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Abstract

We consider a stochastic bandit problem with countably many arms that belong
to a finite set of types, each characterized by a unique mean reward. In addition,
there is a fixed distribution over types which sets the proportion of each type
in the population of arms. The decision maker is oblivious to the type of any
arm and to the aforementioned distribution over types, but perfectly knows the
total number of types occurring in the population of arms. We propose a fully
adaptive online learning algorithm that achieves O (log n) distribution-dependent
expected cumulative regret after any number of plays n, and show that this order
of regret is best possible. The analysis of our algorithm relies on newly discovered
concentration and convergence properties of optimism-based policies like UCB in
finite-armed bandit problems with zero gap, which may be of independent interest.

1 Introduction

Background and motivation. The multi-armed bandit (MAB) problem is a widely studied machine
learning paradigm that captures the tension between exploration and exploitation in online decision
making. The problem traces its roots to 1933 when it was first studied in the context of clinical trials
in [21]. It has since evolved and numerous variants of the MAB problem have seen an upsurge in
applications across a plethora of domains spanning dynamic pricing, online auctions, packet routing,
scheduling, e-commerce and matching markets to name a few (see [12] for a comprehensive survey).
In its simplest formulation, the decision maker must sequentially play an arm at each time instant out
of a set of K possible arms, each characterized by its own distribution of rewards. The objective is
to maximize cumulative expected payoffs over the horizon of play. Every play of an arm results in
an independent sample from its reward distribution. The decision maker, oblivious to the statistical
properties of the arms, must balance exploring new arms and exploiting the best arm played thus far.
The objective of maximizing cumulative rewards is often converted to minimizing regret relative to
an oracle with perfect ex ante knowledge of the best arm. The seminal work [20] was the first to show
that the optimal order of this regret is asymptotically logarithmic in the number of plays. Much of the
focus since has been on the design and analysis of algorithms that can achieve near-optimal regret
rates (see [5, 16, 15], etc., and references therein).

Many practical applications of the multi-armed bandit problem involve a prohibitively large number
of arms, the number in some cases is even larger than the horizon of play itself. This renders finite-
armed models unsuitable vehicle for the study of such settings. The simplest prototypical example
of such a setting occurs in the context of online assignment problems arising in large marketplaces
serving a very large population of agents that each belong to one of K possible types; e.g., if K = 2,
the set of agent types could be {“high caliber”, “low caliber”}, {“patient”, “impatient”}, etc. Such
finite-typed settings are also relevant in many applications with an exponentially large choice space
and where a limited planning horizon forbids exploration-exploitation in the traditional sense (This
is common in online retail where assortments of substitutable products are selected from a very
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large product space, cf. [2]). We shall refer to problems of this nature as countable-armed bandits
(CAB). The CAB problem lies hedged between the finite-armed bandit problem on one end, and the
so called infinite-armed bandit problem on the other. As the name suggests, the latter is typically
characterized by a continuum of arm types and for this reason, the CAB problem is closer in spirit to
the finite-armed problem despite an infinity of arms, though it has its own unique salient features.

The CAB problem is characterized by a finite set of arm types T and a distribution over T denoted by
D (T ). Since this is the first systematic investigation of said bandit model, we assume in this paper
that |T | = 2 for a clear exposition of key technical results and proof ideas unique to the countable-
armed setting. The statistical complexity of the CAB problem with a binary T is determined by three
primitives: (i) the sub-optimality gap (∆) between the mean rewards of the superior and inferior arm
types; (ii) the proportion of arms of the superior type in the infinite population of arms (α); and (iii)
the duration of play (n).

Main contributions. We show that the finite-time expected cumulative regret achievable in the CAB
problem, absent ex ante knowledge of (∆, α, n), is O

(
β−1

∆

(
∆−1 log n+ α−1∆

))
(Theorem 3),

where β∆ 6 1 is an instance-specific constant that depends only on the reward distributions associated
with the arm types, and the big-Oh notation only hides absolute constants. To this end, we propose
a fully adaptive online learning algorithm that has the aforementioned regret guarantee and show
that its performance cannot essentially be improved upon. The proof of Theorem 3 relies on a newly
discovered concentration property of optimism-based algorithms such as UCB in finite-armed bandit
problems with zero gap, e.g., a two-armed bandit with ∆ = 0 (Theorem 4 (i)). This result is of
independent interest as it disproves a folk conjecture on non-convergence of UCB in zero gap settings
(Theorem 4 (ii)) and is likely to have implications for statistical inference problems involving adaptive
data collected by UCB-like algorithms. Additionally, the zero gap setting also highlights a stark
difference between the limiting pathwise behavior of UCB and Thompson Sampling. In particular,
we observe empirically that UCB’s concentration and convergence properties à la Theorem 4 are,
in fact, violated by Thompson Sampling (Figure 2). A theoretical explanation for said pathological
behavior of Thompson Sampling is presently lacking in literature. Before describing the CAB model
formally, we survey two closely related MAB models below and note key differences with our model.

