A Additional Derivations

A.1 Information reward approximation for hierarchical generative models in the present of
missing latent variable

We consider the estimation of the following information reward function

Rf(xiv XO) = EXiNP(Xi\Xo)K]L [p(Xq>|Xi, XO) ” p(Xq>|Xo)]

Using our proposed VAEM method (the partial VAEM version in[3.2). The VAEM is a hierarchical
generative model trained by the two-stage procedure described in the paper. Conditional inference of
VAEM of missing data follows the following sampling process:

zd ~ qd(zd|®,a, ®a) Vd € O, zo = {z4|d € O}
h ~ qA(h‘Zo)

zs ~ py(zs/h) Vs € U, zy = {z]s € U}

Ts NP6($5|2U7ZO) Vs € Ua Xy = {xs|s € U}

Note that for compactness, we omitted the notation for input xo and x; to the all partial inference
nets q). Where zo is the observed latent variables of marginal VAEs, and zy; are unobserved. We
will use this VAEM to estimate any probabilistic quantities in information reward [A.T]

Applying the chain rule of KL-divergence on the term KL [p(x4|x;, X0) || p(xa|x0)], we have:
KL(p(xa[xi,x0)|[p(xa|x0))
= K]L(]Q(X@, Zi, 20, h|xi7 XO)Hp(X<I>7 Z;,%20, h|XO))
- EXq)Np(Xq>‘X7j7xo) [KL(}?(Z@, Z;,Z0, h|X<I>7 Xis XO)||p(z¢'7 Zi,Z0, h|X<I>7 XO))] ’

Based on the independencies of marginal VAEs, we have p(xe,Z;, Zo,h|x0)) =
P(xa,20,h|x0))p(2i), p(2e, 2i, 20, h|xe, X0)) = p(2e, 2i, 20, h|xe, x0))p(2i).

Using again the KL-divergence chain rule on KL(p(xs, z;, Zo, h|x;, X0)||p(Xe, Zi, 20, h|x0)), we

have:

KL(p(xa, zi, 20, h[x;, X0)||p(xe, 2, 20, h|x0))

= KL(p(z:, 20, h|x;,x0)|p(Zi, 20, h|x0)) + Ep(2g 2,20 .hjx; x0) KL(P(Xe|2i, Zo, h, X, X0)||p(X8|2:, 20, h, %0))
= KL(p(2i, 20, h[xi, x0)[|p(2i, 20, h[%0)) + Ep (24 2, 20 hix; x0) KL(P (X8 |2i, 20, h)|[p(xa|2i, 20, h))

= KL(p(z;, 20, h|x;, x0)||p(2zi, 20, h|x0)).

Note that the last two equalities does not hold for the discriminative version of VAEM described in

Section Fortunately, Ex; p(x; xo) KL(p(X4|2i, 20, h, x;, x0)||p(%X0|2i, 20, h, x0)) = 0 still
holds for the discriminative version, hence we will still arrive at the same result.

The KL-divergence term in the reward formula is now rewritten as follows,
KL(p(xe[xi,x0)|lp(xe[x0))
= KL(p(z’Lv Zo, h|xi7 XO)Hp(Zi’ Zo, h‘XO))
— Expmp(xaxixo) KL(p(2a, 2i, 20, h|Xe, Xi, X0)||p(28, 2i, 20, h|Xe, X0))].

For the term in blue, we have:

KL(p(zi, zo, h|x;,x0)|[p(2:, 20, h|x0))
= KL(p(zs, zo|xi, x0)||p(zo|x0)p(2i))
p(Zi)
+ Bavtomptu ot o) | KL (0l 20 Iolao) 220)
= KL(p(Zi|Xi)||p(Zi)) + Ezi,zONp(zi,zo\Xi,xo) [KL (p(h‘ziv ZO)Hp(hIZO))]

12

Similarly for the term in red, we have:

