6 Appendix

6.1 Additional dataset details
6.1.1 Headline dataset

Preprocessed headlines (stripped of punctuation, space-delimited, and lower-cased) from the
Australian Broadcasting Corporation (early-2013 through the end of 2019) were obtained from
https://www.kaggle.com/therohk/million-headlines.

6.1.2 Flu IRD dataset

Influenza HA amino acid sequences were downloaded from the “Protein Sequence Search” section of
https://www.fludb.org. We only considered complete HA sequences from virus type A, but did
not filter based on subtype, strain, date, host, geography, or country.

6.1.3 HIV LANL dataset

Sequences were downloaded from the “Sequence Search Interface” at https://www.hiv.lanl|
gov. All complete HIV-1 Env sequences were downloaded, excluding sequences that the database had
labeled as “problematic.” To ensure that our sequences corresponded to complete viral haplotypes,
we only considered sequences that had length between 800 and 900 amino acid residues, inclusive.

6.2 Additional baseline method details

We benchmark our escape prediction experiments against models that try to estimate the evolutionary
fitness of a viral protein based on some assumptions. Notably, viral fitness models are not equivalent
to escape prediction, since mutations that preserve fitness may be neutral with respect to escape
(fitness models better correspond to the “grammaticality” term in CSCS). However, in the absence of
existing unsupervised models that are directly built to perform unsupervised escape prediction, viral
fitness models are the most related that attempt to solve a conceptually close problem.

6.2.1 Alignment-based frequency fitness model

This baseline model for viral fitness assumes that higher mutational frequencies in a corpus correspond
to higher fitness and that residue-level fitness information is independent across the viral sequence;
this fitness model is widely adopted due to its simplicity 12,311 14} [21]].

We first perform MSA with the MAFFT software package (version 7.453) within the respective
corpuses (influenza or HIV sequences). After sequence alignment was performed, we considered
each position in the viral sequence of interest (influenza strains A/Perth/16/2009 or A/WSN/1933,
or HIV strain BG505. T332N). At a given position, we computed the frequency of other amino acids
that were aligned to that position across all other sequences in the corpus. Sequences were acquired
based on the highest observed frequencies across all possible single-residue mutations.

For influenza, we found that performance (in terms of normalized AUC) improved when restricting
sequence alignment to the corresponding subtype (H1 sequences for A/WSN/1933 and H3 sequences
for A/Perth/16/2009) For HIV, we found that performance improved when only restricting align-
ments to the local neighborhood of BG505 . T332N, defined by sequences that differ by a maximum of
15 residues. In general, we found that sequence alignment is dramatically affected by the sequences
that are included in the corpus. For a best-case comparison, we report the highest performance over
different sequence inclusion strategies.

We also used a conceptually similar implementation of this strategy provided by the EVcouplings
pipeline [26]] (https://github.com/debbiemarkslab/EVcouplings) using default parameters.
We trained the EVcouplings independent model on the same corpus of viral sequences used to train
our language models.

6.2.2 Alignment-based Potts model

A common critique of the above strategy for modelling viral fitness is that the independence as-
sumption is limiting. Biologically, two residues can co-evolve, especially if they are physically and

14

https://www.kaggle.com/therohk/million-headlines
https://www.fludb.org
https://www.hiv.lanl.gov
https://www.hiv.lanl.gov
https://github.com/debbiemarkslab/EVcouplings

biochemically related in the three-dimensional structure of the protein, a phenomenon referred to
as “epistasis.” A solution is to incorporate pairwise residue information by learning a probabilistic
model in which each residue position corresponds to a random variable and pairwise potentials can
encode epistatic relationships.

Hopf et al. learned such a model based on a Potts model formulation; we describe the general
formulation here and leave implementation details to the original paper [27]]. Given a sequence
x = (x1,22,..., 2y) Where x; comes from an alphabet X that is the set of all amino acids and a
gap character, the model assigns an energy score to each sequence as

N N N
E(X; h7J) = Z hzxz + Z Z Jijxixj.
i=1

i=1 j=i+1

This term is scaled to be a valid probability distribution

p(x;h,J) = % exp{—F(x;h,J)}
where Z = > _,exp{—FE(x’;h,J)}. The parameters are learned by a maximum likelihood
procedure using a number of critical heuristics that Hopf et al. use to allow for efficient in-
ference and parameter regularization [27, 26]]. We use the pipeline provided by Hopf et al. at
https://github.com/debbiemarkslab/EVcouplings with default parameters. We trained the
EVcouplings epistatic model on the same corpus of viral sequences used to train our language models.

