
Autoregressive Score Matching

Chenlin Meng
Stanford University

chenlin@stanford.edu

Lantao Yu
Stanford University

lantaoyu@cs.stanford.edu

Yang Song
Stanford University

yangsong@cs.stanford.edu

Jiaming Song
Stanford University

tsong@cs.stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Abstract

Autoregressive models use chain rule to define a joint probability distribution as
a product of conditionals. These conditionals need to be normalized, imposing
constraints on the functional families that can be used. To increase flexibility, we
propose autoregressive conditional score models (AR-CSM) where we parameterize
the joint distribution in terms of the derivatives of univariate log-conditionals
(scores), which need not be normalized. To train AR-CSM, we introduce a new
divergence between distributions named Composite Score Matching (CSM). For
AR-CSM models, this divergence between data and model distributions can be
computed and optimized efficiently, requiring no expensive sampling or adversarial
training. Compared to previous score matching algorithms, our method is more
scalable to high dimensional data and more stable to optimize. We show with
extensive experimental results that it can be applied to density estimation on
synthetic data, image generation, image denoising, and training latent variable
models with implicit encoders.

1 Introduction

Autoregressive models play a crucial role in modeling high-dimensional probability distributions.
They have been successfully used to generate realistic images [18, 21], high-quality speech [17], and
complex decisions in games [29]. An autoregressive model defines a probability density as a product
of conditionals using the chain rule. Although this factorization is fully general, autoregressive
models typically rely on simple probability density functions for the conditionals (e.g. a Gaussian or
a mixture of logistics) [21] in the continuous case, which limits the expressiveness of the model.

To improve flexibility, energy-based models (EBM) represent a density in terms of an energy function,
which does not need to be normalized. This enables more flexible neural network architectures, but
requires new training strategies, since maximum likelihood estimation (MLE) is intractable due to
the normalization constant (partition function). Score matching (SM) [9] trains EBMs by minimizing
the Fisher divergence (instead of KL divergence as in MLE) between model and data distributions. It
compares distributions in terms of their log-likelihood gradients (scores) and completely circumvents
the intractable partition function. However, score matching requires computing the trace of the
Hessian matrix of the model’s log-density, which is expensive for high-dimensional data [14].

To avoid calculating the partition function without losing scalability in high dimensional settings,
we leverage the chain rule to decompose a high dimensional distribution matching problem into
simpler univariate sub-problems. Specifically, we propose a new divergence between distributions,
named Composite Score Matching (CSM), which depends only on the derivatives of univariate log-
conditionals (scores) of the model, instead of the full gradient as in score matching. CSM training is
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particularly ef�cient when the model is represented directly in terms of these univariate conditional
scores. This is similar to a traditional autoregressive model, but with the advantage that conditional
scores, unlike conditional distributions, do not need to be normalized. Similar to EBMs, removing
the normalization constraint increases the �exibility of model families that can be used.

Leveraging existing and well-established autoregressive models, we design architectures where we
can evaluate all dimensions in parallel for ef�cient training. During training, our CSM divergence can
be optimized directly without the need of approximations [15, 25], surrogate losses [11], adversarial
training [5] or extra sampling [3]. We show with extensive experimental results that our method
can be used for density estimation, data generation, image denoising and anomaly detection. We
also illustrate that CSM can provide accurate score estimation required for variational inference with
implicit distributions [8, 25] by providing better likelihoods and FID [7] scores compared to other
training methods on image datasets.

2 Background

Given i.i.d. samplesf x (1) ; :::; x (N ) g � RD from some unknown data distributionp(x), we want to
learn an unnormalized density~q� (x) as a parametric approximation top(x). The unnormalized~q� (x)
uniquely de�nes the following normalized probability density:

q� (x) =
~q� (x)
Z (� )

; Z (� ) =
Z

~q� (x)dx; (1)

whereZ (� ), the partition function, is generally intractable.