Relation to the finite-armed bandit model. In this problem, finiteness of the action set (set of arms)
allows for sufficient exploration of all the arms which makes it possible to design policies that achieve
near-optimal regret rates (cf. [5, 15], etc.) relative to the lower bound in [20]. In contrast, exploring
every single arm in our problem is: (a) infeasible due to an infinity of available arms; and (b) clearly
sub-optimal since any attempt at it would result in linear regret. The fundamental difficulty in the
countable-armed problem lies in identifying a consideration set that contains at least one arm of
the optimal type. In the absence of any ex ante information on (∆, α), it is unclear whether this
can be done in a manner that would guarantee sub-linear regret; and secondly, what is the minimal
achievable regret. These questions capture the essence of our work in this paper.

Relation to the infinite-armed bandit model. This problem also considers an infinite population of
arms and a fixed reservoir distribution over the set of arm types, which maps to the set of possible
mean rewards. However, unlike our problem, the set of arm types here forms the continuum [0, 1].
The infinite-armed problem traces its roots to [7] where it was first studied under a Bernoulli reward
setting with the reservoir distribution of mean rewards being Uniform on [0, 1]. This work spawned a
rich literature on infinite-armed problems, however, to the best of our knowledge, all of the extant body
of work is predicated on the assumption that the reservoir distribution satisfies a certain regularity
property (or a variant thereof) in the neighborhood of the optimal mean reward (cf. [7, 22, 9, 13, 11]
for a comprehensive survey). Such assumptions restrict the set of types to infinite cardinality sets.
In terms of statistical complexity, this has the implication that the minimal achievable regret is
polynomial in the number of plays. In contrast, the CAB model is fundamentally simpler since the set
of arm types is only finite. The natural question then is if better regret rates are possible for the CAB
problem at least on “well-separated” instances. This is the central question underlying our work.

In addition to the infinite-armed bandit model discussed above, there are two other related problem
classes: continuum-armed bandits and online stochastic optimization. However, these problems are
predicated on an entirely different set of assumptions involving the topological embedding of the
arms and regularities of the mean-reward function, and share little similarity with our stochastic
model. The reader is advised to refer to [17, 1, 19, 6, 18, 10], etc., for a detailed coverage of the
aforementioned problem classes.
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Organization of the paper. The CAB problem is formally described in § 2. Algorithms for the CAB
problem and related theoretical guarantees are stated in § 3. A formal statement of the concentration
and convergence properties of UCB in finite-armed bandits with zero gap is deferred to § 4. Proof
sketches are included in the main text to the extent permissible, full proofs and other technical details
including ancillary lemmas are relegated to the appendices.

2 Problem formulation

The set of arm types is denoted by T = {1, 2}. Each type i ∈ T is characterized by a unique
mean reward µi ∈ (0, 1) with the rewards themselves bounded in [0, 1]. The proportion of arms of
type arg maxi∈T µi in the population of arms is given by α. Different arms of the same type may
have distinct reward distributions but their mean rewards are equal. For each i ∈ T , G(µi) denotes a
finite1 collection of reward distributions with mean µi associated with the type i sub-population.

Assumption 1 (Maximally supported rewards in [0, 1]) Any CDF F ∈
⋃
i∈T G(µi) satisfies: (i)

sup {x ∈ R : F (x) = 0} = 0, and (ii) inf {x ∈ R : F (x) = 1} = 1.2

For example, distributions such as Bernoulli(·), Beta(·, ·), Uniform on [0, 1], etc., satisfy Assump-
tion 1. Without loss of generality, we assume µ1 > µ2 and call type 1, the optimal type. ∆ := µ1−µ2

denotes the separation (or gap) between the types. The index set In contains labels of all the arms
that have been played up to and including time n (with I0 := φ). The set of available actions at time
n is given by An = In−1 ∪ {new} and P(An) denotes the probability simplex on An. At any time
n, the decision maker must either choose to play an arm from In−1, or select the action “new” which
corresponds to playing a new arm, unexplored hitherto, whose type is an unobserved, independent
sample from an unknown distribution on T denoted by D(T ) = (α, 1− α). The realized rewards
are independent across arms and i.i.d. in time keeping the arm fixed. The natural filtration Fn is
defined w.r.t. the sequence of rewards realized up to and including time n (with F0 := φ). A policy
π = {πn : n ∈ N} is a non-anticipatory adaptive sequence that for each n prescribes an action from
P (An), i.e., πn : Fn−1 → P(An) ∀ n ∈ N. The cumulative pseudo-regret of π after n plays is
given by Rπn =

∑n
m=1

(
µ1 − µt(πm)

)
, where t (πm) denotes the type of the arm played by π at time

m. We are interested in the problem minπ∈Π ERπn, where n is the horizon of play, Π is the set of
all non-anticipation policies, and the expectation is w.r.t. the randomness in π as well as D (T ). We
remark that ERπn is the same as the traditional notion of expected cumulative regret in our problem3.

