΓK(T, σ2) = sup
D⊆Z

{
1/2 · logdet(I + σ−2 ·KD)

}
, (I.16)

where the supremum is taken over all discrete subsets of Z with cardinality no more than T , and KD

is the Gram matrix induced by D ⊆ Z , which is defined similarly as in (3.7). Here the subscript K
in ΓK(T, σ2) denotes the kernel function ofH.

The maximal information gain naturally arises in Gaussian process regression. Specifically, let
f ∼ GP(0,K) be draw from the Gaussian process with covariance kernelK. LetD = {z1, . . . , z|D|}
be a subset of Z with |D| ≤ T elements. Suppose that we observe noisy observations of f at points
in D. That is, for any zi ∈ D, we have yi = f(zi) + εi, where εi ∼ N(0, σ2) is a random Gaussian
noise. We let yD denote the vector whose entries are yi. Then, the information gain of yD is defined
as the mutual information between f and the observations yD, denoted by I(f, yD). By direct
computation, we have

I(f, yD) = 1/2 · logdet(I + σ−2 ·KD).

The mutual information I(f, yD) quantifies the reduction of the uncertainty about f when we observe
yD. Thus, the maximal mutual information ΓK(T, σ2) characterizes the maximal possible reduction
of the uncertainty of f when having no more than T observations.

Moreover, we note that, when σ2 is a constant, ΓK(T, σ2) depends on the eigenvalue decay of the
RKHS and thus can be viewed as an effective dimension of the RKHS. Specifically, as shown in
[62], when the kernel is the d-dimensional linear kernel, ΓK(T, σ2) = O(d log T ). Moreover, for
the squared exponential kernel that satisfies the exponential eigenvalue decay condition, the maximal
information gain is O

(
(log T )d+1

)
. In the following lemma, similar to Theorem 5 in [62], we

establish upper bounds on the maximal information gain of the RKHS under the eigenvalue decay
conditions specified in Assumption 4.3.

Lemma I.5 (Theorem 5 in [62]). Let Z be a compact subset of Rd and K : Z × Z → R be the
RKHS kernel ofH. We assume thatK is a bounded kernel in the sense that supz∈Z K(z, z) ≤ 1, and
K is continuously differentiable on Z × Z . Moreover, let TK be the integral operator induced by K
and the Lebesgue measure on Z , whose definition is given in (B.1). Let {σj}j≥1 be the eigenvalues
of TK in the descending order. We assume that {σj}j≥1 satisfy either one of the following three
eigenvalue decay conditions:

(i) γ-finite spectrum: We have σj = 0 for all j ≥ γ + 1, where γ is a positive integer.

(ii) γ-exponential eigenvalue decay: There exist constants C1, C2 > 0 such that σj ≤
C1 exp(−C2 · jγ) for all j ≥ 1, where γ > 0 is positive constant.

Let σ be bounded in interval [c1, c2] with c1 and c2 being absolute constants. Then, for conditions
(i)–(iii) respectively, we have

ΓK(T, σ2) ≤

{
CK · γ · log T γ-finite spectrum,
CK · (log T )1+1/γ γ-exponential decay,

where CK is an absolute constant that depends on d, γ, C1, C2, C, c1, and c2.

We note that Lemma I.5 is a generalization of Theorem 5 in [62], which establishes the maximal
information gain for the linear, squared exponential, and Matérn kernels, respectively. Specifically,
the squared exponential kernel satisfies the γ-exponential eigenvalue decay condition with γ = 1/d.
Lemma I.5 implies that the ΓK(T, σ2) = O((log T )d+1), which matches Theorem 5 in [62].

Proof. The proof of this lemma is based on a modification of that of Theorem 5 in [62]. To begin
with, for any j ∈ N, we define BK(j) =

∑
s>j σs, i.e., the sum of eigenvalues with indices larger
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than j. Then, we use the following lemma obtained from [62] to bound ΓK(T, σ2) using function
BK .

Lemma I.6 (Theorem 8 in [62]). Under the same condition as in Lemma I.5, for any fixed τ > 0,
we denote Cτ = 2µ(Z) · (2τ + 1) where µ(Z) is the Lebesgue measure of Z . Let nT denote
Cτ · T τ · log T . Then, for any T? ∈ {1, . . . , nT }, we have

ΓK(T, σ2) ≤ T? · log(T · nT /σ2) + Cτ · σ−2 · log T ·
[
T τ+1 ·BK(T?) + 1

]
+O(T 1−τ/d).

Proof. See [62] for a detailed proof.

In the following, we choose proper τ and T? in Lemma I.6 for the two eigenvalue decay conditions
separately.

Case (i): γ-Finite Spectrum. When σj = 0 for all j ≥ γ + 1, we set τ = d and T? = γ in Lemma
I.6. Then we have BK(T?) = 0 and nT = Cd · T d · log T . When T is sufficiently large, it holds that
T? < nT . Then Lemma I.6 implies that

ΓK(T, σ2) ≤ γ · log
(
Cd · T d+1 · log T/σ2

)
+ Cd · σ−2 · log T +O(1) ≤ CK · γ · log T,

for some absolute constant CK > 0. Thus, we conclude the proof for the first case.

Case (ii): γ-Exponential Decay. When {σj}j≥1 satisfies the γ-exponential eigenvalue decay
condition, for any T? ∈ N, we have

BK(T?) =
∑
j>T?

