
Object-Centric Learning with Slot Attention

Francesco Locatello2,3,†,*, Dirk Weissenborn1, Thomas Unterthiner1, Aravindh Mahendran1,
Georg Heigold1, Jakob Uszkoreit1, Alexey Dosovitskiy1,‡, and Thomas Kipf1,‡,*

1Google Research, Brain Team
2Dept. of Computer Science, ETH Zurich

3Max-Planck Institute for Intelligent Systems

Abstract

Learning object-centric representations of complex scenes is a promising step
towards enabling efficient abstract reasoning from low-level perceptual features.
Yet, most deep learning approaches learn distributed representations that do
not capture the compositional properties of natural scenes. In this paper, we
present the Slot Attention module, an architectural component that interfaces with
perceptual representations such as the output of a convolutional neural network
and produces a set of task-dependent abstract representations which we call slots.
These slots are exchangeable and can bind to any object in the input by specializing
through a competitive procedure over multiple rounds of attention. We empirically
demonstrate that Slot Attention can extract object-centric representations that
enable generalization to unseen compositions when trained on unsupervised object
discovery and supervised property prediction tasks.

1 Introduction

Object-centric representations have the potential to improve sample efficiency and generalization of
machine learning algorithms across a range of application domains, such as visual reasoning [1], mod-
eling of structured environments [2], multi-agent modeling [3–5], and simulation of interacting physi-
cal systems [6–8]. Obtaining object-centric representations from raw perceptual input, such as an im-
age or a video, is challenging and often requires either supervision [1, 3, 9, 10] or task-specific architec-
tures [2, 11]. As a result, the step of learning an object-centric representation is often skipped entirely.
Instead, models are typically trained to operate on a structured representation of the environment that is
obtained, for example, from the internal representation of a simulator [6, 8] or of a game engine [4, 5].

To overcome this challenge, we introduce the Slot Attention module, a differentiable interface
between perceptual representations (e.g., the output of a CNN) and a set of variables called slots.
Using an iterative attention mechanism, Slot Attention produces a set of output vectors with
permutation symmetry. Unlike capsules used in Capsule Networks [12, 13], slots produced by Slot
Attention do not specialize to one particular type or class of object, which could harm generalization.
Instead, they act akin to object files [14], i.e., slots use a common representational format: each
slot can store (and bind to) any object in the input. This allows Slot Attention to generalize in a
systematic way to unseen compositions, more objects, and more slots.

Slot Attention is a simple and easy to implement architectural component that can be placed, for
example, on top of a CNN [15] encoder to extract object representations from an image and is trained
end-to-end with a downstream task. In this paper, we consider image reconstruction and set prediction
as downstream tasks to showcase the versatility of our module both in a challenging unsupervised
object discovery setup and in a supervised task involving set-structured object property prediction.
†Work done while interning at Google, ∗equal contribution, ‡equal advising. Contact: tkipf@google.com

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

mailto:tkipf@google.com

(a) Slot Attention module.

(b) Object discovery architecture.

(c) Set prediction architecture.

Figure 1: (a) Slot Attention module and example applications to (b) unsupervised object discovery
and (c) supervised set prediction with labeled targetsyi . See main text for details.

Our main contributions are as follows: (i) We introduce the Slot Attention module, a simple architec-
tural component at the interface between perceptual representations (such as the output of a CNN) and
representations structured as a set. (ii) We apply a Slot Attention-based architecture to unsupervised
object discovery, where it matches or outperforms relevant state-of-the-art approaches [16, 17], while
being more memory ef�cient and signi�cantly faster to train. (iii) We demonstrate that the Slot At-
tention module can be used for supervised object property prediction, where the attention mechanism
learns to highlight individual objects without receiving direct supervision on object segmentation.

2 Methods

In this section, we introduce the Slot Attention module (Figure 1a; Section 2.1) and demonstrate how
it can be integrated into an architecture for unsupervised object discovery (Figure 1b; Section 2.2)
and into a set prediction architecture (Figure 1c; Section 2.3).