6.2.3 Pretrained sequence embedding models

We tested if the sequence embeddings produced by models trained on generic protein sequence
corpuses [9, 145] 5] would be informative with respect to escape. We used the pretrained trans-
former model from Rao et al. [45] and the pretrained UniRep model from Alley et al. [5], both
obtained through https://github.com/songlab-cal/tape. We used the pretrained model with
full soft symmetric alignment and protein structure information from Bepler et al. [9], available
through https://github.com/tbepler/protein-sequence-embedding-iclr2019, Rather
than training exclusively on a large viral sequence corpus, as we did, these methods trained on
corpuses containing generic protein sequences.

Each single-residue escape mutant was embedded using the pretrained model and mutant sequences
were acquired based on the largest changes to the embedding based on the ¢;-distance. The results
are provided in Table[S2]

6.3 Additional experimental details

6.3.1 Language model hyperparameter selection

We performed a small-scale grid search using categorical cross entropy loss after 20 training epochs
on the headline and influenza datasets to select the language model architecture and hyperparameters
based on a random 80%/20% cross-validation split of the training set. Hyperparameter ranges were
influenced by previous applications of recurrent architectures to protein sequence representation
learning [9]]. We tested hidden unit dimensions of 128, 256, and 512. We tested architectures with
one or two hidden layers. We tested three hidden-layer architectures: a densely connected neural
network with access to both left and right sequence contexts, an LSTM with access to only the left
context, and a BILSTM with access to both left and right sequence contexts. We tested two Adam
learning rates (0.01 and 0.001). All other architecture details described in Section were fixed to
reasonable defaults. In total, we tested 36 conditions and ultimately used a BiLSTM architecture with
two hidden layers of 512 hidden units each, with an Adam learning rate of 0.001. We used the same
architecture for all experiments. In general, we noted that increasing model capacity only served to
improve performance.

6.3.2 Headline semantic change quantification

POS tagging was done using the English pos_tag() function with default parameters from the n1tk
Python package (https://www.nltk.org) and separately using the default POS SequenceTagger
from flair (https://github.com/flairNLP/flair).

15

https://github.com/debbiemarkslab/EVcouplings
https://github.com/songlab-cal/tape
https://github.com/tbepler/protein-sequence-embedding-iclr2019
https://www.nltk.org
https://github.com/flairNLP/flair

CSCS-mutated words were compared to the original word based on WordNet synset similarities.
We only considered words where the POS (labeled by nl1tk) was preserved, where the POS was a
noun or a verb (i.e., NN, NNS, or VB), and where the depluralized or deconjugated word was present in
nltk’s WordNet. We used the pattern Python package (https://github.com/clips/pattern)
to depluralize words or to conjugate verbs into the infinitive form.

6.3.3 Computational resources

Training on the influenza HA dataset requires approximately a week of training and around three
hours to evaluate all possible single escape sequences. On our largest dataset (HIV Env), our training
implementation finished within 2.5 weeks and escape prediction inference requires eight hours.
Models were trained with an Nvidia Tesla V100 PCle 32GB GPU. Experiments were run with Python
3.7 on Ubuntu 18.04.

6.3.4 Code and data availability

Code and datasets used in this paper’s experiments has been made available as supplementary data.

16

https://github.com/clips/pattern

Table S1: Additional Headline Semantic Change Results

Mean =+ S.Dev. % POS Change Mean =+ S.Dev. WordNet Similarity
Setting NLTK FLAIR Pathwise Wu-Palmer

Semantically closest
(smallest Az[Z;])
CSCS-proposed
(highest a’(Z;; %))

8.40% + 133% 5.64% £+ 10.5% 0.266 £ 0.280 0.536 £ 0.298

18.9% + 15.3% 15.5% + 14.3% 0.0833 £ 0.0756 0.235 £ 0.145

Table S2: Additional Escape Prediction Results (pretrained sequence embeddings)

Normalized AUC
Model Influenza H1 Influenza H3 HIV Env

Alley et al. pretrained Az [5]] 0.482 0.452 0.534
Bepler et al. pretrained Az [9] 0.660 0.644 0.561
Rao et al. pretrained Az [45]] 0.584 0.526 0.574
CSCS (Az[#;] and p(Z;|x)) 0.834 0.771 0.692

oA F
e Al F1
AlA2 F2
AlC oG
e A1D oH
e A2
e A3
e A6
AE
AG
eB °
e BC

o C
UMAP1 D

UMAP?2

ther

cCovoOoOO0Ozr R—

Figure S1: UMAP visualization of unique HIV Env sequences colored by subtype. Large, dominating
clusters corresponding to B, C, and AE subtypes may be due to the lack of vaccine pressure on HIV,
compared to influenza.

17

	Appendix
	Additional dataset details
	Headline dataset
	Flu IRD dataset
	HIV LANL dataset

	Additional baseline method details
	Alignment-based frequency fitness model
	Alignment-based Potts model
	Pretrained sequence embedding models

	Additional experimental details
	Language model hyperparameter selection
	Headline semantic change quantification
	Computational resources
	Code and data availability