σj ≤ C1 ·
∑
j>T?

exp(−C2 · jγ) ≤ C1 ·
∫ ∞
T?

exp(−C2 · uγ) du. (I.17)

In a manner similar to the derivation of (J.16), by direct computation we have∫ ∞
T?

exp(−C2 · uγ) du ≤

{
C−1

2 · exp(−C2 · T γ? ), if γ ≥ 1,

2 · (γ · C2)−1 · exp(−C2 · T γ? ) · T 1−γ
? , if γ ∈ (0, 1).

(I.18)

In the following, we set τ = d. Then we have nT = Cd · T d · log T where Cd = 2µ(Z) · (2d+ 1).
Then we have

log(T · nT ) = log(Cd) + log ·(T d+1 · log T
)
≤ log(Cd) + 2(d+ 1) · log T, (I.19)

when T is sufficiently large. Moreover, combining Lemma I.6 and (I.19), when σ is sandwiched by
absolute constants c1 and c2, we have

ΓK(T, σ2) ≤ C̃1 · T? · log T + C̃2 · log T ·
[
T d+1 ·BK(T?) + 1

]
+ C̃3, (I.20)

where C̃1, C̃2, and C̃3 are absolute constants that depend on d, γ, c1, c2, C1, and C2. Now we choose
T? such that

exp(C2 · T γ? ) � T · nT = Cd · T d+1 · log T, (I.21)

that is, T? = C̃4 · (log T )1/γ where C̃4 is an absolute constant. Notice that T? < nT when T is
sufficiently large.

Thus, combining (I.17), (I.18), and (I.21), for γ ≥ 1, we have
log T ·

[
T d+1 ·BK(T?) + 1

]
≤ C1 · C−1

2 log T · T d+1 · exp(−C2 · T γ? ) + log T ≤ 2 log T, (I.22)
where the last inequality follows from (I.21). Similarly, for γ ∈ (0, 1), by (I.17), (I.18), and (I.21),
we have
log T ·

[
T d+1 ·BK(T?) + 1

]
≤ 2C1 · (γ · C2)−1 · exp(−C2 · T γ? ) · log T · T d+1 · T 1−γ

? + log T � (log T )1/γ−1 + log T.
(I.23)

Thus, combining (I.20), (I.22), (I.23), we conclude that
ΓK(T, σ2) ≤ CK · log(T )1+1/γ

for any γ ≥ 0, where CK is an absolute constant that depends on d, γ, c1, c2, C1, and C2. Thus, we
conclude the proof for the second case. Therefore, we conclude the proof of Lemma I.5.
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J Proofs of Auxiliary Results

In this section, we provide the proofs of the auxiliary results.

J.1 Proof of Lemma H.1

Proof. For any function f ∈ H, using the feature representation induced by the kernel K, we have∣∣〈f, θ̂th〉H∣∣ =
∣∣f>θ̂th∣∣ ≤ ∣∣f>(Λth)−1Φ>yth

∣∣
=

∣∣∣∣f>(Λth)−1
t−1∑
τ=1

φ(xτh, a
τ
h) · [rh(xτh, a

τ
h) + V th+1(xτh+1)]

∣∣∣∣, (J.1)

where we let Φ denote Φth defined in (H.13) for simplicity. Since |rh(xτh, a
τ
h)| ≤ 1 and

|V th+1(xτh+1)| ≤ H − h, we have |[rh(xτh, a
τ
h) + V th+1(xτh+1)]| ≤ H for all h ∈ [H] and τ ∈ [t− 1].

Then, by (J.1) and the Cauchy-Schwarz inequality, we have∣∣〈f, θ̂th〉H∣∣ ≤ H · t−1∑
τ=1

∣∣f>(Λth)−1φ(xτh, a
τ
h)
∣∣

≤ H ·
[t−1∑
τ=1

f>(Λth)−1f

]1/2

·
[ t−1∑
τ=1

φ(xτh, a
τ
h)>(Λth)−1φ(xτh, a

τ
h)

]1/2

≤ H/
√
λ · ‖f‖H ·

[ t−1∑
τ=1

φ(xτh, a
τ
h)>(Λth)−1φ(xτh, a

τ
h)

]1/2

, (J.2)

where the last inequality follows from the fact that (Λth)−1 : H → H is a self-adjoint and positive-
definite operator whose eigenvalues are bounded by 1/λ. Furthermore, by Lemma J.3, we have[ t−1∑

τ=1

φ(xτh, a
τ
h)>(Λth)−1φ(xτh, a

τ
h)

]
≤ 2logdet(I +Kt

h/λ). (J.3)

Thus, combining (J.2), (J.3), and the fact that λ ≥ 1, we obtain that∣∣〈f, θ̂th〉H∣∣ ≤ H · ‖f‖H ·√2/λ · logdet(I +Kt
h/λ) ≤ H · ‖f‖H ·

√
2 · logdet(I +Kt

h/λ).

Finally, utilizing the definition of ΓK(T, λ) in (I.16), we conclude the proof of this lemma.