KL(p(2z®, 2:, 20, h|xs,X;,%0)||p(25, 2i, 20, h|xs,%x0))
= KL(p(zs, 2:, 20|Xs, Xi, X0) |[p(2s, 20|Xs, X0)p(2i))
(i)
E i ~p(z2e,2;,20 |Xa ,Xi,X KL h s gy h) . N
+ Bagnsomstan s aolss o) | KL (lan.21,20) [p(biza, o) - K2)
- KH—‘(Z1|Xz)Hp(Zl)) +]Ez(],,zi,zomp(mp,zi,zo|x(;,,xi,xo) [K]L (p(h|Z<I>7 Z;, ZO)Hp(h‘ZQM ZO))]

Finally, we have:

Rr(x4,%0)
=By, mp(xi 1x0) KL [p(X2[%i, X0) || p(Xa]%x0)]
=Ex;~p(xi|x0) KL(p(Zi, 20, h|xi, x0)|p(2i, 20, h[x0))
ximop(xi %0 By mp (3o x5, x0) IKL(P(Z0, Zi, Zo, h|Xs, X, X0)||p(20, 2i, Zo, h|Xs,%X0))]
xi,26,20~p(xi1.z0x0) LKL [p(h|Z;, z0)||p(h|Z0)]
Exy 20~p(xe,20,1x0) KL [p(h|z<1>7Zisz)Hp(h‘z@vZO)]} .

E
E

We can then plug in the VAEM model distirbutions:

P(Xi,24,20[X0) = p0,¢(Xi, z;,20|X0)
p(Xe, 20, [x0) = po,¢(Xa, 20, [x0)
p(h|z;,zo) ~ qx(h|zi, z0)

p(h|zo) ~ qr(h|zo)

p(h|ze, 2, 20) =~ q\(h|ze, 2, z0)
p(h|ze,z0) ~ qx(h|ze,2z0)

Finally, the information reward is now approximated as:

Rr(xi,%0)
zExi,ZmZONPQ,(p(XmZi,Zo |x0) {KL [q/\(hlziv ZO)' |(])\ (h‘ZO)]

- EanZ@Nps,qs(anan\xo)KL [qz\(hlz‘l’v Zi, ZO)Hq/\(h|Z‘I>’ ZO)}} .

A.2 VAEM optimizes a lower bound of joint model log-likelihood

Next, we show that VAEM improves a valid lower bound of the true log-likelihood. Recall that in
the first stage, D individual VAEs are trained independently, i.e. each one is trained to fit a single
dimension z,,4 from the dataset:

(93’ (bg) = arg maxed,(bd

Poy (xnda an)
E E log ———=
~ 494 (ZnalTna) 108 U0 (an‘mnd)

vd € {1,2,...,D}, 9
Together, the D individual VAEs define a joint distribution over x,: logps(x,) =
log Ez" [1,76.(%n|2n)po(2r), Wwhere po(2zy,) is a factorized standard normal distribution. Note that

Poy (Tnd;2nd)
qubd (2ndl|Tna) IOg Aoy (znd|Tnd)

jointly optimizes a valid lower bound of log ps (x,,):

in Equation |§| is a lower bound of log py, (x,,4), therefore stage one

Poy (xnd; an)

10
Q4 (#nd|Tnd) (10)

log po(x,,) > Z]qusd(zndlznd) log
d

where pg, (Tnd, 2nd) = Poy(Tnd|#nd)Po(Znd)-

13

Then we proceed to the second stage. In this stage, the dependency VAE py,(z) = E,m)py (z|h), is
trained on the latent representations z provided by the encoders of the marginal VAEs in the first
stage:

Xn ~ pdata(x)7
Znd ~ q¢d(zd|wnd), Vd € {1, ...,D},

pw(znahn)
*) o< ar maxg E 2 x.)log ————"~ (11
(w) g(w_’)\) e g (hy |2 ,x5) 108 ar (B |20, X0)

In other words, the second stage of VAEM improves po(z) (a factorized standard Gaussian) by py,(z).
Since we optimizes the ELBO of py,(z), if we can show that

p”(/l* (Z, h)

E 1 I 12
@+ (h|z,x) 108 one (b2, %) > log po(2z) (12)

Then we can conclude that the second stage will improve the lower bound given by the first stage
(Equation [I0). Next, we show that Equation [I2]indeed holds. All we need to do is to initialize
Dy (2) so that py, (2) = po(z), and initialize g, (h|z, x) so that ¢x, (h|z, x) is the exact posterior of
Py, (h[2).