Other notation. We reemphasize that for any given arm, label and type are two distinct attributes.
The number of plays up to and including time n of arm i is denoted byNi(n), and its type by t(i) ∈ T .
At any time n+, (Xi,j)

m
j=1 denotes the sequence of rewards realized from the first m 6 Ni(n) plays

of arm i. The natural filtration at time n+ is formally defined as Fn := σ
{

(Xi,j)
Ni(n)
j=1 ; i ∈ In

}
.

The empirical mean reward from the first Ni(n) plays of arm i is denoted by Xi(n). An absolute
constant is understood to be one that does not depend on any problem primitive or free parameters.

3 Main results: Rate-optimal algorithms for the CAB problem

In the finite-armed bandit problem, the gap ∆ is the key primitive that determines the statistical
complexity of regret minimization. The literature on finite-armed bandits roughly bifurcates into
two broad strands of algorithms, ∆-aware and ∆-agnostic. Explore-then-Commit (aka, Explore-
then-Exploit) and εn-Greedy are two prototypical examples of the former category, while UCB and
Thompson Sampling belong to the latter. In the CAB problem too, ∆ plays a key role in determining
the complexity of regret minimization. Since this is the first theoretical treatment of the subject
matter, it is instructive to first study the ∆-aware case to gain insight into the basic premise that sets
the finite and countable-armed problems apart. We investigate the case of a ∆-aware decision maker
in § 3.1 and the ∆-agnostic case in § 3.2. Before proceeding to the algorithms, we first state a lower

1This is simply to keep the analysis simple and has no bearing on the regret guarantees of our algorithms.
2Define λ (Fi, Fj) := max(k,l)∈{(i,j),(j,i)} (inf {x ∈ R : Fk(x) = 1} − sup {x ∈ R : Fl(x) = 0}) for ar-

bitrary CDFs Fi, Fj . We require prior knowledge of λ0 := mini,j∈T ,i 6=j minFi∈G(µi),Fj∈G(µj) λ (Fi, Fj).
Assumption 1 fixes λ0 = 1.

3Expected cumulative regret equals the expected cumulative pseudo-regret in the stochastic bandits setting.
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bound for the CAB problem that applies for any admissible policy. In what follows, an instance of
the CAB problem refers to the tuple (G(µ1),G(µ2)) with |µ1 − µ2| = ∆, and we slightly overload
the notation for expected cumulative regret to emphasize its instance-dependence.

Theorem 1 (Lower bound on achievable performance) For any ∆ > 0, ∃ a pair of reward dis-
tributions (Q1, Q2) with means (µ1, µ2) respectively, satisfying |µ1 − µ2| = ∆, and an absolute
constant C, s.t. the expected cumulative regret of any asymptotically consistent4 policy π on the CAB
instance ν = ({Q1} , {Q2}) satisfies for all α 6 1/2 and n large enough, ERπn(ν) > C∆−1 log n.

Remark. Theorem 1 bears resemblance to the classical lower bound of Lai and Robbins for finite-
armed bandits [20], but the two results differ in a fundamental way. While ν = ({Q1} , {Q2}) fully
specifies a two-armed bandit problem, it is the realization of ν, i.e., an infinite sequence (ri)i∈N with
P
(
ri = Qarg maxj∈{1,2} µj

)
= α and where ri ∈ {Q1, Q2} indicates the reward distribution of arm

i ∈ N, that specifies the CAB problem. As such, traditional lower bound proofs for finite-armed
bandits are not directly adaptable to the CAB problem. Nonetheless, the two results retain structural
similarities because the CAB problem, despite its additional complexity, remains amenable to a
standard reduction to a hypothesis testing problem. It must be noted that any policy incurs linear regret
when α = 0, while zero regret when α = 1. Theorem 1 states a uniform lower bound independent of
α that applies for all α 6 1/2. Since the CAB problem with α < 1/2 is statistically harder than its
two-armed counterpart, we believe the lower bound in Theorem 1 is in fact, unachievable in the sense
of the exact scaling of the log n term. However, our objective in this paper is to develop algorithms for
the CAB problem that are order-optimal in n and to that end, Theorem 1 serves its stipulated purpose.
Characterizing an achievable scaling of the lower bound and its dependence on α ∈ [0, 1] remains
an open problem. We consider the restriction to the classical asymptotically consistent policy class
(Definition 1, Appendix A) as more generic policy classes are unwieldy for lower bound proofs due to
reasons stemming from the combinatorial nature of our problem. Full proof is given in Appendix A.