2.1 Slot Attention Module

The Slot Attention module (Figure 1a) maps from a set ofN input feature vectors to a set ofK
output vectors that we refer to asslots. Each vector in this output set can, for example, describe
an object or an entity in the input. The overall module is described in Algorithm 1 in pseudo-code1.

Slot Attention uses an iterative attention mechanism to map from its inputs to the slots. Slots are
initialized at random and thereafter re�ned at each iterationt = 1 : : : T to bind to a particular part
(or grouping) of the input features. Randomly sampling initial slot representations from a common
distribution allows Slot Attention to generalize to a different number of slots at test time.

At each iteration, slotscompetefor explaining parts of the input via a softmax-based attention
mechanism [18–20] and update their representation using a recurrent update function. The �nal
representation in each slot can be used in downstream tasks such as unsupervised object discovery
(Figure 1b) or supervised set prediction (Figure 1c).

We now describe a single iteration of Slot Attention on a set of input features,inputs 2 RN � D inputs ,
with K output slots of dimensionD slots (we omit the batch dimension for clarity). We use learnable
linear transformationsk, q, andv to map inputs and slots to a common dimensionD.

Slot Attention uses dot-product attention [19] with attention coef�cients that are normalized over
the slots, i.e., the queries of the attention mechanism. This choice of normalization introduces
competition between the slots for explaining parts of the input.

1An implementation of Slot Attention is available at:https://github.com/google-research/
google-research/tree/master/slot_attention .

2

Algorithm 1 Slot Attention module. The input is a set ofN vectors of dimensionD inputs which is
mapped to a set ofK slots of dimensionD slots . We initialize the slots by sampling their initial values
as independent samples from a Gaussian distribution with shared, learnable parameters� 2 RD slots

and� 2 RD slots . In our experiments we set the number of iterations toT = 3 .

1: Input : inputs 2 RN � D inputs , slots � N (�; diag(�)) 2 RK � D slots

2: Layer params: k; q; v: linear projections for attention;GRU; MLP; LayerNorm(x3)
3: inputs = LayerNorm(inputs)
4: for t = 0 : : : T
5: slots_prev = slots
6: slots = LayerNorm(slots)
7: attn = Softmax (1p

D
k(inputs) � q(slots)T ; axis=`slots') # norm. over slots

8: updates = WeightedMean(weights=attn + �; values= v(inputs)) # aggregate
9: slots = GRU(state=slots_prev ; inputs=updates) # GRU update (per slot)

10: slots += MLP(LayerNorm(slots)) # optional residual MLP (per slot)
11: return slots

We further follow the common practice of setting the softmax temperature to a �xed value of
p

D [20]:

attn i;j :=
eM i;j

P
l eM i;l

where M :=
1

p
D

k(inputs) � q(slots)T 2 RN � K : (1)

In other words, the normalization ensures that attention coef�cients sum to one for each individual
input feature vector, which prevents the attention mechanism from ignoring parts of the input. To
aggregate the input values to their assigned slots, we use a weighted mean as follows:

updates := W T � v(inputs) 2 RK � D where Wi;j :=
attn i;j

P N
l =1 attn l;j

: (2)

The weighted mean helps improve stability of the attention mechanism (compared to using a
weighted sum) as in our case the attention coef�cients are normalized over the slots. In practice
we further add a small offset� to the attention coef�cients to avoid numerical instability.

The aggregatedupdates are �nally used to update the slots via a learned recurrent function, for which
we use a Gated Recurrent Unit (GRU) [21] with D slots hidden units. We found that transforming the
GRU output with an (optional) multi-layer perceptron (MLP) with ReLU activation and a residual
connection [22] can help improve performance. Both the GRU and the residual MLP are applied
independently on each slot with shared parameters. We apply layer normalization (LayerNorm) [23]
both to the inputs of the module and to the slot features at the beginning of each iteration and before
applying the residual MLP. While this is not strictly necessary, we found that it helps speed up
training convergence. The overall time-complexity of the module isO (T � D � N � K).

