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Abstract

Higher-order brain areas such as the frontal cortices are considered essential for
the flexible solution of tasks. However, the precise computational role of these
areas is still debated. Indeed, even for the simplest of tasks, we cannot really
explain how the measured brain activity, which evolves over time in complicated
ways, relates to the task structure. Here, we follow a normative approach, based
on integrating the principle of efficient coding with the framework of Markov
decision processes (MDP). More specifically, we focus on MDPs whose state is
based on action-observation histories, and we show how to compress the state space
such that unnecessary redundancy is eliminated, while task-relevant information is
preserved. We show that the efficiency of a state space representation depends on
the (long-term) behavioural goal of the agent, and we distinguish between model-
based and habitual agents. We apply our approach to simple tasks that require
short-term memory, and we show that the efficient state space representations
reproduce the key dynamical features of recorded neural activity in frontal areas
(such as ramping, sequentiality, persistence). If we additionally assume that neural
systems are subject to cost-accuracy tradeoffs, we find a surprising match to neural
data on a population level.

1 Introduction

Arguably one of the most striking differences between biological and artificial agents is the ease
with which the former navigate and control complex environments [[1]. Core functions enabling
such behaviours, including working memory and planning, are typically attributed to higher-order
brain areas such as the prefrontal cortex (PFC) [2| 3], and exactly these functions are thought to
be lacking in today’s machine learning systems [4]. Yet, it remains unclear how higher-order brain
areas generate these complex behaviours, or even the simple behaviours that are often studied
experimentally in rodents and primates. Specifically, both behavioural strategies and neural activities
depend in complex ways on the task at hand, and these dependencies have so far evaded a satisfactory
or intuitive explanation [5]. For example, in tasks that require animals to remember some information,
neurons are sometimes persistently active [0 [7} (8l 9], while at other times they are sequentially active
[[LOL [11]]. Indeed, subtle changes in the timing of a task can lead to a sudden shift from one to the
other [9], but the causes behind these activity shifts have remained unclear.
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Figure 1: A: The agent-environment loop. The environment, e, emits observations, o, which
include rewards. Based on its internal (belief) state, s, the agent chooses actions, a, that affect the
environment. B: The most information the agent can have about the environment is to remember all
past observations and actions, i.e., the history, h. C: Dependency graph for the OMDP.

Currently, these activity patterns are mostly studied from a mechanistic, network perspective. For
instance, sequential activity has sometimes been identified with feedforward dynamics, and persistent
activity with recurrent or attractor dynamics [12}[13]]. More generally, task-related neural activity
has been modeled by training recurrent neural networks (RNNs) to perform the same task as an
animal [14}19, [15} [16} (17} [18]]. Surprisingly, RNNs can mimic recorded neurons quite well, if the task
is phrased the right way, and if learning is properly regularized to avoid overfitting [[19]. However,
RNNss are generally difficult to interpret and analyse, although some progress has been made in this
direction [20]. More importantly, training a RNN does not clarify why a particular solution is a good
solution, or, indeed, if it is a good solution at all.

Here we take a step back and first define what determines a good solution. Our goal is to develop
a normative approach to explain higher-order brain activities. Our starting point is the efficient
coding hypothesis, which states that neural circuits should eliminate all redundant or irrelevant
information [21} 22} 23]]. We then merge the concept of an efficient representation with the formalism
of reinforcement learning (RL) and Markov Decision Processes (MDPs). As most realistic tasks are
only partially observable, we first endow the underlying MDPs with a notion of observations. Instead
of assuming hidden causes for these observations, as in the popular partially-observable MDPs [24]],
we simply assume that agents can accumulate large observation and action histories. As a result,
states in our MDPs are not hidden, but the state space is huge and includes (short-term) memories.
We then use the size of the state space as a proxy for efficiency, and we show how to eliminate
redundancy and compress the state space, while preserving the behavioural goal of the agent. Some
of the mathematical theory underlying the compression of dynamical systems has been developed
before in other context [25)26], but its application to behavioral tasks and neural data is new.

We obtain two key results. First, we illustrate that model-based agents, which may seek to adjust
their policy flexibly depending on context, require a different compression strategy from habitual
agents, which are already set on a given policy. Second, we generate efficient representations for two
standard behavioral paradigms [8} 9], and we show that the transition from sequential to persistent
activity depends on the temporal basis needed to represent the task, as well as the behavioral goal
(model-based versus habitual) of the agent.