J.2 Proof of Lemma I.2

Proof. Recall that we have defined the integral operator TK : L2(Z) → L2(Z) defined in (B.1),
which has eigenvalues {σj}j≥0 and eigenvectors {ψj}j≥0. Moreover, {ψj} and {√σj · ψj}j≥0 are
orthonormal bases of L2(Z) andH, respectively. Then, any ∈ H with ‖f‖H ≤ R can be written as

f =

∞∑
j=1

wj ·
√
σj · ψj , (J.4)

where {wj}j≥0 satisfy
∑∞
j=1 w

2
j = ‖f‖2H ≤ R2. Let m be any positive integer and let Πm : H → H

denote the projection onto the subspace spanned by {ψj}j∈[m], i.e., Πm(f) =
∑m
j=1 wj ·

√
σj · ψj

for any f ∈ H written as in (J.4). Then we have

‖f −Πm(f)‖∞ =

∞∑
j=m+1

|wj | ·
√
σj · sup

z∈Z
|ψj(z)|. (J.5)

In the following, we consider the two eigenvalue decay conditions specified in Assumption 4.3
separately.

Case (i): γ-Finite Spectrum. Consider the case where σj = 0 for all j > γ. Then, by the definition
of Πm, we have f = Πγ(f) for all f ∈ H. That is, (J.4) is reduced to

f =

γ∑
j=1

wj ·
√
σj · ψj ,
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where {wj}j∈[γ] satisfies
∑γ
j=1 w

2
j ≤ R2. Let Cγ(ε, R) be the minimal ε-cover of the γ-dimensional

Euclidean ball {w ∈ Rγ : ‖w‖2 ≤ R} with respect to the Euclidean norm. Then, by construction,
there exists w̃ ∈ Rγ such that

∑γ
j=1(wj − w̃j)2 ≤ ε2. Then, by the Cauchy-Schwarz inequality, we

have∥∥∥∥f − γ∑
j=1

w̃j ·
√
σj · ψj

∥∥∥∥
∞

= sup
z∈Z

∣∣∣∣ γ∑
j=1

(wj − w̃j) ·
√
σj · ψj(z)

∣∣∣∣ (J.6)

=

[ γ∑
j=1

(wj − w̃j)2

]1/2

· sup
z∈Z

{[ γ∑
j=1

σj · |ψj(z)|2
]1/2}

≤ ε · sup
z

√
K(z, z) ≤ ε,

where the last equality follows from the fact that K(z, z) =
∑γ
j=1 σj · |ψj(z)|2. Thus, the ε-covering

of {f ∈ H : ‖f‖H ≤ R} is bounded by the cardinality of Cγ(ε, R). As shown in [69, Corollary
4.2.13], we have ∣∣Cγ(ε, R)

∣∣ ≤ (1 + 2R/ε)γ . (J.7)
Thus, combining (J.6) and (J.7), we have

logN∞(ε,H, R) ≤ γ · log(1 + 2R/ε) ≤ C3 · γ ·
[
log(R/ε) + C4

]
,

where both C3 and C4 are absolute constants. Thus, we conclude the proof for the first case.

Case (ii): γ-Exponential Decay. In the following, we assume the eigenvalues {σj}j≥1 satisfy the
γ-exponential decay condition and ‖ψj‖∞ ≤ Cψ · σ−τj for all j ≥ 1. Thus, by (J.5) we have

‖f −Πm(f)‖∞ ≤
∞∑

j=m+1

Cψ · |wj | · σ1/2−τ
j

≤
∞∑

j=m+1

Cψ · C1/2−τ
1 · |wj | · exp

[
−C2 · (1/2− τ) · jγ

]
. (J.8)

To simplify the notation, we define C1,τ = Cψ · C1/2−τ
1 and C2,τ = C2 · (1− 2τ). Then, applying

the Cauchy-Schwarz inequality to (J.8), we have

‖f −Πm(f)‖∞ ≤ C1,τ ·
( ∞∑
j=m+1

|wj |2
)1/2

·
[ ∞∑
j=m+1

exp(−C2,τ · jγ)

]1/2

≤ C1,τ ·R ·
[ ∞∑
j=m+1

exp(−C2,τ · jγ)

]1/2

, (J.9)

where the second inequality follows from the fact that
∑
j≥1 w

2
j ≤ R2. Since γ > 0, exp(−uγ) is

monotonically decreasing in u. Thus, we have
∞∑

j=m+1

exp(−C2,τ · jγ) ≤
∫ ∞
m

exp(−C2,τ · uγ) du. (J.10)

In the following, we bound the integral in (J.10) by considering the cases where γ ≥ 1 and γ ∈ (0, 1)
separately. First, when γ ≥ 1, since d ≥ 1, we have uγ−1 ≥ 1 for all u ≥ d. Hence, we have∫ ∞

m

exp(−C2,τ · uγ) du ≤
∫ ∞
m

uγ−1 · exp(−C2,τ · uγ) du

≤
∫ ∞
mγ

exp(−C2,τ · v) dv = C−1
2,τ · exp(−C2,τ ·mγ), (J.11)

where the second inequality follows from the change of variable v = uγ and the fact that γ ≥ 1.
Second, when γ < 1, by letting v = uγ , we have∫ ∞

m

exp(−C2,τ · uγ) du =
1

γ
·
∫ ∞
mγ

exp(−C2,τ · v) · v1/γ−1 dv =
1

γ · C2,τ

∫ ∞
mγ

v1/γ−1 d[− exp(−C2,τ · v)]

=
1

γ · C2,τ
· exp(−C2,τ ·mγ) ·m1−γ +

(1− γ)

γ2 · C2,τ

∫ ∞
mγ

exp(−C2,τ · v) · v1/γ−2 dv, (J.12)
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where the last equality follows from integration by parts. Moreover, by direct calculation, we have
1