Note that it is trivial to show that such initialization is possible. One way to do this is to use relu
activation functions for hidden layers in the dependency VAE, and then initialize all the weights
biases, log variances in the decoder and encoders to be zero. In this way, the decoder of dependency
VAE will ignores the latent variable h and generates factorized standard Gaussians. The encoder with
zero initialization will also give factorized Gaussian, which will be identical to the prior p(h). This is
exactly the true posterior py, (h|z), since the dependency network decoder completely ignores its
input: py, (z|h) = Dy (z)

Note that there are many ways to achieve the Equation[I2] the above is only one way to do this. The
above zero initialization setting is exactly what we have used in our experiments. Finally, we can
ensure that by optimizing Equation[IT] we always have:

D> (anhn)
Z log py+ (zn) > ZEqA*(hn‘zn,xn) log Do (B |2, %0) (13)

pw Zp,
> Zquo(hnlzmxn)lo Ir (Uh |nzn7;(n Zk’gptbo Zn) ZlOgPO Zn)
n

Therefore, we finally have:

Z IOg Z H Poy (l‘nd|z'rbd)p’¢'* (ZTL)

p&d xnd‘znd Dap (Znahn)
> ZIEHd 4oy (znalTnd) Zlo to o) +Z I, q%(znd\xnd)EqM<hn|z",m>10gm

P04 (Tnd; Znd)
> 2D By e 8 2 (14)

Where the second row is the ELBO after the second stage, and the third row is the ELBO after the
first stage. The first inequality follows from Jensen’s inequality, and the second inequality follows
from Equation[I3] Therefore, the two stage procedure of VAEM always increases the lower bound of
true log-likelihood.

O

14

B Two stage training of VAEM vs joint training of Hierarchical VAE

Based on the analysis of Section[A.2] the VAEM training procedure optimizes the following ELBO
in a two stage manner:

Z log Z Hped (Tndl|zna)py(zn) >

P04 (Tnd|2nd) Py (Zn, hy)
§ 'E § 'lo § 'E log — 2~
Ma o, Gralena) 2108 3 T 94 zralena) B (b2 %) 108 o (B 7 %)

(15)

In the first stage, it optimizes Equation|[15} but initialize py,(z,,) to standard gaussian po(z,,) and keep
it fixed. In the second stage, VAEM also optimizes Equation I35} but now keeps pg, (€n4|2nq) and
46y (ZndlTna) fixed, and optimizes py(z,, h,) and gy (h,|z,,x,,).

Note that if we directly optimize Equation jointly instead of the two stage method, then
46, (Znd|Tnq) will not be regularized by standard Gaussian prior po(znq). As a result, we will
lose the uniformity/homogeneity of the z,4 (to exact, the uniformity of aggregated posterior
% Zn G4y (#nd|Zna)). On the contrary, in our two stage method, the latent representations z4
provided by the marginal VAEs will have similar properties across dimensions. Each of these
variables is encouraged to be close to a standard normal distribution, thanks to the regularization
effect from the Gaussian prior po(z,4). To further demonstrate the effect of such regularization, we
compare VAEM versus two-layer VAE (with matching latent dimensions) trained jointly on the data
imputation task from Section[5.3] We report the imputation error (will be define in Section [E.I)) below.
As shown in Table 3] the two-layer VAEs trained jointly generally give worse result than VAEM.

Table 3: Data imputation error (averaged per variable)

Method VAEM Two-layer
VAE

Bank 0.111£0.00 0.113=£0.00
Boston 0.0460.00 0.049+0.00
Avocado 0.145+0.00 0.1460.00
Energy 0.155+0.00 0.158=+0.00
MIMIC 0.226+0.00 0.226+0.00

C Enhancing predictive performance of VAEM: training procedure

In order to enhance the predictive performance of VAEM, the following alternative factorization is
proposed:

Po(%X0,Xa) = Ex\ 4 hops (xpo.hx0) Py (X8 X0, X002, B)po(x0)

For compactness, the notation for input xo and x; to the all partial inference nets g, will be omitted.
Note that, to train this model, we also need data samples of x¢ during training (however x¢ will not
be observed during active learning task). This model is trained using the following procedure:

* Train a partial VAEM on x¢p (x¢ N xpo = @) using the two-stage method described in
Section Now we have a graphical model induced by the model pg(x0).