We identify two key properties of Slot Attention: (1) permutation invariance with respect to the input
(i.e., the output is independent of permutations applied to the input and hence suitable for sets) and
(2) permutation equivariance with respect to the order of the slots (i.e., permuting the order of the
slots after their initialization is equivalent to permuting the output of the module). More formally:
Proposition 1. Let SlotAttention(inputs ; slots) 2 RK � D slots be the output of the Slot Attention
module (Algorithm 1), whereinputs 2 RN � D inputs andslots 2 RK � D slots . Let � i 2 RN � N and
� s 2 RK � K be arbitrary permutation matrices. Then, the following holds:

SlotAttention(� i � inputs ; � s � slots) = � s � SlotAttention(inputs ; slots) :

The proof is in the supplementary material. The permutation equivariance property is important to
ensure that slots learn a common representational format and that each slot can bind to any object in
the input.

2.2 Object Discovery

Set-structured hidden representations are an attractive choice for learning about objects in an unsuper-
vised fashion: each set element can capture the properties of an object in a scene, without assuming

3

a particular order in which objects are described. Since Slot Attention transforms input represen-
tations into a set of vectors, it can be used as part of the encoder in an autoencoder architecture for
unsupervised object discovery. The autoencoder is tasked to encode an image into a set of hidden rep-
resentations (i.e., slots) that, taken together, can be decoded back into the image space to reconstruct
the original input. The slots thereby act as a representational bottleneck and the architecture of the de-
coder (or decoding process) is typically chosen such that each slot decodes only a region or part of the
image [16, 17, 24–27]. These regions/parts are then combined to arrive at the full reconstructed image.

Encoder Our encoder consists of two components: (i) a CNN backbone augmented with positional
embeddings, followed by (ii) a Slot Attention module. The output of Slot Attention is a set of slots,
that represent a grouping of the scene (e.g. in terms of objects).

Decoder Each slot is decoded individually with the help of a spatial broadcast decoder [28], as used
in IODINE [16]: slot representations are broadcasted onto a 2D grid (per slot) and augmented with
position embeddings. Each such grid is decoded using a CNN (with parameters shared across the
slots) to produce an output of sizeW � H � 4, whereW andH are width and height of the image,
respectively. The output channels encode RGB color channels and an (unnormalized) alpha mask.
We subsequently normalize the alpha masks across slots using aSoftmax and use them as mixture
weights to combine the individual reconstructions into a single RGB image.

2.3 Set Prediction

Set representations are commonly used in tasks across many data modalities ranging from point
cloud prediction [29, 30], classifying multiple objects in an image [31], or generation of molecules
with desired properties [32, 33]. In the example considered in this paper, we are given an input
image and a set of prediction targets, each describing an object in the scene. The key challenge
in predicting sets is that there areK ! possible equivalent representations for a set ofK elements,
as the order of the targets is arbitrary. This inductive bias needs to be explicitly modeled in the
architecture to avoid discontinuities in the learning process, e.g. when two semantically specialized
slots swap their content throughout training [31, 34]. The output order of Slot Attention is random
and independent of the input order, which addresses this issue. Therefore, Slot Attention can be used
to turn a distributed representation of an input scene into a set representation where each object can
be separately classi�ed with a standard classi�er as shown in Figure 1c.

Encoder We use the same encoder architecture as in the object discovery setting (Section 2.2),
namely a CNN backbone augmented with positional embeddings, followed by Slot Attention, to
arrive at a set of slot representations.

Classi�er For each slot, we apply a MLP with parameters shared between slots. As the order of both
predictions and labels is arbitrary, we match them using the Hungarian algorithm [35]. We leave the
exploration of other matching algorithms [36, 37] for future work.