γ

∫ ∞
mγ

exp(−C2,τ · v) · v1/γ−2 dv ≤ 1

mγ
· 1

γ

∫ ∞
mγ

exp(−C2,τ · v) · v1/γ−1 dv

=
1

mγ

∫ ∞
m

exp(−C2,τ · uγ) du, (J.13)

where the first inequality follows from the fact that v ≥ mγ in the integral and the second equality
follows from letting u = v1/γ . Then, combining (J.12) and (J.13), we have∫ ∞

m

exp(−C2,τ · uγ) du

≤ 1

γ · C2,τ
· exp(−C2,τ ·mγ) ·m1−γ +

1/γ − 1

C2,τ ·mγ
·
∫ ∞
m

exp(−C2,τ · uγ) du. (J.14)

Thus, when m is sufficiently large such that mγ · C2,τ > 2/γ − 2, by (J.14) we have∫ ∞
m

exp(−C2,τ · uγ) du ≤
(

1− 1/γ − 1

C2,τmγ

)−1

· 1

γ · C2,τ
exp(−C2,τ ·mγ) ·m1−γ

≤ 2

γ · C2,τ
exp(−C2,τ ·mγ) ·m1−γ . (J.15)

Therefore, combining (J.10), (J.11), and (J.15), we obtain that∫ ∞
m

exp(−C2,τ · uγ) du ≤

{
C−1

2,τ · exp(−C2,τ ·mγ), if γ ≥ 1,

2 · (γ · C2,τ )−1 · exp(−C2,τ ·mγ) ·m1−γ , if γ ∈ (0, 1).

(J.16)

In the sequel, we let m∗ be the smallest integer such that∫ ∞
m

exp(−C2,τ · uγ) du ≤
(

ε

2C1,τ ·R

)2

, ∀m ≥ m∗. (J.17)

Hence, combining (J.9), (J.10), and (J.17), we have ‖f − Πm∗(f)‖∞ ≤ ε/2 for any f ∈ H with
‖f‖H ≤ R. Note, moreover, that C1,τ , C2,τ , and γ are all absolute constants. By (J.16) and (J.17),
there exist absolute constants C1,m and C2,m such that

m∗ ≤ C1,m ·
[
log(R/ε) + C2,m

]1/γ
. (J.18)

Finally, it remains to approximate Πm∗(f) up to error ε/2 form∗ specified in (J.17). By the expansion
of f in (J.4), we have Πm∗(f) =

∑m∗

j=1 wj ·
√
σj · ψj . For any m∗ real numbers {w̃j}j∈[m∗], by the

Cauchy-Schwarz inequality, we have∣∣∣∣[Πm∗(f)
]
(z)−

m∗∑
j=1

w̃j ·
√
σj · ψj(z)

∣∣∣∣ =

∣∣∣∣m
∗∑

j=1

(wj − w̃j) ·
√
σj · ψj(z)

∣∣∣∣
≤
[m∗∑
j=1

(wj − w̃j)2

]1/2

·
{m∗∑
j=1

σj · [ψj(z)]2
}1/2

≤
√
K(z, z) ·

[m∗∑
j=1

(wj − w̃j)2

]1/2

,

(J.19)
where the last inequality follows from the fact that K(z, z) =

∑∞
j=1 σj · [ψj(z)]2. Under Assump-

tion 4.3, we have supz∈Z K(z, z) ≤ 1. Notice that
∑m∗

j=1 ω
2
j ≤ ‖f‖2H ≤ R2. Let Cm∗(ε/2, R) be

the minimal ε/2-cover of {w ∈ Rm∗ : ‖w‖2 ≤ R} with respect to the Euclidean norm. By definition,
for any f ∈ H with ‖f‖H ≤ R, there exist w̃ ∈ Cm∗(ε/2, R) such that

∑m∗

j=1(wj − w̃j)2 ≤ ε2/4.
Therefore, by (J.19) we have∥∥∥∥f − m∗∑

j=1

w̃j ·
√
σj · ψj

∥∥∥∥
∞
≤ ‖f −Πm∗(f)‖∞ +

∥∥∥∥Πm∗(f)−
m∗∑
j=1

w̃j ·
√
σj · ψj

∥∥∥∥
∞
≤ ε, (J.20)

which implies that the ε-covering number of the RKHS norm ball {f ∈ H : ‖f‖H ≤ R} is bounded
by the cardinality of Cm∗(ε/2, R), i.e., N∞(ε,H, R) ≤ |Cm∗(ε/2, R)

∣∣. As shown in [69, Corollary
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4.2.13], we have ∣∣Cm∗(ε/2, R)
∣∣ ≤ (1 + 4R/ε)m

∗
. (J.21)

Therefore, combining (J.18) and (J.21), we have

logN∞(ε,H, R) ≤ m∗ · log(1 + 4R/ε) ≤ C1,m ·
[
log(R/ε) + C2,m

]1/γ · [log(1 + 4R/ε)]

≤ C3 ·
[
log(R/ε) + C4]1+1/γ ,

where C3 and C4 are absolute constants that only depend on CΨ, C1, C2, γ, and τ , which are
specified in Assumption 4.3. Thus we conclude the proof of this lemma.