3.1 A near-optimal ∆-aware algorithm for the CAB problem

The intuition and understanding developed through this section shall be useful while studying the
∆-agnostic case later and highlights key statistical features of the CAB problem. Below, we present
a simple fixed-design ETC (Explore-then-Commit) algorithm assuming ex ante knowledge of the
duration of play5 n and a separability parameter δ ∈ (0,∆]. In what follows, we use select to indicate
an arm selection action, and play to indicate the action of pulling a selected arm. A reward is only
realized after an arm is played, not merely selected. A new arm refers to one that has never been
selected before. (Xi,j)

m
j=1 denotes the sequence of rewards realized from the first m plays of arm i.

Algorithm 1 ETC-∞(2): ETC for an infinite population of arms with |T | = 2.
1: Input: (n, δ), where δ ∈ (0,∆].
2: Set L =

⌈
2δ−2 log n

⌉
. Set budget T = n.

3: Initialization (Starts a new epoch): Select two new arms. Call it consideration set A = {1, 2}.
4: m← min (L, T/2).
5: Play each arm in Am times. Update budget: T ← T − 2m.
6: if

∣∣∣∑m
j=1(X1,j −X2,j)

∣∣∣ < δm then
7: Permanently discard A and go to Initialization.
8: else
9: Commit the remaining budget of play to arm i∗ ∈ arg maxi∈A

∑m
j=1Xi,j .

Mechanics of ETC-∞(2). The horizon of play is divided into epochs of length 2m = O (log n)
each. The algorithm starts off by selecting a pair of arms at random from the infinite population of
arms and playing them m times each in the first epoch. Thereafter, the pair is classified as having
either identical or distinct types via a hypothesis test through step 6. If classified as “identical,” the
algorithm permanently discards both the arms (never to be selected again) and replaces them with yet
another newly selected pair, which is subsequently played equally in the next epoch. This process is

4This is a rich policy class that includes all algorithms achieving sublinear regret (defined in Appendix A).
5The standard exponential doubling trick can be employed to make the algorithm horizon-free, cf. [8].
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repeated until a pair of arms with distinct types is identified. In the event of such a discovery, the
algorithm commits the residual budget to the empirically better arm in the current consideration set.

Theorem 2 (Upper bound on the expected regret of ETC-∞(2)) The expected cumulative regret
of the policy π given by Algorithm 1 after n plays is bounded as follows:

ERπn 6 min
(
∆n, ∆

(
2 + α−1

) (
2δ−2 log n+ 1

)
+ α−1 (f(n, δ,∆) + 2) ∆

)
,

where f(n, δ,∆) = o(1) in n and independent of α (Note: This result is agnostic to Assumption 1.).

Proof sketch of Theorem 2. On a pair of arms of the optimal type (type 1), any playing rule incurs
zero regret in expectation, whereas the expected regret is linear in the number of plays if the pair is of
the inferior type (type 2). Since it is statistically impossible to distinguish between a type 1 pair and a
type 2 pair in the absence of any distributional knowledge of the associated rewards, the algorithm
must identify a pair of distinct types whenever so obtained, to avoid high regret. This is precisely done
through step 6 of Algorithm 1 via a hypothesis test. Since the distribution over the types, denoted
by D (T ) = (α, 1 − α), is stationary, the number of fresh draws of consideration sets until one
with arms of distinct types is obtained is a geometric random variable (say W ). Thus, it only takes
(EW )(2m) = O (log n) plays in expectation to obtain such a pair and identify it correctly with high
probability. The algorithm subsequently commits to the optimal arm in the pair with high probability.
Therefore, the overall expected regret is also O (log n). Full proof is relegated to Appendix B. �

Remark. The key idea used in Algorithm 1 is that of interleaving hypothesis testing (step 6) with
regret minimization (step 9). In the stated version of the algorithm, the regret minimization step
simply commits to the arm with the higher empirical mean reward. The framework of Algorithm 1
also allows for other regret minimizing playing rules (for e.g., εn-Greedy [5], etc.) to be used instead
in step 9. The flexibility afforded by this framework shall become apparent in § 3.2.

3.2 A near-optimal ∆-agnostic algorithm for the CAB problem

Designing an adaptive, ∆-agnostic algorithm and the proof that it can achieve the lower bound in
Theorem 1 (in n, modulo multiplicative constants) is the main focus of this paper. Recall that ex
ante information about ∆ serves a dual role in Algorithm 1: (i) in calibrating the epoch length in
step 2; and (ii) determining the separation threshold for hypothesis testing in step 6. In the absence of
information on ∆, it is a priori unclear if there exists an algorithm that would guarantee sublinear
regret on “well-separated” instances. In Algorithm 2 below, we present a generic framework called
ALG(Ξ,Θ, 2), around which various ∆-agnostic playing rules such as UCB, Thompson Sampling,
etc., can be tested. In what follows, s ∈ {1, 2, ...} indicates a discrete time index at which an arm
may be played in the current epoch. Every epoch starts from s = 1.