2 From task structure to representation

A task is defined by a set of observations, a set of required actions, and their respective timing. Each
trial of a task is a specific sequence (or trajectory) through the observation-action space. Any task
representation is a function of these sequences, and the specific function may be defined by a RNN,
or by a normative principle as in this study, that may then be compared with the trials’ corresponding
neural trajectories. Throughout this study, we follow the reinforcement learning (RL) framework and
assume that the agent’s control problem is to maximize future rewards.

2.1 Control under partial observability: Observation Markov decision processes

RL theory was extensively developed on the basis of Markov decision processes (MDP, [27]). In
MDPs agents move through states, s € S, and perform actions, a € A. Given such a state and
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Figure 2: A: Dependency graphs for a history-OMDP (left) and a model-compressed OMDP (right).
Conditioned variables are shaded. B: Same as A, but for policy compression.

action, the probability of reaching the next state, s’ € S, and collecting the reward, v’ € R, is
specified by the environmental dynamics, P(s’,’|s,a). An MDP is therefore defined by the tuple
(S, A, R, P(s',1r'|s,a)). Usually, a discount factor ~ is included, but since we are dealing with
episodic problems only, we set v = 1 for the remainder of this article. The MDP state is fully
observable, meaning that the observations made by the agent at each time point fully specify the state.

More realistic tasks are partially observable, so that the agent cannot access all task-relevant infor-
mation through its current sensory inputs, see Fig.[TJA. A popular extension for such RL problems
are the partially observable MDPs (POMDPs, [24]), which distinguish between the underlying envi-
ronmental states, e € F, and the agent’s observations thereof, o € O. Here, agents move through
environmental states with probabilities P(e’|e, a). In turn, they make observations o’ € O (which
include rewards) with probability P(o’|e’,a). A POMDP is therefore fully specified by the tuple
(E,A,0,P(ele,a), P(d'|¢, a)).

At each time point ¢, the environmental state e; is hidden to the agent. Consequently, the agent
needs to infer this state using its action-observation history h; = (0¢, at—1,0¢—1,...,01,ag), Se€
Fig. [IB. This inference process can be summarized in the agent’s belief state, s, € S, where
S={ze R|>EO|| >, x; = 1} is an | E|-dimensional simplex. The elements of this belief state are

given by s;(e) = P(e|h:). Upon taking an action a; and making an observation o1, the agent can
update its belief state through Bayesian inference:

Ploryile’sar) 3oeep P(€']e; ar)si(e)
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Here the denominator, P(0y11|hs,a:) = >, P(oi1l€’,ar) D, P(€'|e, a)s¢(e), is the observation-
generating distribution given a belief state. Formally, the state update function can be summarized by
the distribution P(s'|s, a, 0’) that equals one if Eq. (1)) returns s’ given s, a, o', and zero otherwise.
On the level of beliefs, we therefore recover a MDP, called the belief MDP, defined by the tuple
(S, A, R, P(s',1']s,a)) with P(s",7'|s,a) = 3_, co\g P(s'[s,a,0")P(0[s,a) and O \ R denoting
the set of observations excluding rewards [24].

)
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Belief MDPs are generally hard to work with, since the belief states live on a (generally high-
dimensional) simplex. Since the belief states are simply functions of the action-observation history,
h¢, however, we could also simply use the histories themselves as states, s; = h;. To generalize this
idea, we therefore define an alternative MDP directly on the level of P(s’|s, a,0’) and P(0'|s, a) and
call it observation MDP (OMDP, Fig. [1]C, given by the tuple (S, 4, O, P(s'|s, a,0’), P(d'|s, a))).
Importantly, S may simply be chosen a discrete set.

If we choose histories as states, then the transition function P(h/|h, a, 0’) becomes simply the append
function, i.e., B’ = (h,0,a) (Fig. [IB,C), and only the observation function P(0’|h,a) has to be
specified. We will call this specific OMDP a history-OMDP for the remainder. Obviously, the
history-OMDP will not be the most compact choice in general, since the set of histories grows
exponentially with time, but it contains all task-relevant information, and therefore allows us to ask
the question of how to compress the history space to get rid of the task-irrelevant bits.

2.2 State space compression

Our central goal is to find the most compact state space, Z, for a given task. For simplicity, we
assume that the task’s history-OMDP with state space H is already given. As states are given by



action-observation histories, h € H, we first attempt to directly find the compression function P(z|h)
that maps histories to compressed states, z € Z, such that | Z| < |H|. We also define a decompression
function, P(h|z), by inverting P(z|h) using an uninformative prior on h.