» Expand the graph by adding the node x4 to the graph. Now the joint distribution is defined
as py (XO7 Xq)) = EXU\¢7th9 (xu\ashlxo) Py (Xq) ‘Xo, XU\®) h)pg (Xo). Note that no new
parameters need to be introduced for the partial inference net of the dependency network
qx(h|zo, z4), since the partial inference net automatically handles inputs with different
dimensionalities.

* Define the marginal VAE encoder for 2¢ as ¢4(2¢|2n.¢, ¢o) = 0(2¢ — 24), and the decoder
to be pa(xn,0|2d,00) = 6(xo — 2a) (ie., both are identity deterministic mappings).

15

* The partial inference net parameters of the dependency network can be updated by the
following procedure:

24 ~ qa(zd|Tdata,d, @a) Yd € OU P, zoue = {z4]d € OU @}

Hdeo Py (Zd|h)p(h)
qr(h|zous)

AN x VAE,, (hizoue) |108 + Exy\ a~po, o (x0 0 |h) 108 Py (Xa X0, X1\ 2, h)

* The the parameters for p, (X¢|X0, X7\ &, h) can be updated by the following procedure:

za ~ qd(za|® 4, pa) Vd € O, zo = {z4|d € O}

h ~ g\(h|zo)

25 ~ py(2s|h) Vs € U\ @, zine = {25|s € U\ @}

Ts Np@(xs‘zUsz) Vs € U\(I)v XU\® = {xs‘s € U\(I)}

~* = arg mj?x log py (Xxa|x0, X\ &, h)

D Additional Experiment Settings

subsectionDatasets details We use the same collection of mixed type datasets in all tasks:

* Two standard UCI benchmark datasets: Boston housing (13 continuous, 1 categorical) and
energy efficiency (6 continuous, 3 categorical) [2];

» Two relatively large real-world dataset: Bank marketing (45211 instances, 11 continuous, 8
categorical, 2 discrete); [21]] and Avocado sales prediction (18249 instances, 9 continuous, 5
categorical).

* One real-world medical dataset: Medical Information Mart for Intensive Care (MIMIC III)
[1O], the largest public medical dataset containing records of 21139 patients (after processing
following [[7]]). We focus on the mortality prediction task based on 17 medical instruments
(13 continuous, 4 categorical). Since the dataset is imbalanced (over 80 % of the data has
mortality = 0), we balance the dataset by down-sampling the majority class. The time-series
observations are averaged to obtain iid data points.

D.1 Additional model specification
D.1.1 Baselines: general information

We have used the following baselines in our experiments:

* Heterogeneous-Incomplete VAE (HI-VAE) [22]. We adopt the multi-head structure of
HI-VAE and match the dimensionality of latent variables to be the same as our VAEM.
HI-VAE is an important baseline, since it is motivated in a similar way as our VAEM, but all
marginal VAEs are trained jointly rather as opposed to our two-stage method. We denote
this by VAE-HI

* VAE: A vanilla VAE equipped with a VampPrior [30]. The number of latent dimensions is
the same as in the second stage of VAEM. We denote this by VAE.

* VAE with extended latent dimension: Note that the total number of latent variables of
VAEM is D + L, where D and L are the dimensionalities of the data and the latent space,
respectively. This baseline is like the previous one, but with the latent dimension given by
D + L. We denote this baseline by VAE-extended.

* VAE with automatically balanced likelihoods. This baseline tries to automatically equal the
scale of each likelihood term of the different variable types in the ELBO by multiplying
each likelihood term with an adaptive constant (Appendix [D.TI)). We denote this baseline by
VAE-balanced.