2.1 Autoregressive Energy Machine

To learn an unnormalized probabilistic model, [15] proposes to approximate the normalizing constant
using one dimensional importance sampling. Speci�cally, letx = ( x1; :::; xD ) 2 RD . They �rst
learn a set of one dimensional conditional energiesE � (xd jx<d ) , � log ~q� (xd jx<d ), and then
approximate the normalizing constants using importance sampling, which introduces an additional
network to parameterize the proposal distribution. Once the partition function is approximated, they
normalize the density to enable maximum likelihood training. However, approximating the partition
function not only introduces bias into optimization but also requires extra computation and memory
usage, lowering the training ef�ciency.

2.2 Score Matching

To avoid computingZ (� ), we can take the logarithm on both sides of Eq. (1) and obtainlogq� (x) =
log ~q� (x) � logZ (� ). SinceZ (� ) does not depend onx, we can ignore the intractable partition
functionZ (� ) when optimizingr x logq� (x). In general,r x logq� (x) andr x logp(x) are called
thescoreof q� (x) andp(x) respectively. Score matching (SM) [9] learnsq� (x) by matching the
scores betweenq� (x) andp(x) using the Fisher divergence:

L (q� ; p) ,
1
2

Ep[kr x logp(x) � r x logq� (x)k2
2]: (2)

Ref. [9] shows that under certain regularity conditionsL(� ; p) = J (� ; p) + C, whereC is a constant
that does not depend on� andJ (� ; p) is de�ned as below:

J (� ; p) , Ep

�
1
2

kr x logq� (x)k2
2 + tr(r 2

x logq� (x))
�
;

wheretr(�) denotes the trace of a matrix. The above objective does not involve the intractable term
r x logp(x). However, computingtr(r 2

x logq� (x)) is in general expensive for high dimensional
data. Givenx 2 RD , a naive approach requiresD times more backward passes than computing
the gradientr x logq� (x) [25] in order to computetr(r 2

x logq� (x)) , which is inef�cient whenD
is large. In fact, ref. [14] shows that within a constant number of forward and backward passes, it
is unlikely for an algorithm to be able to compute the diagonal of a Hessian matrix de�ned by any
arbitrary computation graph.
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3 Composite Score Matching

To make SM more scalable, we introduceComposite Score Matching(CSM), a new divergence
suitable for learning unnormalized statistical models. We can factorize any given data distribution
p(x) and model distributionq� (x) using the chain rule according to a common variable ordering:

p(x) =
DY

d=1

p(xd jx<d ); q� (x) =
DY

d=1

q� (xd jx<d )

wherexd 2 R stands for thed-th component ofx, andx<d refers to all the entries with indices
smaller thand in x. Our key insight is that instead of directly matching the joint distributions, we can
match the conditionals of the modelq� (xd jx<d ) to the conditionals of the datap(xd jx<d ) using the
Fisher divergence. This decomposition results in simpler problems, which can be optimized ef�ciently
usingone-dimensionalscore matching. For convenience, we denote the conditional scores ofq� and
p ass�;d (x<d ; xd) , @

@xd
logq� (xd jx<d ) : Rd� 1 � R ! R andsd(x<d ; xd) , @

@xd
logp(xd jx<d ) :

Rd� 1 � R ! R respectively. This gives us a new divergence termedComposite Score Matching
(CSM):

L CSM (q� ; p) =
1
2

DX

d=1

Ep(x <d ) Ep(x d j x <d )

�
(sd(x<d ; xd) � s�;d (x<d ; xd))2

�
: (3)

This divergence is inspired by composite scoring rules [1], a general technique to decompose
distribution-matching problems into lower-dimensional ones. As such, it bears some similarity with
pseudo-likelihood, a composite scoring rule based on KL-divergence. As shown in the following
theorem, it can be used as a learning objective to compare probability distributions:
Theorem 1(CSM Divergence). L CSM (q� ; p) vanishes if and only ifq� (x) = p(x) a.e.

Proof Sketch.If the distributions match, their derivatives (conditional scores) must be the same,
henceL CSM is zero. IfL CSM is zero, the conditional scores must be the same, and that uniquely
determines the joints. See Appendix for a formal proof.