Algorithm 2 ALG(Ξ,Θ, 2): An algorithmic framework for countable-armed bandits with |T | = 2.
1: Input: A ∆-agnostic playing rule Ξ, a deterministic sequence Θ ≡ {θm : m = 1, 2, ...} in R.
2: Initialization (Starts a new epoch): Select two new arms. Call it consideration set A = {1, 2}.
3: For s ∈ {1, 2}, play each arm in A once.
4: m← 1.
5: for s ∈ {3, 4, ...} do
6: if

∣∣∣∑m
j=1(X1,j −X2,j)

∣∣∣ < θm then
7: Permanently discard A and go to Initialization.
8: else
9: Play an arm from A according to Ξ.

10: m← mini∈ANi(s).

On the issue of sample-adaptivity in hypothesis-testing. The foremost noticeable aspect of Algo-
rithm 2 that also sets it apart from Algorithm 1, is that the samples used for hypothesis testing in
step 6 are collected adaptively by Ξ. For instance, if Ξ = UCB1 [5], then step 9 translates to playing
arm i∗ ∈ arg maxi∈A

(
Xi(s− 1) +

√
2 log(s− 1)/Ni(s− 1)

)
. This is distinct from the classical

hypothesis testing setup used in step 6 of Algorithm 1, where the collected data does not exhibit
such dependencies. It is well understood that adaptivity in the sampling process can lead to biased
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inferences (see, e.g., [14]). However, for standard choices of Ξ such as UCB or Thompson Sampling
(or variants thereof), the exploratory nature of Ξ ensures that the test statistic

∑m
j=1(X1,j −X2,j)

where m = mini∈ANi(s), remains agnostic to any sample-adaptivity due to Ξ. This statement is
formalized and further explained in Lemma 1 (Appendix F).

Mechanics of ALG(Ξ,Θ, 2). We call a consideration set A of arms "heterogeneous" if it contains
arms of distinct types, and "homogeneous" otherwise. Algorithm 2 has a master-slave framework
in which step 6 is the master routine and Ξ serves as the slave subroutine in step 9. The purpose
of step 6 is to quickly determine if A is homogeneous, in which case it discards A and restarts the
algorithm afresh in a new epoch. On the other hand, whenever a heterogeneous A gets selected,
step 6 ensures that its selection persists in expectation which allows Ξ to run “uninterrupted.” This
idea is formalized in Lemma 2 (Appendix F). In a nutshell, Algorithm 2 runs in epochs of random
lengths that are themselves determined adaptively. At the beginning of every epoch, the algorithm
selects a new consideration set A and deploys Ξ on it. It then determines (via the hypothesis test
in step 6) whether to keep playing Ξ on A or to stop and terminate the epoch, based on the current
sample history ofA. Upon termination, A is discarded and the algorithm starts afresh in a new epoch.

Calibrating Θ. ALG(Ξ,Θ, 2) identifies homogeneous A’s by means of a hypothesis test through
step 6. It starts with the null hypothesis H0 that the current A is heterogeneous and persists with
it until “enough” evidence to the contrary is gathered. If H0 were indeed true, the Strong Law of
Large Numbers (SLLN) would dictate that

∣∣∣∑m
j=1(X1,j −X2,j)

∣∣∣ ∼ ∆m, almost surely. IfH0 were

false, it would follow from the Central Limit Theorem (CLT) that
∣∣∣∑m

j=1(X1,j −X2,j)
∣∣∣ = O (

√
m).

Therefore, in order to separate H0 from its complement, the right θm must satisfy: θm = o(∆m)
and θm = ω (

√
m). Indeed, our choice of θm (see (2)) satisfies these conditions and is such that

θm ∼ 2
√
m logm. We reemphasize that the calibration of Θ is independent of ∆ and only informed

by classical results (SLLN, CLT) that are themselves inapplicable since the data collection is adaptive.

High-level overview of results. We show that for a suitably calibrated input sequence Θ (see (2)),
the instance-dependent expected cumulative regret of ALG(UCB1,Θ, 2) is logarithmic in the number
of plays anytime, this order of regret being best possible. We also demonstrate empirically that a key
concentration property of UCB1 that is pivotal to the aforementioned regret guarantee, is violated for
Thompson Sampling (TS) and therefore, ALG(TS,Θ, 2) suffers linear regret. A formal statement of
said concentration property of UCB1 is deferred to § 4. The regret upper bound of ALG(UCB1,Θ, 2)
is stated next in Theorem 3. Following is an auxiliary proposition that is useful towards Theorem 3.