J.3 Proof of Lemma I.3

Proof. As shown in §B.1, the feature mapping φ : Z → H satisfies

φ(z) =

∞∑
j=1

σj · ψj(z) · ψj =

∞∑
j=1

√
σj · ψj(z) · (

√
σj · ψj). (J.22)

That is, when expanding φ(z) ∈ H in the basis {√σj ·ψj}j≥0 as in (J.4), the j-th coefficient is equal
to √σj · ψj(z) for all j ≥ 1. Similar to the proof of Lemma I.2, in the following, we consider the
two eigenvalue decay conditions separately.

Case (i): γ-Finite Spectrum. WhenH has only γ nonzero eigenvalues, for any z ∈ Z , we define a
vector wz ∈ Rγ by letting its j-th entry be√σj · ψj(z) for all j ∈ [γ]. Moreover, for any self-adjoint
operator Υ: H → H satisfying ‖Υ‖op ≤ 1/λ, we define a matrix AΥ ∈ Rγ×γ as follows. For any
j, k ∈ [γ], we define the (j, k)-th entry of AΥ as

[AΥ]j,k =
〈√

σj · ψj ,
√
σk ·Υψk

〉
H.

By (J.22) and the definition of AΥ, we have

‖φ(z)‖2Υ =

γ∑
j,k=1

√
σj · ψj(z) ·

√
σk · ψk(z) · [AΥ]j,k = w>z AΥwz. (J.23)

With a slight abuse of notation, we define Cγ(ε, λ) denote the minimal ε2-cover of{
A ∈ Rγ×γ : ‖A‖fro ≤

√
γ/λ

}
with respect to the Frobenius norm. Then by definition, there exists ÃΥ ∈ Cγ(ε, λ) such that
‖AΥ − ÃΥ‖fro ≤ ε2, which implies that∣∣w>z AΥwz − w>z ÃΥwz

∣∣ ≤ ‖wz‖22 · ‖AΥ − ÃΥ‖op ≤ ‖AΥ − ÃΥ‖fro ≤ ε2, (J.24)
where we use the fact that

‖wz‖22 =

γ∑
j=1

|wj |2 =

γ∑
j=1

σj · |ψj(z)|2 = K(z, z) ≤ 1.

Thus, combining (J.23) and (J.24), and utilizing Corollary 4.2.13 in [69], we have
logN∞(ε,F , λ) ≤ log

∣∣Cγ(ε, λ)
∣∣ ≤ γ2 · log

[
1 + 8

√
γ/(λ · ε2)

]
≤ C5 · γ2 ·

[
log(1/ε) + C6

]
,

where C5 and C6 are absolute constants that depend solely on λ and γ. Thus, we conclude the proof
for the first case.

Case (ii): γ-Exponential Decay. In the following, we focus on the second case where the eigenvalues
satisfy the γ-exponential decay condition. For any m ∈ N, we define Πm : H → H as the projection
operator onto the subspace spanned by {ψj}j∈[m]. Then, by the Cauchy-Schwarz inequality and
Assumption 4.3, for any z ∈ Z , by (J.22) we have∥∥φ(z)−Πm

[
φ(z)

]∥∥
H =

∥∥∥∥ ∞∑
j=m+1

√
σj · ψj(z) ·

√
σj · ψj

∥∥∥∥
H

=

{ ∞∑
j=m+1

σj · [ψj(z)]2
}1/2

≤
( ∞∑
j=m+1

σj · ‖ψj‖2∞
)1/2

≤ Cψ ·
( ∞∑
j=m+1

σ1−2τ
j

)1/2

, (J.25)
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where the second equality follows from the fact that {√σj · ψj}j≥0 form an orthonormal basis ofH,
the first inequality follows from taking a supremum over z ∈ Z , and the last inequality follows from
the assumption that ‖ψj‖∞ ≤ Cψ · σ−τj . Then, for any self-adjoint operator Υ: H → H satisfying
‖Υ‖op ≤ 1/λ and any z ∈ Z , by (J.25) and the triangle inequality we have∣∣∣‖φ(z)‖Υ −

∥∥Πm

[
φ(z)

]∥∥
Υ

∣∣∣ ≤ ∥∥φ(z)−Πm

[
φ(z)

]∥∥
Υ
≤ Cψ/

√
λ ·
( ∞∑
j=m+1

σ1−2τ
j

)1/2

. (J.26)

Note that the eigenvalues {σj}j≥0 admit γ-exponential decay under Assumption 4.3. We now upper
bound the right-hand side of (J.26) by

sup
z∈Z

∣∣∣‖φ(z)‖Υ −
∥∥Πm

[
φ(z)

]∥∥
Υ

∣∣∣ ≤ Cψ/√λ ·{ ∞∑
j=m+1

C1−2τ
1 · exp

[
−C2 · (1− 2τ) · jγ

]}1/2

.

(J.27)

To simplify the notation, we define C3,τ = Cψ · C1/2−τ
1 /

√
λ and C4,τ = C2 · (1− 2τ), which are

both absolute constants. Then, by (J.27) and the monotonicity of exp(−uγ), we further obtain

sup
z∈Z

∣∣∣‖φ(z)‖Υ −
∥∥Πm

[
φ(z)

]∥∥
Υ

∣∣∣ ≤ C3,τ ·
[ ∫ ∞

m

exp(−C4,τ · uγ) du

]1/2

. (J.28)

Here we can take the supremum over Z because the right-hand side of (J.27) does not depend on z.
Note that we have shown in (J.16) that∫ ∞
m

exp(−C4,τ · uγ) du ≤

{
C−1

4,τ · exp(−C4,τ ·mγ), if γ ≥ 1,

2 · (γ · C4,τ )−1 · exp(−C4,τ ·mγ) ·m1/γ−1, if γ ∈ (0, 1),

(J.29)
where for the case of γ ∈ (0, 1), (J.29) holds for sufficient large m such that mγ · C4,τ > 2/γ − 2.