The compression map will depend on the specification of the type of information in H that needs to be
preserved in Z. In the following, we will distinguish two types of compression, model compression,
which finds an efficient representation for model-based agents, which have not converged on a fixed
policy, and policy compression, which finds an efficient representation for habitual agents, which
have already inferred the optimal policy.

2.2.1 State space compression for model-based agents

The model-based agent needs a compression that preserves all information in H about future ob-
servations [28]]. In principle, the information will include observations (and their history) that may
be irrelevant for a given task, but could become relevant in the future. (Once an agent has attained
certainty about what is relevant or irrelevant for a given task, it should choose the more powerful
compression for habitual agents, see next section). The history-OMDP’s information about future
observations is contained in both the observation function, P(0’|h, a), and the transition function,
P(h/|h,a,0"), and the compressed agent, with functions P(0’|z,a) and P(2’|z, a, o), needs to pre-
serve information about both (Fig.[2JA). Similar compressions of world-models have been studied
before, see e.g. [25) 29], and we here build on these results.

Let us first consider preserving observation information when we compress the state space repre-
sentation with a map P(z|h). To do so, we simply require that, given any action a € A, the mutual
information between observations, O’, and either the full or compressed state space representation,
H or Z, remains the same, so that I(O’; H|A) = I(O’; Z|A). Accordingly, whether we compute
the next observation probability through P(o’|h, a), or whether we first compress into z, and then
compute the observation probability from there, using P(0’|z,a) = >, P(0'|h,a)P(h|z), should
be the same.

Next we need to ensure that the compression also preserves our knowledge about state transitions.
Assume we start in h, predict o’ as described above, transition to 4/, and then compress A’ into z’.
Ideally, we would obtain the same result if we start in z, decompress into h, transition to h’, and
then compress back into z’. In terms of information, we thus obtain the condition I(Z’, O'; H|A) =
I(Z',0'; Z| A). Given this constraint, we find the maximally compressive map P(z|h) by minimizing
the information I(Z; H) between Z and H using the information bottleneck method [30, 31]:

Prfli‘r}l) I(Z;H) subjectto I(Z',O';H|A)=1(Z' 0";Z|A) (2)
zh

2.2.2 State space compression for habitual agents

For the habitual agent, we assume that an optimal policy, P(a|h), has been obtained, and we aim
to find the most compact representation of this policy. The agent thus no longer needs to predict
observations, but actions. A compressed representation for a habitual agent therefore requires the
transition function P(z’|z, a,0’) and the policy P(a|z). Following the logic of the model-based
agent above, we therefore need to preserve transition and action information (Fig.[2B), yielding the
condition I(Z', A; H|O") = I(Z', A; Z|O').

In practice, this condition requires the mutual information conditioned on observations, yet many state-
observation combinations are never provided by the environment or the experimenter. An alternative
and equivalent approach, which we follow here, is to preserve one-step information about actions
and transitions by preserving future action sequences given future observation sequences. A trial &
of length T is defined by the observation sequence {0}, = (o}, 05, ..., 0%) and the corresponding
optimal action sequence {a}y = (af,a¥, ..., ak). Given the history-OMDP and the policy P(a|h)
we can compute the likelihood of an action sequence given an observation sequence:

T-1
Pr({a}i{o}r) =Y P(ho)P(aglho) [T Plhitalhi,af, of 1) P(afy hivr) 3)
{(n} i=0

We now try to find the smallest state space representation, Z, with transition probabilities P(2’|z, a, o)
and policy P(a|z), such that the action sequence likelihoods are preserved:

Py({a}rl{o}r) = Pz({a}x|{o}r) VE 4)



Here Pz ({a}r|{o}) is the action sequence likelihood given the compressed representation, com-
puted analogously to Py ({a}x|{o}x) in Eq.|3| Importantly, k only runs over observed trials, thereby
ignoring observation sequences that never occur. We use a non-parametric setting and optimize the
model parameters using expectation maximization. As many state-observation combinations and
thus entries of P(z’|z, a, o) are encountered in none of the trials and to prevent overfitting, we put
a Dirichlet prior on transitions preferring self-recurrence (see e.g. [32]). Furthermore, we find the
smallest state space Z by brute-force. Specifically, we initialize the model with different | Z|, optimize
the model parameters, and then take the smallest model that fulfils the likelihood condition@