Eq. (3) involvessd(x), the unknown score function of the data distribution. Similar to score matching,
we can apply integration by parts to obtain an equivalent but tractable expression:

JCSM (� ; p) =
DX

d=1

Ep(x <d ) Ep(x d j x <d )

�
1
2

s�;d (x<d ; xd)2 +
@

@xd
s�;d (x<d ; xd)

�
; (4)

The equivalence can be summarized using the following results:
Theorem 2(Informal). Under some regularity conditions,L CSM (� ; p) = JCSM (� ; p) + C where
C is a constant that does not depend on� .

Proof Sketch.Integrate by parts the one-dimensional SM objectives. See Appendix for a proof.

Corollary 1. Under some regularity conditions,JCSM (�; p ) is minimized whenq� (x) = p(x) a.e.

In practice, the expectation inJCSM (� ; p) can be approximated by a sample average using the
following unbiased estimator

ĴCSM (� ; p) ,
1
N

NX

i =1

DX

d=1

�
1
2

s�;d (x ( i )
<d ; x ( i )

d )2 +
@

@x( i )
d

s�;d (x ( i )
<d ; x ( i )

d )
�
; (5)

wheref x (1) ; :::; x (N ) g are i.i.d samples fromp(x). It is clear from Eq. (5) that evaluatinĝJCSM (� ; p)
is ef�cient as long as it is ef�cient to evaluates�;d (x<d ; xd) , @

@xd
logq� (xd jx<d ) and its derivative

@
@xd

s�;d (x<d ; xd). This in turn depends on how the modelq� is represented. For example, ifq� is
an energy-based model de�ned in terms of an energy~q� as in Eq. (1), computingq� (xd jx<d ) (and
hence its derivative,s�;d (x<d ; xd)) is generally intractable. On the other hand, ifq� is a traditional
autoregressive model represented as a product of normalized conditionals, thenĴCSM (� ; p) will be
ef�cient to optimize, but the normalization constraint may limit expressivity. In the following, we
propose a parameterization tailored for CSM training, where we represent a joint distribution directly
in terms ofs�;d (x<d ; xd); d = 1 ; � � � D without normalization constraints.
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4 Autoregressive conditional score models

We introduce a new class of probabilistic models, namedautoregressive conditional score models
(AR-CSM), de�ned as follows:

De�nition 1. An autoregressive conditional score model overRD is a collection ofD functions
ŝd(x<d ; xd) : Rd� 1 � R ! R, such that for alld = 1 ; � � � ; D :

1. For all x<d 2 Rd� 1, there exists a functionEd(x<d ; xd) : Rd� 1 � R ! R such that
@

@xd
Ed(x<d ; xd) exists, and @

@xd
Ed(x<d ; xd) = ŝd(x<d ; xd).

2. For all x<d 2 Rd� 1, Zd(x<d ) ,
R

eEd (x <d ;x d ) dxd exists and is �nite (i.e., the improper
integral w.r.t.xd is convergent).

Autoregressive conditional score models are an expressive family of probabilistic models for continu-
ous data. In fact, there is a one-to-one mapping between the set of autoregressive conditional score
models and a large set of probability densities overRD :

Theorem 3. There is a one-to-one mapping between the set of autoregressive conditional score
models overRD and the set of probability density functionsq(x) fully supported overRD such that

@
@xd

logq(xd jx<d ) exists for alld and x<d 2 Rd� 1. The mapping pairs conditional scores and
densities such that

ŝd(x<d ; xd) =
@

@xd
logq(xd jx<d )

The key advantage of this representation is that the functions in De�nition 1 are easy to parameterize
(e.g., using neural networks) as the requirements 1 and 2 are typically easy to enforce. In contrast
with typical autoregressive models, we do not require the functions in De�nition 1 to be normalized.
Importantly, Theorem 3 does not hold for previous approaches that learn a single score function for
the joint distribution [25, 24], since the score models� : RD ! RD in their case is not necessarily
the gradient of any underlying joint density. In contrast, AR-CSMalwaysde�ne a valid density
through the mapping given by Theorem 3.