D.1.2 Baseline: VAE with balanced likelihoods

This baseline is a naive strategy that tries to automatically balance the scale of the log-likelihood
values of different variable types in the ELBO, by adaptively multiplying a constant before likelihood

16

terms. More specifically, consider the variational lower bound (ELBO) of vanilla VAE:
po(x, 2)
q0(2[x)

Po(Xsep,2)
= Z E%(le) log q (Z|X)
sEP ¢

log po (X) > Eq¢(z\x) log

Where P is the set of variable types (e.g., continuous, categorical), and x; is the set of variables
that belong to s-th type. In VAE with balanced likelihoods, we weight each likelihood terms by

{ﬁlaﬁ% 7ﬁ\P|}

Po\Xsep,Z
Z BSEq¢,(z|x) log q((z€|x))
seP 4

Where) 85 = 1, such that:
BSE(M,(Z\X) logpg(xs|z) = ﬂt]Eq¢(z|x) Ingg(Xt‘Z), vsv teP

At each epoch of training, a mini-batch/or the entire dataset {x;}i<;< is selected, and 3, are
estimated such that:

Bs ZE%(ZHXJ') log po(x;.s|z;) = By ZE%(ZHXJ‘) log po(x;.¢|z;), Vs, t €P
J J

In our experiments, at each epochs we used full dataset to compute the weights, whenever applicable.

D.1.3 Likelihood function specification

In this paper, we consider three variable types: continuous, categorical, and discrete. For continuous
and categorical variables, we follow the specification of [22]. In other words, to specify the likelihood
function of all VAE decoders pg, (Zn4|#nq) in our paper, we use Gaussian likelihood with constant ob-
servational noises pg, (Znd|znd) = N (2na; 1(zna), 02) for continuous data; and for categorical data,
we use categorical likelihood with one-hot representation pg, (¥na|2nd) = (1(2na), one-hot(znq)),
where 1(z,,4) is soft-max output of the decoder.

For discrete variables, we consider two different scenarios: continuous-discrete and ordinal-discrete.
Continuous-discrete means that the variable is continuous by its nature, but only discretized values are
recorded. For example, the salary (dollars) is a continuous variable, but in practice only discretized
values (5000 dollars, 6000 dollars, etc.) are recorded. For this type of variables, we still use Gaussian
likelihood, but the decoder output will be rounded to the closest discrete value. On the other hand,
ordinal-discrete variables (such as ratings) are the ones with natural orderings, and the distance
between each value is not known. For ordinal variables, we use ordinal regression likelihood used in
[24]].

Note that the above settings are used for all models including VAEM and other baselines.

D.1.4 Partial inference net with non-continuous input

. In section the partial inference net gy (h|zp, X0o) is constructed based on the element-wise
multiplication operation sp := {v X e,|v € zp Uxo }. How is v X e,, defined if v is non-continuous?
For categorical and ordinal-discrete variable for example, the operation v X e, is defined as

v X e, := vec(one-hot(v) ® e,)

Where ® is outer-product between vectors, one-hot is the one-hot representation of the categori-
cal/ordinal variables, and vec(-) is the vectorization operation of a matrix.

D.2 Network structure and hyper parameter settings

Network structures All models (except for the marginal VAEs of VAEM and the decoder of
HI-VAE) share the same network structures with 20 dimensional diagonal Gaussian latent variables:
the generator (decoder) is a 20-50-100 fully connected neural network with ReL.U activation functions
on hidden units (where D is the data dimension). Note that we use sigmoid activation function for

17

output layer, to reflect our data preprocessing (all data are normalized to between 0 and 1). One
exception is the output layer of dependency network of VAEM, where we did not add any activation
functions since the scales of the latent variables z; from marginal VAEs are unknown. The encoders
share the same structure of D-500-200-40 that maps the observed data into distributional parameters
of the latent space. Additionally, we use a i =100 dimensional feature mapping parameterized
by a single layer neural network, and M =10 dimensional feature embedding for each variable.
We choose the permutation invariant operator g to be the summation operator. The discriminator
described in section @]is a neural network with two layers, each of which has 100 hidden units.

For marginal VAEs of our VAEM, we use 1-dimensional latent variable for each variable.The decoder
of marginal VAEs is a 1-50-V single layer neural network, and the encoder network structure is
V-50-2, where V is the dimension of the corresponding variable, which is defined to be 1 if the
variable is continuous. Otherwise, V is the dimension of the one-hot representation. The same
structure is used for the multi-head decoder structure for HI-VAE baseline.