Proposition 1 (Lower bound on the true negative rate) For each i ∈ T = {1, 2}, let
(
Y Fi
j

)
j∈N

denote an i.i.d. sequence of random variables with distribution Fi ∈ G(µi) satisfying Assump-
tion 1. Let Θ ≡ {θm : m = 1, 2, ...} be a deterministic non-negative real-valued sequence such that
{(θm/m) : m = 1, 2, ...} is monotone decreasing in m with θ1 < 1 and θm = o(m). Then,

β∆ := min
F1∈G(µ1),F2∈G(µ2)

P

 ∞⋂
m=1

∣∣∣∣∣∣
m∑
j=1

(
Y F1
j − Y F2

j

)∣∣∣∣∣∣ > θm
 > 0. (1)

Proof of Proposition 1. Refer to Appendix C (Note: Assumption 1 plays a key role here.). �

Remark. β∆ is a continuous function of ∆ with lim∆→0 β∆ = 0. In particular, β∆ depends on ∆
and the specific choice of Θ. Proposition 1 implicitly assumes ∆ > 0.

Theorem 3 (Upper bound on the expected regret of ALG(UCB1,Θ, 2)) Consider the input se-
quence Θ ≡ {θm : m = 1, 2, ...} given by

θm :=
√
m2(m+m0)−1 (4 log(m+m0) + γ log log(m+m0)), (2)

where m0 > 0 and γ > 2 are user-defined parameters that ensure Θ satisfies the conditions of
Proposition 1 (for example, m0 = 11 and γ = 2.1 is an acceptable configuration). Suppose that
Assumption 1 is satisfied. Then, the expected cumulative regret of π = ALG (UCB1,Θ, 2) after any
number of plays n is bounded as follows:

ERπn 6 min
(

∆n, 8 (∆β∆)
−1

log n+
(
C1 + α−1C2

)
β−1

∆ ∆
)
, (3)
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where β∆ is as defined in (1) with Θ specified via (2), ∆ = µ1 − µ2 > 0, C1 is an absolute constant
and C2 is a constant that depends only on the free parameters of the algorithm, namely (m0, γ).

Comparison with the two-armed bandit problem. The expected cumulative regret of π = UCB1
[5] after any number of plays n in a two-armed bandit problem with gap ∆ is bounded as follows:

ERπn 6 min
(
∆n, 8∆−1 log n+ C1∆

)
. (4)

Observe that the upper bounds in (3) and (4) differ in (α, β∆, C2). The presence of the inflation
factor β−1

∆ in (3) is on account of the samples “wasted” due to false positives (rejecting the null,
when it is in fact true) in the CAB problem. Specifically, 1 − β∆ is an upper bound on the false
positive rate of ALG(UCB1,Θ, 2) (Proposition 1). Furthermore, β∆ is invariant w.r.t. the playing
rule (UCB1, in this case) as long as it is sufficiently exploratory (This statement is formalized in
Lemma 1,2 stated in Appendix F.). In that sense, β∆ captures the added layer of complexity due to
the countable-armed extension of the finite-armed problem. We believe this is not merely an artifact
of our proof but in fact, reflecting a fundamentally different scaling of the best achievable regret in
the CAB problem vis-à-vis its finite-armed counterpart. It is also noteworthy that β∆ is independent
of α; the implication is that (3) depends on the proportion of optimal arms only through the constant
term, unlike Theorem 2.

Dependence of β∆ on ∆. Obtaining a closed-form expression for β∆ as a function of ∆ (cf. (1)) is
not possible, we therefore resort to numerical evaluations using Monte-Carlo simulations.
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Figure 1: β∆ vs. ∆: Monte-Carlo estimates of β∆ plotted against ∆ using (2) with m0 = 4000 and
γ = 2.1. Rewards associated with each type i ∈ T are modeled as Bernoulli(µi).

An immediate observation from Figure 1 is that β∆ ≈ ∆ when ∆ is sufficiently large (see center and
rightmost plots). This has the implication that the upper bound of Theorem 3 scales approximately as
O
(
∆−2 log n

)
on well-separated instances, which can be contrasted with the classicalO

(
∆−1 log n

)
scaling achievable in finite-armed problems. The extra ∆−1 term is reflective of the additional
complexity of the CAB problem vis-à-vis the finite-armed problem. In addition, for small ∆ (see
leftmost plot), β∆ seems to vanish very fast as ∆ → 0. This suggests that the minimax regret of
ALG(UCB1,Θ, 2) is orders of magnitude larger (in n) thanO

(√
n log n

)
, which is UCB1’s minimax

regret in finite-armed problems. Of course, characterizing the minimax statistical complexity of the
CAB model and the design of algorithms that can achieve the best possible problem-independent
rates, remain open problems at the moment.

Significance of UCB1’s concentration in zero gap. That C2 (appearing in (3)) is a constant is a
highly non-trivial consequence of the concentration property of UCB1 à la part (i) of Theorem 4
stated in § 4. In the absence of this property, C2 would scale with the horizon of play linearly
and ALG(UCB1,Θ, 2) would effectively suffer linear regret. In what follows, we will demonstrate
empirically that Thompson Sampling most likely does not enjoy this concentration property. To
the best of our knowledge, this is the first example illustrating such a drastic performance disparity
between algorithms based on UCB and Thompson Sampling in any stochastic bandit problem.