3 Related Work

Object discovery Our object discovery architecture is closely related to a line of recent work on
compositional generative scene models [16, 17, 24–27, 38–44] that represent a scene in terms of a
collection of latent variables with the same representational format. Closest to our approach is the
IODINE [16] model, which uses iterative variational inference [45] to infer a set of latent variables,
each describing an object in an image. In each inference iteration, IODINE performs a decoding
step followed by a comparison in pixel space and a subsequent encoding step. Related models
such as MONet [17] and GENESIS [27] similarly use multiple encode-decode steps. Our model
instead replaces this procedure with a single encoding step using iterated attention, which improves
computational ef�ciency. Further, this allows our architecture to infer object representations and
attention masks even in the absence of a decoder, opening up extensions beyond auto-encoding, such
as contrastive representation learning for object discovery [46] or direct optimization of a downstream
task like control or planning. Our attention-based routing procedure could also be employed in
conjunction with patch-based decoders, used in architectures such as AIR [26], SQAIR [40], and
related approaches [41–44], as an alternative to the typically employed autoregressive encoder [26, 40].
Our approach is orthogonal to methods using adversarial training [47–49] or contrastive learning [46]
for object discovery: utilizing Slot Attention in such a setting is an interesting avenue for future work.

4

Neural networks for sets A range of recent methods explore set encoding [34, 50, 51], genera-
tion [31, 52], and set-to-set mappings [20, 53]. Graph neural networks [54–57] and in particular the
self-attention mechanism of the Transformer model [20] are frequently used to transform sets of ele-
ments with constant cardinality (i.e., number of set elements). Slot Attention addresses the problem of
mapping from one set to another set of different cardinality while respecting permutation symmetry of
both the input and the output set. The Deep Set Prediction Network (DSPN) [31, 58] respects permuta-
tion symmetry by running an inner gradient descent loop for each example, which requires many steps
for convergence and careful tuning of several loss hyperparmeters. Instead, Slot Attention directly
maps from set to set using only a few attention iterations and a single task-speci�c loss function. In
concurrent work, both the DETR [59] and the TSPN [60] model propose to use a Transformer [20] for
conditional set generation. Most related approaches, including DiffPool [61], Set Transformers [53],
DSPN [31], and DETR [59] use a learned per-element initialization (i.e., separate parameters for each
set element), which prevents these approaches from generalizing to more set elements at test time.

Iterative routing Our iterative attention mechanism shares similarlities with iterativerouting mech-
anisms typically employed in variants of Capsule Networks [12, 13, 62]. The closest such variant
is inverted dot-product attention routing [62] which similarly uses a dot product attention mecha-
nism to obtain assignment coef�cients between representations. Their method (in line with other
capsule models) however does not have permutation symmetry as each input-output pair is assigned a
separately parameterized transformation. The low-level details in how the attention mechanism is
normalized and how updates are aggregated, and the considered applications also differ signi�cantly
between the two approaches.

Interacting memory models Slot Attention can be seen as a variant of interacting memory models [9,
39, 46, 63–68], which utilize a set of slots and their pairwise interactions to reason about elements in
the input (e.g. objects in a video). Common components of these models are (i) a recurrent update
function that acts independently on individual slots and (ii) an interaction function that introduces
communication between slots. Typically, slots in these models are fully symmetric with shared
recurrent update functions and interaction functions for all slots, with the exception of the RIM
model [67], which uses a separate set of parameters for each slot. Notably, RMC [63] and RIM [67]
introduce an attention mechanism to aggregate information from inputs to slots. In Slot Attention,
the attention-based assignment from inputs to slots is normalized over the slots (as opposed to solely
over the inputs), which introduces competition between the slots to perform a clustering of the input.
Further, we do not consider temporal data in this work and instead use the recurrent update function
to iteratively re�ne predictions for a single, static input.

Mixtures of experts Expert models [67, 69–72] are related to our slot-based approach, but do not
fully share parameters between individual experts. This results in the specialization of individual
experts to, e.g., different tasks or object types. In Slot Attention, slots use a common representational
format and each slot can bind to any part of the input.