2.3 Towards a more biologically realistic setting: Linear Gaussian OMDP parametrization

So far we have discussed the discrete or non-parametric treatment of tasks using discrete OMDPs. As
we will show below, the non-parametric case can already give us several conceptual insights on task
representations. However, to become more realistic and deal with real-valued neural activities, contin-
uous observation spaces, and the noisiness of the brain, we need to look at possible parametrizations.
Here we discuss a linear parameterization that allows us to intuitively interpret the model and make
several connections to neural properties and network dynamical regimes. Furthermore, by introducing
representation noise we can describe trade-offs between accuracy and complexity of representations,
given a limited capacity. This automatically compresses the state space for efficiency reasons, as we
will show below.

We only consider the habitual agent here, for brevity, but a model-based agent with a full OMDP model
can be modelled analogously. In the non-parametric case the model parameters were parameters of
categorical distributions. Assuming an N, -dimensional state vector z € R"=, we here parametrize
the model with normal distributions:

P(#|z,a,0') = N(Az + Bya + Boo',021)
P(a|z) = N(Cz,a21).

Here, A € RN=*N= is the transition matrix, B, € RV=*Na and B, € RN=-*No are the input weights
of past actions and observations, respectively, C € R™¥a*N= are the weights of the readout (here the
policy), and o; and o, are scalar standard deviations of the isotropic transition and readout noise,
respectively. Our system therefore corresponds to a linear dynamical system (LDS) for the state z.
We will set the readout noise to zero for the remainder as we are only interested in how transition
noise accumulates over time, modelling memory decay over time. Since there is a degeneracy in
the scaling of the parameters A, B,, B,, C, and the transition noise, o; (see e.g. [33]) which allows
the system to get rid of noise trivially, we constrain the state values from above and below so that
0< u(2(4) < zmax foralli=1...N,.

®)

Given this limited capacity, both task-relevant and task-irrelevant information have to compete
for resources. Accordingly, policy-irrelevant information will be ignored in favor of an accurate
representation of relevant information, thus leading to compressed representations. We discuss this
intuition in more detail in the Supplementary Material, and we exemplify in the simulations, below.
Finally, we optimize the LDS by maximizing the likelihood of the target policy with respect to
parameters A, B,, B,, C, analogous to the non-parametric policy compression case before.

3 Compressed state space representations and neural activities

3.1 Non-parametric policy compression for a delayed licking task

We will first apply our non-parametric policy compression on a delayed directional licking task
in mice [34.,19]. In this task, mice have to decide whether a tone is of low or high frequency, and
then report their decision, after a delay, by licking one of two water delivery ports. We model two
versions of this task, one with a fixed delay period (fixed delay task, FDT, Fig. BJA-E) and one with
a randomized delay period (random delay task, RDT, Fig. BF-H). Neurons recorded in the ALM
(anterior lateral motor cortex) show a striking distinction between the tasks: while activity changes
during the delay period in the FDT, it remains at a steady level in the RDT [9]].

A key difference between the two tasks is that the timing of the go cue is unpredictable in the RDT,
but predictable in the FDT. A predictable go cue allows the animal to prepare its action, which we
will model by introducing a sequence of preparatory actions (e.g. open mouth, stick tongue out, or



Water ports D
Go cue

Sensory cue -. 9. . -@- . 1
Time & s .<::
-. &1 . . - 1
o« b
PP . .
3 2
F .-3-.-2-.;1 W —W
o« LS

Time Time

w

—0

~— (W

(W]

(N1

erd[l 1]

erdTTT]

vl [l TTTH
awiy A103sIH

State prob.

State prob.

Figure 3: A-E: Fixed delay task (FDT). F-H: Randomized delay task (RDT). A: Task structure. Each
trial starts with a tone (red or blue) that indicates the reward location. Rewards are available after a
go cue (grey) that arrives either after a fixed (FDT) or randomized (RDT) delay. B: Example trial (red
tone) and sequence of corresponding history states (columns, only sensory and go cues are shown).
Underneath each history state, the corresponding optimal action is indicated (blank means action
wait, p.l stand for preparatory left, and so on). C: History task graph with optimal policy. Nodes are
history states (post-go cue states have a grey rim), edges are actions. Dashed red edges correspond to
(preparatory) left actions, and dashed blue edges to (preparatory) right actions. D: Task graph for
FDT after compression of the optimal policy. E: State probabilities for the two trial types. F: Same as
in C, but for the RDT. G: Task graph for RDT after compression. H: as in E, for a given delay length.

internal preparations) before the actual left or right licking action (Fig. [3B). Furthermore, we assume
that the agent takes decisions as fast as possible, in order to maximize its reward consumption. In
turn, the resulting optimal policy for the FDT initiates the action sequence before the go cue (Fig.[3C)
while in the RDT the sequence is initiated after the go cue (Fig. [3JF). These differences are reflected
in the resulting compressed state space representations shown in Fig. 3D and G, respectively.