We now define m∗ as the smallest integer such that∫ ∞
m∗

exp(−C4,τ · uγ) du ≤
[
ε/(2C3,τ )

]2
. (J.30)

By (J.29), since both C3,τ , C4,τ and γ are absolute constants, there exist absolute constants C3,m

and C4,m such that

m∗ ≤ C3,m ·
[
log(1/ε) + C4,m

]1/γ
. (J.31)

It is worth noting that the choice of m∗ in (J.31) is uniform over all z ∈ Z . Moreover, by (J.28), for
such an m∗, it holds that

sup
z∈Z

∣∣∣‖φ(z)‖Υ −
∥∥Πm∗

[
φ(z)

]∥∥
Υ

∣∣∣ ≤ ε/2. (J.32)

Thus, it remains to approximate ‖Πm∗ [φ(z)]‖Υ up to accuracy ε/2. Note that the subspace spanned
by {ψj}j∈[m∗] is m∗-dimensional. When restricted to such a subspace, Υ can be expressed using a
matrix AΥ ∈ Rm∗×m∗ . Specifically, for any j, k ∈ [m∗], we define the (j, k)-th entry of AΥ as

[AΥ]j,k =
〈√

σj · ψj ,
√
σk ·Υψk

〉
H. (J.33)

Moreover, let wz ∈ Rm∗ be a vector whose j-th entry is given by√σj · ψj(z), ∀j ∈ [m∗]. Then, by
(J.33) it holds that∥∥Πm∗

[
φ(z)

]∥∥2

Υ
=
〈
Πm∗

[
φ(z)

]
,ΥΠm∗

[
φ(z)

]〉
H = w>z AΥwz. (J.34)

Also, since ‖Υ‖op ≤ 1/λ, the matrix operator norm of AΥ is bounded by 1/λ; i.e., ‖AΥ‖op ≤ 1/λ.
This means that the Frobenius norm of AΥ is bounded by

√
m∗/λ. Let Cm∗(ε/2, λ) denote the

minimal ε2/4-cover of {A ∈ Rm∗×m∗ : ‖A‖fro ≤
√
m∗/λ} with respect to the Frobenius norm. By

definition, there exists ÃΥ ∈ Cm∗(ε/2, λ) such that ‖AΥ − ÃΥ‖fro ≤ ε2/4. Hence, we have∣∣w>z AΥwz − w>z ÃΥwz
∣∣ ≤ ‖wz‖22 · ‖AΥ − ÃΥ‖op ≤ ‖AΥ − ÃΥ‖fro ≤ ε2/4. (J.35)

Finally, for any z ∈ Z , we define

fΥ(z) = w>z ÃΥwz =

m∗∑
j,k=1

√
σj · σk · ψj(z) · ψk(z) ·

[
ÃΥ

]
jk
, (J.36)
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where [ÃΥ]jk is the (j, k)-th entry of ÃΥ and m∗ is specified in (J.30). We remark that fΥ : Z → R
is well defined since m∗ does not depend on z.

Finally, combining (J.32), (J.34), (J.35), and (J.36), we obtain∥∥‖φ(z)‖Υ − fΥ

∥∥
∞ = sup

z∈Z

∣∣‖φ(z)‖Υ − fΥ(z)
∣∣

≤ sup
z∈Z

∣∣∣‖φ(z)‖Υ −
∥∥Πm∗

[
φ(z)

]∥∥
Υ

∣∣∣+ sup
z∈Z

∣∣∣∥∥Πm∗
[
φ(z)

]∥∥
Υ
− fΥ(z)

∣∣∣
≤ ε/2 + sup

z∈Z

∣∣∣√w>z AΥwz −
√
w>z ÃΥwz

∣∣∣ ≤ ε/2 + sup
z∈Z

√∣∣w>z AΥwz − w>z ÃΥwz
∣∣ ≤ ε.

This implies that {fΥ : Υ ∈ Cm∗(ε, λ)} forms an ε-cover of F(λ) in (I.12). Hence, we have that
N∞(ε,F , λ) ≤

∣∣Cm∗(ε/2, λ)
∣∣. (J.37)

Furthermore, using Corollary 4.2.13 in [69], we have∣∣Cm∗(ε/2, λ)
∣∣ ≤ [1 + 8

√
m∗/(λ · ε2)

]m∗2
. (J.38)

Combining (J.31), (J.37), and (J.38), we finally have
logN∞(ε,F , λ) ≤ m∗2 · log

[
1 + 8

√
m∗/(λ · ε2)

]
≤ C2

3,m ·
[
log(1/ε) + C4,m

]2/γ · log
{

1 + 8C
1/2
3,m ·

[
log(1/ε) + C4,m

]1/(2γ)
/(λ · ε2)

}
≤ C5 · [log(1/ε) + C6]1+2/γ ,

where C5 and C6 are absolute constants that depend on Cψ , C1, C2, τ , γ, and λ, but are independent
of T , H , and ε. Here in the last inequality we use the fact that log(1/ε) ≤ 1/ε, which holds when
ε ≤ 1/e. Therefore, we conclude the proof for the second case and thus conclude the proof of the
lemma.