Hyperparameters To train our models, we apply Adam optimization [[14] with learning rate of
0.001 and a batch size of 100. When the training set is fully observed, We manually generate partially
observed version of it by adding artificially missingness at random in the training dataset during
training. This will help the model to learn to generate conditional data given observations. We first
draw a missing rate parameter from a uniform distribution 2/ (0, 1) and randomly choose variables as
unobserved. This step is repeated at each iteration. We train our models for 3000 full epochs, except
for Bank dataset where we used 5000 epochs. For continuous variables, the constant observational
noise variance level for Gaussian likelihood functions of decoders are set to be 0.02 (except for
MIMIC dataset where we have used 0.3). During evaluation, we use importance sampling with 10K
samples to estimate the log-likelihoods for conditional data generation.

Sequential active information acquisition For SAIA tasks, we use 10 monte-carlo samples from
VAE models to estimate reward functions. Since the focus of this paper is comparing the performance
of different generative models on heterogeneous mixed type data, we use the SING strategy [[18] for
SAIA, which uses the objective function as in Equation (7)) to find the optimal ordering, by averaging
over all the currently observed test data.

D.3 Additional experiment pipeline setup

In Section [5.2] during training, the range of all variables is scaled to be between 0 and 1. This
transformation is removed when making predictions on the target variables.

In Section to train these partial models on data with missing values, we randomly sample 90% of
the dataset to be the training set, and assume that a random fraction (uniformly sampled between 0%
and 99%) of feature values are missing on each epoch during training. Then, during test time, we
assume that 50% of the test set is observed, and use generative models to infer the unobserved data.

18

E Additional experimental results

E.1 Imputation errors of conditional data generation experiment

Here we also provide results that uses imputation errors to evaluate model performance in Section

5.3

Note that one issue with imputation error is: since now we have mixed type data, the errors of
different variables are not directly comparable. Therefore, one often need to introduce a coefficient to
weight the error of different types of variables. The ranking of imputation performance will be highly
dependent on the choice of such coefficient.

Here, we set the weighting coefficients to be 1, and calculate the imputation error based on RMSE.
For continuous variables, the RMSE/SE is defined as usual; for categorical variables, the RMSE/SE
will be calculated based on their one-hot encodings. Then, we take the average of errors across all
variables as our final metric. The calculation are specified as follows:

1 SE(.%‘nd’d—.’IA?nmd)
D Z Z N,

1<d<D 1<na<Ng4

Where D is the number of features, N is the number of unobserved slots to be imputed for dth
variable. SE stands for squared errors. The results are summarized in Table[d] We can see that the
results are consistent with our NLL evaluations in Table 2] from our main text.

Table 4: Data imputation error on Bank dataset (averaged per variable)

Method Ours VAE VAE- VAE- VAE-HI
balanced extended

Bank 0.1114-0.00 0.11640.00 0.11740.00 0.116£0.00 0.113£0.00
Boston 0.046+-0.00 0.04840.00 0.098+0.00 0.046+0.00 0.054-+0.00
Avocado 0.145+0.00 0.145+0.00 0.17940.00 0.145+0.00 0.146+0.00
Energy 0.155+0.00 0.176+0.00 0.187+0.00 0.184+0.00 0.176+0.00
MIMIC 0.226£0.00 0.228+0.00 0.23040.00 0.229+£0.00 0.2260.00

Avg. Rank 1.00+0.00 2.40+0.40 5.00+0.00 2.60+0.67 2.60+0.60

E.2 Approximation errors of marginal VAEs

One of the main differences between our VAEM and vanilla VAEs is that we introduce one additional
marginal VAE per data dimension. We evaluated the posterior approximation quality in these marginal
VAE:s in the Avocado dataset. The table below shows that, in each marginal VAE, the ELBO and
log-likelihood are very similar:

Table 5: ELBO vs log likelihood of marginal VAEs

Variables 1 2 3 4 5 6 7 8
ELBO -1.30 -4.21 -2.43 -3.49 1.97 2.11 2.12 2.17
LLH -1.30 -4.17 -2.42 -3.48 2.00 2.14 2.13 2.19

19

Since the gap between ELBO and LL is the KL divergence, we conclude that the posterior approxi-
mation quality is very high in this case.