In the FDT, the task representation keeps precise track of time during the delay period (Fig. 3D).
Each time point effectively becomes its own state, and the model sequences through them. If we
identify each state with the activation of an individual neuron (or, more realistically, of a population
mode), then neural activities turn on and off as in a delay line (Fig. [BE). This task representation
thereby allows the agent to take the preparatory actions before the onset of the go-cue. We note
that recorded neural activities are generally slower (they ‘ramp’ up or down) than the fast delay line
proposed here. Such 'ramping’ provides a less precise (and thereby ‘cheaper’) encoding of time
which may be sufficient for this task as the gain for precise timing is only minor (faster access to
reward). Here we only consider compressed representations that preserve future returns, and do not
consider possible tradeoffs between the future returns and the compressed representations. These
idealized representations require a fast delay line.

In contrast, the compressed state representation of the RDT combines all delay states and thereby
discards timing information (Fig. 3|G). In turn, the (compressed) state does not change during the
delay (Fig.[3H). This representation is sufficient to represent the optimal RDT policy.

3.2 Non-parametric and linear compression for a somatosensory working memory task

Next, we study model and policy compression in a (somatosensory) working memory task in monkeys
[8]], see Fig. E]A In this task, each trial consists of two vibratory stimuli with frequencies f; and f5
that are presented to a monkey’s fingertip with a 3sec delay. To get a reward, the monkey has to
indicate which of the two frequencies was higher. Neural activities in the prefrontal cortex recorded
during the task show characteristic, temporally varying persistent activity during the delay period, as
observed for many other working memory tasks [33]], see also Fig. 5JA,C.

The history-OMDP of this task is shown in Fig. AB. When compressing the history space using
the method for the model-based agents, we find that all states during the delay period remain
uncompressed, as they are predictive of the f; observation. After fs is observed, history states with
the same action-reward contingencies are combined in the compressed representation, yielding only
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Figure 4: A: Task structure. We only model three f; frequencies for simplicity, coded red, green and
blue. B: Task graph based on history states for the optimal policy (constructed as in Fig.[3)). C: Task
graph for model compression. States requiring the left and right actions are combined into a single
dark red and dark blue state, respectively. D: State probabilities over time after model compression
for all six trial types. Rows correspond to different f; values. E: Task graph for policy compression.
Delay states after the f; presentation are combined. F same as D, but for policy compression.

two states (f1 > fo and f; < f2), which effectively correspond to the subject’s decision (Fig. @C). If
we again identify each state with the activation of a neural population mode, we find a component
corresponding to the decision, as observed in the data [35]], but also a precise encoding of time during
the delay period which does not reflect recorded activity (Fig. @D).

Animals well-trained on tasks may be assumed to behave habitually. Indeed, when we seek to only
preserve policy information, and when we assume that the animal is not preparing any actions during
the delay period, we find that we can compress the state space even further (Fig. BE.F). All delay
states corresponding to different f; frequencies are merged, so that any timing information is lost.
When looking at the state representation over time, we find persistent activity (Fig. JF), just as in the
RDT above (Fig. BG). The persistent state dynamics here contrast with the sequential state dynamics
of the FDT above (Fig. ). While in both tasks the delay is fixed, in the directional licking task a
decision is stored while here a stimulus is stored and (under the assumption that no action needs to be
prepared) timing during the delay is irrelevant.

While the non-parametric treatment yields several conceptual insights, it does not allow for a direct
comparison with data. For instance, the delay line activity of the model-based agents crucially
depends on the time step of the simulation, and assumes a completely noise-free evolution of the
internal representations. To move closer to realistic agents, we finally model the somatosensory
working memory task using the parametric LDS approach, which also includes noise. A trial is
structured as in Fig. , but with {f1, fo} € R being continuous scalars. Given the rigidity of the
linear parametrization we make a couple of simplifying assumptions: First, we only maximize the
accuracy in the actual decision (left or right) and ignore previous actions altogether. The transition
function then also becomes action independent, i.e., we set B, = 0. Second, we approximate the
(nonlinear) decision function, d = sign(f1 — f2), with a linear function, y = f; — fo.