Proof sketch of Theorem 3. On homogeneous A’s with arms of the optimal type (type 1), any
playing rule incurs zero regret in expectation, whereas the expected regret is linear on homogeneous
A’s of type 2. On heterogeneous A’s, the expected regret of UCB1 is logarithmic in the number of
plays anytime. Since it is statistically impossible to distinguish between homogeneous A’s of type 1
and type 2 in the absence of any distributional knowledge of the associated rewards, the decision
maker must allocate all of her sampling effort (in expectation) to heterogeneous A’s, to avoid high
regret. This would ensure that UCB1 runs “uninterrupted” (in expectation) over the duration of play,
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thereby guaranteeing logarithmic regret. This argument precisely forms the backbone of our proof.
The number of re-initializations of the algorithm needed for a heterogeneous A to get selected is a
geometric random variable and furthermore, every time a homogeneousA gets selected, the algorithm
re-initializes within a finite number of plays in expectation. Therefore, only finitely many plays (in
expectation) are spent on homogeneous A’s until a heterogeneous A gets selected. Subsequently,
the algorithm (in expectation) allocates the residual sampling effort to A which allows UCB1 to run
uninterrupted, thereby guaranteeing logarithmic regret. Full proof is relegated to Appendix D. �

Miscellaneous remarks. (i) Comparison with the state-of-the-art. The regret incurred by suitable
adaptations of known algorithms for infinite-armed bandits, e.g., [22], etc., is provably worse by at
least poly-logarithmic factors compared to the optimal O (log n) rate achievable in the CAB problem.
(ii) Alternatives to UCB1 in ALG(UCB1,Θ, 2). The choice of UCB1 is entirely a consequence
of our desire to keep the analysis simple, and does not preclude use of suitable alternatives satis-
fying a concentration property akin to part (i) of Theorem 4. (iii) Improving sample-efficiency.
ALG(UCB1,Θ, 2) indulges in wasteful exploration since it selects an entirely new consideration
set of arms at the beginning of every epoch. This is done for the simplicity of analysis. Sample-
efficiency can be improved by discarding only one arm at the end of an epoch and selecting only
one new arm at the beginning of the next. Furthermore, sample history of the arm retained from the
previous epoch can also be used in subsequent hypothesis testing iterations for faster identification of
homogeneous consideration sets without forcing unnecessary additional plays. (iv) Limitations. In
this paper, we assume that |T | is perfectly known to the decision maker. However, it remains unclear
if sublinear regret would still be information-theoretically achievable on “well-separated” instances if
said assumption is violated, ceteris paribus.

4 UCB1 and the zero gap problem

UCB1 [5] is a celebrated optimism-based algorithm for finite-armed bandits that adapts to the
sub-optimality gap (separation) between the top two arms, and guarantees a worst-case regret of
O
(√
n log n

)
(ignoring dependence on the number of arms). This occurs when the separation scales

with the horizon of play as O
(√

n−1 log n
)

. Our interest here, however, concerns the scenario
where this separation is exactly zero, as opposed to simply being vanishingly small in the limit
n→∞. Of immediate consequence to our CAB model, we restrict our focus to the special case of a
stochastic two-armed bandit with equal mean rewards. Regret related questions are irrelevant in this
setting since every policy incurs zero regret in expectation. However, asymptotics of UCB1 and the
sampling balance (or imbalance) between the arms in zero gap, remain poorly understood in extant
literature6 to the best of our knowledge. In this paper, we provide the first analysis in this direction.

Theorem 4 (Concentration of UCB1 in zero gap) Consider a stochastic two-armed bandit with
rewards bounded in [0, 1] and arms having equal means. Let Ni(n) denote the number of plays of
arm i under UCB1 [5] up to and including time n. Then, the following results hold for any i ∈ {1, 2}:

(i) Concentration. For any n ∈ N and ε ∈ (0, 1/2),

P
(∣∣∣∣Ni(n)

n
− 1

2

∣∣∣∣ > ε

)
< 8n−(3−4

√
1−4ε2).

(ii) Convergence. Ni(n)/n→ 1/2 in probability as n→∞ (Convergence does not follow from
concentration alone since the bound in (i) is vacuous for ε 6

√
7/8.).