J.4 Technical Lemmas

Next, we present a few concentration inequalities. The first one provides concentration for standard
self-normalized processes.

Lemma J.1 (Concentration of Self-Normalized Processes in RKHS [18]). Let H be an RKHS
defined over X ⊆ Rd with kernel function K(·, ·) : X × X → R. Let {xτ}∞τ=1 ⊆ X be a discrete
time stochastic process that is adapted to the filtration {Ft}∞t=0. That is, xτ is Fτ−1 measurable
for all τ ≥ 1. Let {εt}∞τ=1 be a real-valued stochastic process such that (i) ετ ∈ Fτ and (ii) ετ is
zero-mean and σ-sub-Gaussian conditioning on Fτ−1:

E[ετ |Fτ−1] = 0, E[eλετ |Fτ−1] ≤ eλ
2σ2/2, ∀λ ∈ R.

Moreover, for any t ≥ 2, let Et = (ε1, . . . , εt−1)> ∈ Rt−1 and Kt ∈ R(t−1)×(t−1) be the Gram
matrix of {xτ}τ∈[t−1]. Then, for any η > 0 and any δ ∈ (0, 1), with probability at least 1 − δ,
simultaneously for all t ≥ 1, we have

E>t
[
(Kt + η · I)−1 + I

]−1
Et ≤ σ2 · logdet

[
(1 + η) · I +Kt

]
+ 2σ2 · log(1/δ). (J.39)

Moreover, if Kt is positive definite for all t ≥ 2 with probability one, then the inequality in (J.39)
also holds with η = 0.

Proof. See Theorem 1 in [18] for a detailed proof.

Lemma J.2 (Lemma D.4 of [35]). Let {xτ}∞τ=1 and {φτ}∞τ=1 be S-valued andH-valued stochastic
processes adapted to filtration {Fτ}∞τ=0, respectively, where we assume that ‖φτ‖H ≤ 1 for all
τ ≥ 1. Moreover, for any t ≥ 1, we let Kt ∈ Rt×t be the Gram matrix of {φτ}τ∈[t] and define an
operator Λt : H → H as Λt = λ · IH +

∑t
τ=1 φτφ

>
τ with λ > 1. Let V ⊆ {V : S → [0, H]} be a

class of bounded functions on S. Then for any δ ∈ (0, 1), with probability at least 1− δ, we have
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simultaneously for all t ≥ 1 that

sup
V ∈V

∥∥∥∥ t∑
τ=1

φτ
{
V (xτ )− E[V (xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

(J.40)

≤ 2H2 · logdet(I +Kt/λ) + 2H2t(λ− 1) + 4H2 log(Nε/δ) + 8t2ε2/λ,

where Nε is the ε-covering number of V with respect to the distance dist(·, ·).

Proof. Let Vε ⊆ {V : S → [0, H]} be the minimal ε-cover of V such that Nε = |Vε|. Then for any
V ∈ V , there exists a value function V ′ : S → R inNε such that dist(V, V ′) ≤ ε. Let ∆V = V −V ′.
By the inequality (a+ b)2 ≤ 2a2 + 2b2, we have∥∥∥∥ t∑
τ=1

φτ
{
V (xτ )− E[V (xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

(J.41)

≤ 2 ·
∥∥∥∥ t∑
τ=1

φτ
{
V ′(xτ )− E[V ′(xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

+ 2 ·
∥∥∥∥ t∑
τ=1

φτ
{

∆V (xτ )− E[∆V (xτ )|Fτ−1]
}∥∥∥∥2

Λ−1
t

.

To bound the first term on the right-hand side of (J.41), we apply Lemma J.1 to V ′ and take a union
bound over V ′ ∈ Vε. While for the second term, since supx∈S |∆V (x)| ≤ ε, we have∥∥∥∥ t∑

τ=1

φτ
{

∆V (xτ )− E[∆V (xτ )|Fτ−1]
}∥∥∥∥2

Λ−1
t

≤ t2 · (2ε)2/λ = 4t2ε2/λ. (J.42)

Thus, combining (J.41) and (J.42), we have

sup
V ∈V

∥∥∥∥ t∑
τ=1

φτ
{
V (xτ )− E[V (xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

≤ sup
V ′∈Vε

2 ·
∥∥∥∥ t∑
τ=1

φτ
{
V ′(xτ )− E[V ′(xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

+ 8t2ε2/λ. (J.43)

Now we fix V ′ ∈ Vε and define εt ∈ Rt by letting [εt]τ = V ′(xτ )− E[V ′(xτ )|Fτ−1] for any τ ≥ 1.
We define an operator Φ: H → Rt as Φ =

[
φ>1 , . . . , φ

>
t

]>
and let Kt = ΦtΦ

>
t ∈ Rt×t. Using this

notation, we have Λt = λ · IH + Φ>t Φt and∥∥∥∥ t∑
τ=1

φτ
{
V ′(xτ )− E[V ′(xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

= ‖Φ>t εt‖2Λ−1
t

= ε>t ΦtΛ
−1
t Φ>t εt

= ε>t ΦtΦ
>
t (Kt + λ · I)−1εt = ε>t Kt(Kt + λ · I)−1εt, (J.44)

where the third inequality follows from (H.14). Setting λ = 1 + η for some η > 0, we have