In addition, our results (e.g. Figure 1 in the paper) show that our method approximates the marginal
distributions of the data better than vanilla VAE.

F Additional Plots on Bank dataset

T

—
1

1

*

=

T
T T

9
r

I

“4
- !
1
4
i
!
]
i
I

IIIIIIIIIIIIIIITMM_‘
EENNENEEEENEEEn 4
ENNEENEEEEEEE
EENNENEEEENN

[N I

I O O
EEEESHEENICENNEEE
EECEENEENIEEEEEN
Il-lIIl-fW*
EENMEENER

EECEE

EERE

"'Fi

=
o
r

]

Figure 5: pair plots of all variables from the real Bank dataset. Diagonal plots show marginal
histograms for each variable. The upper-triangular part shows sample scatter plots for each variable
pair. The lower-triangular part shows heat maps identifying regions of high-probability density for
each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced
points in the interval [0, 1].

-
=

Figure 6: pair plots of all variables generated by VAEM. Diagonal plots show marginal histograms
for each variable. The upper-triangular part shows sample scatter plots for each variable pair. The
lower-triangular part shows heat maps identifying regions of high-probability density for each variable
pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the
interval [0, 1].

21

. |WRIE v =
--M_L , | L . L%;: I I R
HAEl. - ===
AEEEEEEE. EED
SENENEENE. @0
L L L LT 1 |
NN EEEENNE. @ . .
T T T T T T T T T T T e
: rud S f
SRR EREEEEREEEEENE. @ @
HAENEEEREEDEEEREDER .
N Lol 7

’ 1 | 1 r
HEEREEEERNEERENENEN |
===================il

Figure 7: pair plots of all variables generated by VAE-balanced. Diagonal plots show marginal
histograms for each variable. The upper-triangular part shows sample scatter plots for each variable
pair. The lower-triangular part shows heat maps identifying regions of high-probability density for
each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced
points in the interval [0, 1].

22

S o R i | ol
Em

| I

rF!IL.:, , 4 e e
———— | : —=
HEmE. ! —=
EENE (| ¥ [:
EEENE (| 3 B -
fimthq¢J4_mL4 ol |
HHEEN || § HE L

HEEN (| AN |] TOR SN .
EEEE || 1 HE | (AR
EEENE (| 1 HHE HE . 1
EEEE | 1 HE HEE . -
EERE || ¥ (BN HEEE.
HAENE (|1 NN (T T 11 e
KRN (| 1 HE HANEENEE .
ENEE (| 1 HNI | BENEEEEE

LD LT b

2
!HLJJ * . E B - E
=80 . : = |SlslsE |2
HEEN I I
EEEE =HES=
o o)l B
HEER R
e e o Il Bl I
1 == == | =
———— N

———— = [k |
o S
== ~[< e
S e — - =F =
773 ELF @A |E
R [Y - e
- — | B O Bl
ol e e - el R il
- Al -
SN I 41 0E .

Figure 8: pair plots of all variables generated by HI-VAE. Diagonal plots show marginal histograms
for each variable. The upper-triangular part shows sample scatter plots for each variable pair. The
lower-triangular part shows heat maps identifying regions of high-probability density for each variable
pair. For visualization, categorical variables are mapped to a grid of evenly spaced points in the
interval [0, 1].

23

Figure 9: pair plots of all variables generated by VAE-extended. Diagonal plots show marginal
histograms for each variable. The upper-triangular part shows sample scatter plots for each variable
pair. The lower-triangular part shows heat maps identifying regions of high-probability density for
each variable pair. For visualization, categorical variables are mapped to a grid of evenly spaced

points in the interval [0, 1].

24

L L [|
B | |
;!'LJ_L.::: RER - ,
EEl.

L 1 1 | [: R R R ot e
EEEEN

E 1111 1 I

HEEEREEN

EENEHBRR =
EEHNENRNR ==
‘g%%%___ | - ,
ANEREEEEEN | |

E L L L T LT T T T I | |
=N EEEER | ER
HENEEEEEEN | BEN
EEHENEERERE IIEE . ¢
EEHNENRERER] | EREEER.
HNEREREREN | EEEEREN.
IIIIIIIIIIIIIIIII=J~

.1