Soft clustering Our routing procedure is related to soft k-means clustering [73] (where slots
corresponds to cluster centroids) with two key differences: We use a dot product similarity with
learned linear projections and we use a parameterized, learnable update function. Variants of soft
k-means clustering with learnable, cluster-speci�c parameters have been introduced in the computer
vision [74] and speech recognition communities [75], but they differ from our approach in that
they do not use a recurrent, multi-step update, and do not respect permutation symmetry (cluster
centers act as a �xed, ordered dictionary after training). The inducing point mechanism of the Set
Transformer [53] and the image-to-slot attention mechanism in DETR [59] can be seen as extensions
of these ordered, single-step approaches using multiple attention heads (i.e., multiple similarity
functions) for each cluster assignment.

Recurrent attention Our method is related to recurrent attention models used in image modeling
and scene decomposition [26, 40, 76–78], and for set prediction [79]. Recurrent models for set
prediction have also been considered in this context without using attention mechanisms [80, 81].
This line of work frequently uses permutation-invariant loss functions [79, 80, 82], but relies on
inferring one slot, representation, or label per time step in an auto-regressive manner, whereas Slot
Attention updates all slots simultaneously at each step, hence fully respecting permutation symmetry.

5

CLEVR6 Multi-dSprites Tetrominoes

Slot Attention 98:8 � 0:3 91:3 � 0:3 99:5 � 0:2*
IODINE [16] 98:8 � 0:0 76:7 � 5:6 99:2 � 0:4
MONet [17] 96:2 � 0:6 90:4 � 0:8 —
Slot MLP 60:4 � 6:6 60:3 � 1:8 25:1 � 34:3

Table 1 & Figure 2: (Left) Adjusted Rand Index (ARI) scores (in%, mean� stddev for 5 seeds) for
unsupervised object discovery in multi-object datasets. In line with previous works [16, 17, 27], we
exclude background labels in ARI evaluation. *denotes that one outlier was excluded from evaluation.
(Right) Effect of increasing the number of Slot Attention iterationsT at test time (for a model trained
on CLEVR6 withT = 3 andK = 7 slots), tested on CLEVR6 (K = 7) and CLEVR10 (K = 11).

4 Experiments

The goal of this section is to evaluate the Slot Attention module on two object-centric tasks—one
being supervised and the other one being unsupervised—as described in Sections 2.2 and 2.3. We
compare against specialized state-of-the-art methods [16, 17, 31] for each respective task. We provide
further details on experiments and implementation, and additional qualitative results and ablation
studies in the supplementary material.

Baselines In the unsupervised object discovery experiments, we compare against two recent
state-of-the-art models: IODINE [16] and MONet [17]. For supervised object property prediction,
we compare against Deep Set Prediction Networks (DSPN) [31]. DSPN is the only set prediction
model that respects permutation symmetry that we are aware of, other than our proposed model.
In both tasks, we further compare against a simple MLP-based baseline that we term Slot MLP.
This model replaces Slot Attention with an MLP that maps from the CNN feature maps (resized and
�attened) to the (now ordered) slot representation. For the MONet, IODINE, and DSPN baselines,
we compare with the published numbers in [16, 31] as we use the same experimental setup.

Datasets For the object discovery experiments, we use the following three multi-object datasets [83]:
CLEVR (with masks), Multi-dSprites, and Tetrominoes. CLEVR (with masks) is a version of the
CLEVR dataset with segmentation mask annotations. Similar to IODINE [16], we only use the �rst
70K samples from the CLEVR (with masks) dataset for training and we crop images to highlight
objects in the center. For Multi-dSprites and Tetrominoes, we use the �rst 60K samples. As in [16],
we evaluate on 320 test examples for object discovery. For set prediction, we use the original CLEVR
dataset [84] which contains a training-validation split of 70K and 15K images of rendered objects
respectively. Each image can contain between three and ten objects and has property annotations for
each object (position, shape, material, color, and size). In some experiments, we �lter the CLEVR
dataset to contain only scenes with at maximum 6 objects; we call this dataset CLEVR6 and we refer
to the original full dataset as CLEVR10 for clarity.