(Kt + η · I)
[
Kt + (1 + η) · I

]−1
= (Kt + η · I)

[
I + (Kt + η · I)

]−1
=
[
(Kt + η · I)−1 + I

]−1
,

which implies that

ε>t Kt(Kt + λ · I)−1εt ≤ ε>t (Kt + η · I)
[
I + (Kt + η · I)

]−1
εt

= ε>t
[
(Kt + η · I)−1 + I

]−1
εt. (J.45)

Notice that each entry of εt is bounded by H in absolute value since V ′ is bounded in [0, H]. By
combining (J.43), (J.44), (J.45), Lemma J.1, and taking a union bound over Vε, for any δ ∈ (0, 1),
we obtain that, with probability at least 1− δ,

sup
V ′∈Vε

∥∥∥∥ t∑
τ=1

φτ
{
V ′(xτ )− E[V ′(xτ )|Fτ−1]

}∥∥∥∥2

Λ−1
t

≤ H2 · logdet[(1 + η) · I +Kt] + 2H2 · log(Nε/δ) (J.46)
holds simultaneously for all t ≥ 1. Moreover, notice that (1 + η) · I +Kt = [I + (1 + η)−1 ·Kt] ·
[(1 + η) · I], which implies that

logdet
[
(1 + η) · I +Kt

]
= logdet

[
I + (1 + η)−1 ·Kt

]
+ t ln(1 + η)

≤ logdet
[
I + (1 + η)−1 ·Kt

]
+ ηt. (J.47)
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Finally, combining (J.43), (J.46), and (J.47), we conclude that, simultaneously for all t ≥ 1, (J.40)
holds with probability at least 1− δ, which concludes the proof.

Lemma J.3 ([1]). Let {φt}t≥1 be a sequence in the RKHSH. Let Λ0 : H → H be defined as λ · IH
where λ ≥ 1 and IH is the identity mapping on H. For any t ≥ 1, we define a self-adjoint and
positive-definite operator Λt by letting Λt = Λ0 +

∑t
j=1 φjφ

>
j . Then, for any t ≥ 1, we have

t∑
j=1

min
{

1, φ>j Λ−1
j−1φj

}
≤ 2logdet(I +Kt/λ),

where Kt ∈ Rt×t is the Gram matrix obtained from {φj}j∈[t], i.e., for any j, j′ ∈ [t], the (j, j′)-th
entry of Kt is 〈φj , φj′〉H. Moreover, if we further have supt≥0{‖φt‖H} ≤ 1, then it holds that

logdet(I +Kt/λ) ≤
t∑

j=1

φ>j Λ−1
j−1φj ≤ 2logdet(I +Kt/λ).

Proof. Note that we have log(1+x) ≤ x ≤ 2 log(1+x) for all x ∈ [0, 1]. Since Λ−1
t is a self-adjoint

and positive-definite operator, this implies that
t∑

j=1

min
{

1, φ>j Λ−1
j−1φj

}
≤

t∑
j=1

2 log
(
min

{
2, 1 + φ>j Λ−1

j−1φj
})
≤ 2

t∑
j=1

log
(
1 + φ>j Λ−1

j−1φj
)
.

(J.48)
Moreover, when additionally it is the case that supj≥1 ‖φj‖H ≤ 1 for all j ≥ 0, we have

φ>j Λ−1
j−1φj =

〈
φj ,Λ

−1
j−1φj〉H ≤ ‖φj‖H ·

∥∥Λ−1
j−1φj‖H ≤ [λmin(Λ0)]−1 · ‖φj‖2H ≤ 1. (J.49)

Hence, applying the basic inequality log(1 + x) ≤ x ≤ 2 log(1 + x) to (J.49), we have
t∑

j=1

log
(
1 + φ>j Λ−1

j−1φj
)
≤

t∑
j=1

φ>j Λ−1
j−1φj ≤ 2

t∑
j=1

log
(
1 + φ>j Λ−1

j−1φj
)
. (J.50)

For any j ≥ 1, let Λ
1/2
j−1 : H → H be the self-adjoint and positive-definite operator that is the

square-root operator of Λj−1. Specifically, let {σ`}`≥1 be the eigenvalues of Λj−1 and let {v`}`≥1

be the corresponding eigenfunctions. Then Λ
1/2
j−1 =

∑
`≥1 σ

1/2
` · v`v>` . Using this notation, for any

j ≥ 1, by the definition of Λj , we have

Λj = Λj−1 + φjφ
>
j = Λ

1/2
j−1

(
IH + Λ

−1/2
j−1 φjφ

>
j Λ
−1/2
j−1

)
Λ

1/2
j−1,

which implies that

logdet(Λj) = logdet(Λj−1) + logdet
(
IH + Λ

−1/2
j−1 φjφ

>
j Λ
−1/2
j−1

)
= logdet

(
Λj−1) + logdet

(
1 + φ>j Λ−1

j−1φj
)

(J.51)
Moreover, by direct computation, for any t ≥ 1, we have

det(ΛtΛ
−1
0 ) = det(I +Kt/λ). (J.52)

Hence, combining (J.51), and (J.52), we obtain that
t∑

j=1

log
(
1 + φ>j Λ−1

j−1φj
)

= logdet(ΛtΛ
−1
0 ) = logdet(I +Kt/λ). (J.53)

Finally, combining (J.48), (J.50) and (J.53), we conclude the proof of this lemma.
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