The accuracy of the representation is thus fully defined by the readout distribution, P(y|hr,) =
Ny, 02), at decision time T'p, right after f5 is observed. The mean, p, = e’ wu(zry, ), and variance,
05, of this readout are functions of the mean and variance of the final state z7,,, which can be

computed by unrolling the LDS. Specifically, ¢ T € R™- is the readout vector, and the final state mean,
(zry,), is computed by p(zr,) = ®hr,, with ® = [B, AB, ... AT™71B,| € RN-xTp
being the linear map from histories to compressed states, analogous to P(z|h) in the non-parametric
case above. The compressed state space can thus be understood as a linear subspace in the space of
all histories, defined by ®. We finally find this subspace by maximizing the likelihood of y = f1 — f5
given hr,, with respect to A, B,, ¢ as described in section Simulation details, parameter values
and code are provided in the Supplementary Material.

The resulting state representation dynamics resemble brain activity well on a single neuron level
(Fig.[5]A,B) as well as on a population level (Fig. 5|C,D). Furthermore, the state dynamics are low-
dimensional, a sign of the successful compression (Fig.[5D). Indeed, when looking at the linear map
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Figure 5: A: Peristimulus time histograms of two PFC neurons. Lines follow legend shown in E. B:
Two matching model neurons (i.e., two state dimensions of z). C,D: Population level comparison
using demixed principal component analysis [35)]. We demixed condition-independent variance
and stimulus dependent variance. C: First three condition-independent components (first row) and
stimulus components (second row) of PFC neurons. D: The corresponding components of the model.
Fraction of explained variance is indicated on top of each component. As components may be non-
orthogonal, they do not have to add up to 100%. F: Singular values of ®. G: The history space with
one example history, i, , drawn in black, underlaid by two vectors in ®’s row space. Specifically,
since the readout weights ¢ compute the f; — f; difference from the state p(zr,) = ®hr,, and
since zr,, > 0, some entries of c are positive (c4 ), some negative (c_). The blue and orange lines
correspond to —c ! ® and CI<I>, respectively. All neural data was processed as described in [35]].

¢ directly, we see it dominated by two dimensions (Fig. [5F). Specifically, these two dimensions
divide the history space in two bins, one for recent observations, i.e. fo, and one for observations in
the past, i.e. fi (Fig.[5F). Timing information of the stimuli is thus compressed away, similar to the
non-parametric case (Fig. E.F).

4 Discussion

In this article we have proposed a new, normative framework for modeling and understanding
higher-order brain activity. Based on the principle that neural activity reflects a maximally compact
representation of the task at hand, we have reproduced dynamical features of higher-order brain areas
for two example tasks involving short-term memory, and we have explained how those features follow
from the normative principle.

The key principle underlying this work— representational efficiency—has been proposed before in
various context. For instance, the efficient coding hypothesis has held that redundant information
in sensory inputs should be eliminated [23]]. Information-theoretical considerations have led to the
proposal that the brain should only keep information about past events that is relevant for maximizing
future returns [36], which naturally suggests some combination of efficient coding and reinforcement
learning [37]. Moreover, indirect evidence for efficient task-representations has been found in
the activity of dopaminergic neurons [38]. We were also inspired by considerations of efficient
representation, or coarse-graining, of dynamical systems [26]].

On a technical level, our work extends previous studies that have considered RL under costs. While
we have focused on representational costs, previous work has studied RL under control costs [39,40].
Our approach also extends previous work on representation learning for RL [25| [29] 41, 142 i43]].
While [42] 43]] consider simultaneous learning of representation and control, we have not considered
the problem of learning. In theory, an agent could first learn a history-OMDP model, from there solve,
or plan, for the optimal policy using dynamic programming, and then compress the policy. This
learning strategy of going from a model-based strategy to a model-free strategy has been conceived
before [44, 45, 146]. In practice, starting with the full and detailed history representation will often



prove infeasible, and one would therefore assume that agents also have to go the opposite way:
starting with a coarse representation that is then expanded [46]. Consequently, there are many paths
conceivable on how to get to a compact representation, each of which might have different advantages.
We therefore consider learning a separate, and presumably more difficult problem, and leave it for
future work.