4.1 Object Discovery

Training The training setup is unsupervised: the learning signal is provided by the (mean squared)
image reconstruction error. We train the model using the Adam optimizer [85] with a learning
rate of4 � 10� 4 and a batch size of 64 (using a single GPU). We further make use of learning
rate warmup [86] to prevent early saturation of the attention mechanism and an exponential decay
schedule in the learning rate, which we found to reduce variance. At training time, we useT = 3
iterations of Slot Attention. We use the same training setting across all datasets, apart from the
number of slotsK : we useK = 7 slots for CLEVR6,K = 6 slots for Multi-dSprites (max. 5 objects
per scene), andK = 4 for Tetrominoes (3 objects per scene). Even though the number of slots in
Slot Attention can be set to a different value for each input example, we use the same valueK for all
examples in the training set to allow for easier batching.

Metrics In line with previous works [16, 17], we compare the alpha masks produced by the decoder
(for each individual object slot) with the ground truth segmentation (excluding the background)
using the Adjusted Rand Index (ARI) score [87, 88]. ARI is a score to measure clustering similarity,
ranging from 0 (random) to 1 (perfect match). To compute the ARI score, we use the implementation
provided by Kabra et al. [83].

6

(a) Decomposition across datasets.

(b) Attention iterations.

(c) Reconstructions per iteration.

Figure 3: (a) Visualization of per-slot reconstructions and alpha masks in the unsupervised training
setting (object discovery). Top rows: CLEVR6, middle rows: Multi-dSprites, bottom rows: Tetro-
minoes. (b) Attention masks (attn) for each iteration, only using four object slots at test time on
CLEVR6. (c) Per-iteration reconstructions and reconstruction masks (from decoder). Border colors
for slots correspond to colors of segmentation masks used in the combined mask visualization (third
column). We visualize individual slot reconstructions multiplied with their respective alpha mask,
using the visualization script from [16].

Figure 4: Visualization of (per-slot) reconstructions and masks of a Slot Attention model trained
on a greyscale version of CLEVR6, where it achieves98:5 � 0:3% ARI. Here, we show the full
reconstruction of each slot (i.e., without multiplication with their respective alpha mask).

Results Quantitative results are summarized in Table 1 and Figure 2. In general, we observe that
our model compares favorably against two recent state-of-the-art baselines: IODINE [16] and
MONet [17]. We also compare against a simple MLP-based baseline (Slot MLP) which performs
better than chance, but due to its ordered representation is unable to model the compositional nature
of this task. We note a failure mode of our model: In rare cases it can get stuck in a suboptimal
solution on the Tetrominoes dataset, where it segments the image into stripes. This leads to a
signi�cantly higher reconstruction error on the training set, and hence such an outlier can easily
be identi�ed at training time. We excluded a single such outlier (1 out of 5 seeds) from the �nal score
in Table 1. We expect that careful tuning of the training hyperparameters particularly for this dataset
could alleviate this issue, but we opted for a single setting shared across all datasets for simplicity.

Compared to IODINE [16], Slot Attention is signi�cantly more ef�cient in terms of both memory
consumption and runtime. On CLEVR6, we can use a batch size of up to 64 on a single V100 GPU
with 16GB of RAM as opposed to 4 in [16] using the same type of hardware. Similarly, when using
8 V100 GPUs in parallel, model training on CLEVR6 takes approximately 24hrs for Slot Attention
as opposed to approximately 7 days for IODINE [16].

In Figure 2, we investigate to what degree our model generalizes when using more Slot Attention
iterations at test time, while being trained with a �xed number ofT = 3 iterations. We further
evaluate generalization to more objects (CLEVR10) compared to the training set (CLEVR6). We
observe that segmentation scores signi�cantly improve beyond the numbers reported in Table 1 when
using more iterations. This improvement is stronger when testing on CLEVR10 scenes with more
objects. For this experiment, we increase the number of slots fromK = 7 (training) toK = 11 at
test time. Overall, segmentation performance remains strong even when testing on scenes that contain
more objects than seen during training.

7

	Introduction
	Methods
	Slot Attention Module
	Object Discovery
	Set Prediction

	Related Work
	Experiments
	Object Discovery
	Set Prediction

	Conclusion