In the following, we discuss how to use deep neural networks to parameterize autoregressive condi-
tional score models (AR-CSM) de�ned in De�nition 1. To simplify notations, we hereafter usex to
denote the arguments fors�;d andsd even when these functions depend on a subset of its dimensions.

4.1 Neural AR-CSM models

We propose to parameterize an AR-CSM based on existing autoregressive architectures for traditional
(normalized) density models (e.g., PixelCNN++ [21], MADE [4]). One important difference is that
the output of standard autoregressive models at dimensiond depend only onx<d , yet we want the
conditional scores�;d to also depend onxd.

To �ll this gap, we use standard autoregressive models to parameterize a "context vector"cd 2 Rc

(c is �xed among all dimensions) that depends only onx<d , and then incorporate the dependency
on xd by concatenatingcd andxd to get ac + 1 dimensional vectorhd = [ cd; xd]. Next, we
feedhd into another neural network which outputs the scalars�;d 2 R to model the conditional
score. The network's parameters are shared across all dimensions similar to [15]. Finally, we can
compute @

@xd
s�;d (x) using automatic differentiation, and optimize the model directly with the CSM

divergence.

Standard autoregressive models, such as PixelCNN++ and MADE, model the density with a prescribed
probability density function (e.g., a Gaussian density) parameterized by functions ofhd. In contrast,
we remove the normalizing constraints of these density functions and therefore able to capture
stronger correlations among dimensions with more expressive architectures.

4.2 Inference and learning

To sample from an AR-CSM model, we use one dimensional Langevin dynamics to sample from
each dimension in turn. Crucially, Langevin dynamics only need the score function to sample from
a density [19, 6]. In our case, scores are simply the univariate derivatives given by the AR-CSM.
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Speci�cally, we uses�; 1(x1) to obtain a samplex1 � q� (x1), then uses�; 2(x1; x2) to sample from
x2 � q� (x2 j x1) and so forth. Compared to Langevin dynamics performed directly on a high
dimensional space, one dimensional Langevin dynamics can converge faster under certain regularity
conditions [20]. See Appendix C.3 for more details.

During training, we use the CSM divergence (see Eq. (5)) to train the model. To deal with data
distributions supported on low-dimensional manifolds and the dif�culty of score estimation in low
data density regions, we use noise annealing similar to [24] with slight modi�cations: Instead of
performing noise annealing as a whole, we perform noise annealing on each dimension individually.
More details can be found in Appendix C.

5 Density estimation with AR-CSM

In this section, we �rst compare the optimization performance of CSM with two other variants of
score matching: Denoising Score Matching (DSM) [28] and Sliced Score Matching (SSM) [25], and
compare the training ef�ciency of CSM with Score Matching (SM) [9]. Our results show that CSM
is more stable to optimize and more scalable to high dimensional data compared to the previous score
matching methods. We then perform density estimation on 2-d synthetic datasets (see Appendix B)
and three commonly used image datasets: MNIST, CIFAR-10 [12] and CelebA [13]. We further
show that our method can also be applied to image denoising and anomaly detection, illustrating
broad applicability of our method.

5.1 Comparison with other score matching methods

Setup To illustrate the scalability of CSM, we consider a simple setup of learning Gaussian
distributions. We train an AR-CSM model with CSM and the other score matching methods on a
fully connected network with 3 hidden layers. We use comparable number of parameters for all the
methods to ensure fair comparison.

(a) Training time per iteration. (b) Variance comparison.

Figure 1: Comparison with SSM and SM in terms of loss variance and computational ef�ciency.

CSM vs. SM In Figure 1a, we show the time per iteration of CSM versus the original score
matching (SM) method [9] on multivariate Gaussians with different data dimensionality. We �nd
that the training speed of SM degrades linearly as a function of the data dimensionality. Moreover,
the memory required grows rapidlyw.r.t the data dimension, which triggers memory error on 12 GB
TITAN Xp GPU when the data dimension is approximately200. On the other hand, for CSM, the
time required stays stable as the data dimension increases due to parallelism, and no memory errors
occurred throughout the experiments. As expected, traditional score matching (SM) does not scale as
well as CSM for high dimensional data. Similar results on SM were also reported in [25].