Finally, we think that the OMDP framework and especially parametrizations thereof might be a
fruitful avenue for partially observable RL research. POMDPs have been shown computationally
untractable and new ways of dealing with partial observability are considered to be needed (see e.g.
[27], chapter 17.3). Furthermore, RNN systems used for RL, such as in [47]], are effectively using
OMDP parametrization.

Broader Impact

The study presented here is aimed at resolving some of the current debates in the field of working
memory and decision making. In that sense, our work has the potential of impacting and progressing
this field mainly conceptually. We note that our work does not seek to push the state of the art
of machine learning in terms of performance. The non-parametric methods used here are limited
and do not scale up to larger architectures, and their benefits lie in clear interpretability rather than
performance. We believe that a better understanding of decision-making circuits, whether biological
or artificial, may eventually benefit the safety of computational learning architectures.

Acknowledgments and Disclosure of Funding

This work was supported by the Simons Collaboration on the Global Brain (543009) and the
Fundacgdo para a Ciéncia e a Tecnologia (FCT; 032077). SB acknowledges an FCT scholarship
(PD/BD/114279/2016). The authors declare no competing financial interests.

References

[1] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

[2] Earl K Miller and Jonathan D Cohen. An integrative theory of prefrontal cortex function.
Annual Review of Neuroscience, 24:167-202, 2001.

[3] Joaquin Fuster. The prefrontal cortex. Academic Press, 2015.

[4] Jacob Russin, Randall C O’reilly, and Yoshua Bengio. Deep learning needs a prefrontal cortex.
In ICLR 2020 Workshop on Bridging Al and Cognitive Science, 2020.

[5] Kartik K. Sreenivasan and Mark D’Esposito. The what, where and how of delay activity. Nature
Reviews Neuroscience, page 1, may 2019.

[6] Christos Constantinidis, Shintaro Funahashi, Daeyeol Lee, John D Murray, Xue Lian Qi, Min
Wang, and Amy E.T. Arnsten. Persistent spiking activity underlies working memory. Journal of
Neuroscience, 38(32):7020-7028, aug 2018.

[7]1 S Funahashi, C J Bruce, and P S Goldman-Rakic. Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2):331-349, feb 1989.

[8] Ranulfo Romo, C D Brody, A Hernandez, and L Lemus. Neuronal correlates of parametric
working memory in the prefrontal cortex. Nature, 399(6735):470-473, 1999.

[9] Hidehiko K. Inagaki, Lorenzo Fontolan, Sandro Romani, and Karel Svoboda. Discrete attractor
dynamics underlies persistent activity in the frontal cortex. Nature, 566(7743):212-217, feb
2019.

[10] Shigeyoshi Fujisawa, Asohan Amarasingham, Matthew T. Harrison, and Gyérgy Buzséki.
Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature
Neuroscience, 11(7):823-833, 2008.



[11] Christopher D. Harvey, Philip Coen, and David W. Tank. Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature, 484(7392):62—68, mar 2012.

[12] Surya Ganguli, Dongsung Huh, and Haim Sompolinsky. Memory traces in dynamical sys-
tems. Proceedings of the National Academy of Sciences of the United States of America,
105(48):18970-18975, 2008.

[13] Mark S Goldman. Memory without Feedback in a Neural Network. Neuron, 61(4):621-634,
feb 2009.

[14] Omri Barak, David Sussillo, Ranulfo Romo, Misha Tsodyks, and L. F. Abbott. From fixed points
to chaos: Three models of delayed discrimination. Progress in Neurobiology, 103:214-222,
2013.

[15] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78-84, 2013.

[16] A.Emin Orhan and Wei Ji Ma. A diverse range of factors affect the nature of neural representa-
tions underlying short-term memory. Nature Neuroscience, 22(2):275-283, jan 2019.

[17] H. Francis Song, Guangyu R. Yang, and Xiao Jing Wang. Training Excitatory-Inhibitory
Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework. PLoS
Computational Biology, 12(2):1-30, 2016.

[18] Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cognitive
tasks. Nature Neuroscience, 22(2):297-306, feb 2019.

[19] David Sussillo, Mark M. Churchland, Matthew T. Kaufman, and Krishna V. Shenoy. A
neural network that finds a naturalistic solution for the production of muscle activity. Nature
Neuroscience, 18(7):1025-1033, 2015.

[20] David Sussillo and Omri Barak. Opening the black box: Low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 25(3):626-649, 2013.

[21] Fred Attneave. Some informational aspects of visual perception. Psychological review,
61(3):183-193, 1954.