Result for generic UCB. Theorem 4 also extends to the generic UCB policy that uses
√
ρn−1 log n

as the optimistic bias, where ρ > 1/2 is called the exploration coefficient (ρ = 2 corresponds to
UCB1). The concentration bound for said policy (informally called UCB(ρ)) is given by

P
(∣∣∣∣Ni(n)

n
− 1

2

∣∣∣∣ > ε

)
< 22ρ−1n−(2ρ−1−2ρ

√
1−4ε2). (5)

While the tail progressively gets lighter as ρ increases, it is achieved at the expense of an inflated
regret on instances with non-zero gap. Specifically, the authors in [4] showed that the expected

6Extant work assumes a positive gap (cf. [4]); the resulting bounds are vacuous in the zero gap regime.
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regret of UCB(ρ) on well-separated instances scales as O (ρ log n). They also showed that the tail of
UCB(ρ)’s pseudo-regret on well-separated instances is bounded as P (Rn > z) = O

(
z−(2ρ−1)

)
for

large enough z, implying a tail decay of O
(
z−(2ρ−1)

)
for the fraction of inferior plays. On the other

hand, (5) suggests for the fractional plays of any arm, a heavier tail decay ofO
(
z−(2ρ−1−2ρ

√
1−4ε2)

)
in zero gap settings, which accounts for the slow convergence evident in Figure 2 (leftmost plot).

Miscellaneous remark. Theorem 4 (the convergence result in part (ii), in particular) is likely to have
implications for inference problems involving adaptive data collected by UCB-inspired algorithms.

Parsing Theorem 4. To build some intuition, we pivot to the case of statistically identical arms. In
this case, labels are exchangeable and therefore E (Ni(n)/n) = 1/2 for i ∈ {1, 2}, n ∈ N. While
symmetry between the arms is enough to guarantee convergence in expectation, it does not shed
light on the pathwise behavior of UCB1. An immediate corollary of part (i) of Theorem 4 is that
for any ε ∈

(√
3/4, 1/2

)
and i ∈ {1, 2}, it so happens that

∑
n∈N P (|Ni(n)/n− 1/2| > ε) < ∞.

The Borel-Cantelli lemma then implies that the arms are eventually sampled linearly in time, almost
surely, at a rate that is at least

(
1/2−

√
3/4
)
. That this rate cannot be pushed arbitrarily close to 1/2

is not merely an artifact of our proof but also suggested by the extremely slow convergence of the
empirical probability density of N1(n)/n to the Dirac delta at 1/2 in Figure 2 (leftmost plot). This
slow convergence likely led to the incorrect folk conjecture that optimism-based algorithms such as
UCB1 and variants thereof do not converge à la part (ii) of Theorem 4 (e.g., see [14] and references
therein). Instead, we believe the weaker conjecture that the convergence is not w.p. 1, is likely true.
Full proof is given in Appendix E.
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0.0 0.5 1.0
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5 TS with Gaussian priors
Bernoulli(0.5) rewards
Gaussian(0.5,1) rewards
Gaussian(0.5,1.5) rewards

Figure 2: Two-armed bandit with Bernoulli(0.5) rewards: Histogram of the fraction of plays of arm 1
until time n = 10,000, i.e., N1

(
104
)
/104, under three different algorithms. Number of replications

under each algorithm ℵ = 20,000. The algorithms are: UCB1 (leftmost), Thompson Sampling (TS)
with Beta priors (center) and TS with Gaussian priors (rightmost) [3]. The last plot shows histograms
for 3 reward configurations: Bernoulli(0.5) (blue), N (0.5, 1) (dashed), and N (0.5, 1.5) (orange).

Empirical illustration. Figure 2 shows the histogram of the fraction of time a particular arm of a
two-armed bandit having statistically identical arms with Bernoulli(0.5) rewards each was played
under different algorithms. The leftmost plot corresponds to UCB1 and is evidently in consonance
with the concentration property stated in part (i) of Theorem 4. The concentration phenomenon under
UCB1 can be understood through the lens of reward stochasticity. Consider the simplest case where
the rewards are deterministic. Then, we know from the structure of UCB1 that any arm is played at
most twice before the algorithm switches over to the other arm. This results in N1(n)/n converging
to 1/2 pathwise, with an arm switch-over time that is at most 2. As the reward stochasticity increases,
so does the arm switch-over time, which adversely affects this convergence. While it is a priori
unclear whetherN1(n)/n would still converge to 1/2 in some mode if the rewards are stochastic, part
(ii) of Theorem 4 states that the convergence indeed holds, albeit only in probability. A significant
spread around 1/2 in the leftmost plot despite n = 104 plays indicates a rather slow convergence.

A remark on Thompson Sampling. Concentration and convergence à la Theorem 4 should be
contrasted with other popular gap-agnostic algorithms such as Thompson Sampling (TS). Empirical
evidence suggests that the behavior of TS is drastically different from UCB1’s in zero gap problems
(see Figure 2). Furthermore, there seems to be a fundamental difference even between different TS
instantiations. While a conjectural Uniform(0, 1) limit may be rationalized by Proposition 1 in [23],
understanding the trichotomy in the rightmost plot and its implications remains an open problem.
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