CSM vs. SSM We compare CSM with Sliced Score Matching (SSM) [25], a recently proposed
score matching variant, on learning a representative GaussianN (0; 0:12I ) of dimension100 in
Figure 2 (2 rightmost panels). While CSM converges rapidly, SSM does not converge even after
20k iterations due to the large variance of random projections. We compare the variance of the two
objectives in Figure 1b. In such a high-dimensional setting, SSM would require a large number of
projection vectors for variance reduction, which requires extra computation and could be prohibitively
expensive in practice. By contrast, CSM is a deterministic objective function that is more stable to
optimize. This again suggests that CSM might be more suitable to be used in high-dimensional data
settings compared to SSM.
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DSM (� = 0 :01) DSM (� = 0 :05) DSM (� = 0 :1) SSM (� = 0 ) CSM (� = 0 )

Figure 2: Training losses for DSM, SSM and CSM on100-d Gaussian distributionN (0; 0:12I ). Note
the vertical axes are different across methods as they optimize different losses.

(a) MNIST negative log-
likelihoods

(b) 2-d synthetic dataset samples from MADE MLE baselines withn mixture of
logistics and an AR-CSM model trained by CSM.

Figure 3: Negative log-likelihoods on MNIST and samples on a 2-d synthetic dataset.

CSM vs. DSM Denoising score matching (DSM) [28] is perhaps the most scalable score matching
alternative available, and has been applied to high dimensional score matching problems [24]. How-
ever, DSM estimates the score of the data distribution after it has been convolved with Gaussian noise
with variance� 2I . In Figure 2, we use various noise levels� for DSM, and compare the performance
of CSM with that of DSM. We observe that although DSM shows reasonable performance when� is
suf�ciently large, the training can fail to converge for small� . In other words, for DSM, there exists
a tradeoff between optimization performance and the bias introduced due to noise perturbation for
the data. CSM on the other hand does not suffer from this problem, and converges faster than DSM.

Likelihood comparison To better compare density estimation performance of DSM, SSM and
CSM, we train a MADE [4] model with tractable likelihoods on MNIST, a more challenging data
distribution, using the three variants of score matching objectives. We report the negative log-
likelihoods in Figure 3a. The loss curves in Figure 3a align well with our previous discussion. For
DSM, a smaller� introduces less bias, but also makes training slower to converge. For SSM, training
convergence can be handicapped by the large variance due to random projections. In contrast, CSM
can converge quickly without these dif�culties. This clearly demonstrates the ef�cacy of CSM over
the other score matching methods for density estimation.

5.2 Learning 2-d synthetic data distributions with AR-CSM

In this section, we focus on a 2-d synthetic data distribution (see Figure 3b). We compare the
sample quality of an autoregressive model trained by maximum likelihood estimation (MLE) and an
AR-CSM model trained by CSM. We use a MADE model withn mixture of logistic components for
the MLE baseline experiments. We also use a MADE model as the autoregressive architecture for the
AR-CSM model. To show the effectiveness of our approach, we use strictly fewer parameters for the
AR-CSM model than the baseline MLE model. Even with fewer parameters, the AR-CSM model
trained with CSM is still able to generate better samples than the MLE baseline (see Figure 3b).

5.3 Learning high dimensional distributions over images with AR-CSM

In this section, we show that our method is also capable of modeling natural images. We focus on
three image datasets, namely MNIST, CIFAR-10, and CelebA.

Setup We select two existing autoregressive models — MADE [4] and PixelCNN++ [21], as the
autoregressive architectures for AR-CSM. For all the experiments, we use a shallow fully connected
network to transform the context vectors to the conditional scores for AR-CSM. Additional details
can be found in Appendix C.
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