[22] H. B. Barlow. Possible Principles Underlying the Transformations of Sensory Messages. In
W.A. Rosenblith, editor, Sensory Communication, pages 217-234. The MIT Press, 1961.

[23] Eero P Simoncelli and B A Olshausen. Natural image statistics and neural representation.
Annual Reviews of Neuroscience, 24:1193-1216, 2001.

[24] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99-134, may 1998.

[25] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific,
1995.

[26] David H Wolpert, Eric Libby, Joshua Grochow, and Simon DeDeo. Optimal high-level descrip-
tions of dynamical systems. arXiv, pages 1-33, 2015.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. The MIT
Press, 2018.

[28] William Bialek, Ilya Nemenman, and Naftali Tishby. Predictability, Complexity, and Learning.
Neural Computation, 13(1949):2409-2463, 2001.

[29] Pascal Poupart and Craig Boutilier. Value-directed compression of POMDPs. In Advances in
Neural Information Processing Systems, 2003.

[30] Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method,
2000.

10



[31] Nir Friedman, Ori Mosenzon, Noam Slonim, and Naftali Tishby. Multivariate information
bottleneck. arXiv preprint arXiv:1301.2270, 2013.

[32] George D. Montafiez, Saeed Amizadeh, and Nikolay Laptev. Inertial hidden Markov models:
Modeling change in multivariate time series. In Proceedings of the National Conference on
Artificial Intelligence, volume 3, pages 1819-1825, 2015.

[33] Sam Roweis and Zoubin Ghahramani. A Unifying Review of Linear Gaussian Models. Neural
Computation, 11:305-345, 1999.

[34] Zengcai V Guo, Nuo Li, Daniel Huber, Eran Ophir, Diego Gutnisky, Jonathan T Ting, Guoping
Feng, and Karel Svoboda. Flow of cortical activity underlying a tactile decision in mice. Neuron,
81(1):179-194, 2014.

[35] Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E. Feierstein, Adam Kepecs,
Zachary F. Mainen, Xue Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K. Machens.
Demixed principal component analysis of neural population data. eLife, S(APRIL2016):1-36,
2016.

[36] William Bialek, Rob R. de Ruyter van Steveninck, and Naftali Tishby. Efficient representation
as a design principle for neural coding and computation, 2007.

[37] Matthew Botvinick, Ari Weinstein, Alec Solway, and Andrew Barto. Reinforcement learning,
efficient coding, and the statistics of natural tasks. Current Opinion in Behavioral Sciences,
5:71-77, 2015.

[38] Asma Motiwala, Sofia Soares, Bassam V. Atallah, Joseph J. Paton, and Christian K. Machens.
Dopamine responses reveal efficient coding of cognitive variables. bioRxiv, 2020.

[39] Naftali Tishby and Daniel Polani. Information Theory of Decisions and Actions. Perception-
Action Cycle: Models, Architecture and Hardware, pages 601-636, 2011.

[40] Emanuel Todorov. Efficient computation of optimal actions. Proceedings of the National
Academy of Sciences of the United States of America, 106(28):11478-83, 2009.

[41] Timothée Lesort, Natalia Diaz-Rodriguez, Jean Francois Goudou, and David Filliat. State
representation learning for control: An overview. Neural Networks, 108:379-392, 2018.

[42] Sridhar Mahadevan. Learning Representation and Control in Markov Decision Processes: New
Frontiers. Foundations and Trends in Machine Learning, 1(4):403-565, 2009.

[43] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement Learning with Soft
State Aggregation. Nips, 2005.

[44] Maté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In
Advances in neural information processing systems, pages 889-896, 2008.

[45] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions
approach. In AAAI, volume 1992, pages 183-188. Citeseer, 1992.

[46] Andrew Kachites McCallum. Reinforcement Learning with Selective Perception and Hidden
State. PhD thesis, University of Rochester, 1996.

[47] Jane X. Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z.
Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement
learning system. Nature Neuroscience, 21(6):860-868, jun 2018.

11



	Introduction
	From task structure to representation
	Control under partial observability: Observation Markov decision processes
	State space compression
	State space compression for model-based agents
	State space compression for habitual agents

	Towards a more biologically realistic setting: Linear Gaussian OMDP parametrization

	Compressed state space representations and neural activities
	Non-parametric policy compression for a delayed licking task
	Non-parametric and linear compression for a somatosensory working memory task

	Discussion

