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Abstract

We uncover an ever-overlooked deficiency in the prevailing Few-Shot Learning
(FSL) methods: the pre-trained knowledge is indeed a confounder that limits the
performance. This finding is rooted from our causal assumption: a Structural Causal
Model (SCM) for the causalities among the pre-trained knowledge, sample features,
and labels. Thanks to it, we propose a novel FSL paradigm: Interventional Few-
Shot Learning (IFSL). Specifically, we develop three effective IFSL algorithmic
implementations based on the backdoor adjustment, which is essentially a causal
intervention towards the SCM of many-shot learning: the upper-bound of FSL
in a causal view. It is worth noting that the contribution of IFSL is orthogonal
to existing fine-tuning and meta-learning based FSL methods, hence IFSL can
improve all of them, achieving a new 1-/5-shot state-of-the-art on miniImageNet,
tieredImageNet, and cross-domain CUB. Code is released at https://github.
com/yue-zhongqi/ifsl.

1 Introduction

Few-Shot Learning (FSL) — the task of training a model using very few samples — is nothing short
of a panacea for any scenario that requires fast model adaptation to new tasks [64], such as minimizing
the need for expensive trials in reinforcement learning [29] and saving computation resource for
light-weight neural networks [26, 24]. Although we knew that, more than a decade ago, the crux
of FSL is to imitate the human ability of transferring prior knowledge to new tasks [17], not until
the recent advances in pre-training techniques, had we yet reached a consensus on “what & how to
transfer”: a powerful neural network Ω pre-trained on a large dataset D. In fact, the prior knowledge
learned from pre-training prospers today’s deep learning era, e.g., D = ImageNet, Ω = ResNet in
visual recognition [23, 22]; D = Wikipedia, Ω = BERT in natural language processing [61, 15].
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Figure 1: The relationships among different FSL
paradigms (color green and orange). Our goal is to
remove the deficiency introduced by Pre-Training.

In the context of pre-trained knowledge, we de-
note the original FSL training set as support
set S and the test set as query set Q, where
the classes in (S,Q) are unseen (or new) in
D. Then, we can use Ω as a backbone (fixed
or partially trainable) for extracting sample rep-
resentations x, and thus FSL can be achieved
simply by fine-tuning the target model on S and
test it on Q [11, 16]. However, the fine-tuning
only exploits the D’s knowledge on “what to
transfer”, but neglects “how to transfer”. Fortu-
nately, the latter can be addressed by applying
a post-pre-training and pre-fine-tuning strategy:
meta-learning [52]. Different from fine-tuning
whose goal is the “model” trained on S and tested onQ, meta-learning aims to learn the “meta-model”
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Figure 2: Quantitative and qualitative evidences of pre-trained knowledge misleading the fine-tune FSL paradigm.
(a) miniImageNet fine-tuning accuracy on 1-/5-/10-shot FSL using weak and strong backbones: ResNet-10 and
WRN-28-10. S � Q (or S 6� Q) denotes the pre-trained classifier scores of the query is similar (or dissimilar)
to that of the support set. “Average” is the mean of both. The dissimilarity is measured using query hardness
defined in Section 5.1. (b) An example of 5-shot S 6� Q.

— a learning behavior — trained on many learning episodes {(Si,Qi)} sampled from D and tested
on the target task (S,Q). In particular, the behavior can be parametrized by φ using model parameter
generator [46, 19] or initialization [18]. After meta-learning, we denote Ωφ as the new model starting
point for the subsequent fine-tuning on target task (S,Q). Figure 1 illustrates the relationships among
the above discussed FSL paradigms.

It is arguably a common sense that the stronger the pre-trained Ω is, the better the downstream
model will be. However, we surprisingly find that this may not be always the case in FSL. As shown
in Figure 2(a), we can see a paradox: though stronger Ω improves the performance on average, it
indeed degrades that of samples in Q dissimilar to S . To illustrate the “dissimilar”, we show a 5-shot
learning example in Figure 2(b), where the prior knowledge on “green grass” and “yellow grass” is
misleading. For example, the “Lion” samples in Q have “yellow grass”, hence they are misclassified
as “Dog” whose S has major “yellow grass”. If we use stronger Ω, the seen old knowledge (“grass”
& “color”) will be more robust than the unseen new knowledge (“Lion” & “Dog”), and thus the
old becomes even more misleading. We believe that such a paradox reveals an unknown systematic
deficiency in FSL, which has been however hidden for years by our gold-standard “fair” accuracy,
averaged over all the random (S,Q) test trials, regardless of the similarity between S and Q (cf.
Figure 2(a)). Though Figure 2 only illustrates the fine-tune FSL paradigm, the deficiency is expected
in the meta-learning paradigm, as fine-tune is also used in each meta-train episode (Figure 1). We
will analyze them thoroughly in Section 5.

In this paper, we first point out that the cause of the deficiency: pre-training can do evil in FSL, and
then propose a novel FSL paradigm: Interventional Few-Shot Learning (IFSL), to counter the evil.
Our theory is based on the assumption of the causalities among the pre-trained knowledge, few-shot
samples, and class labels. Specifically, our contributions are summarized as follows.

• We begin with a Structural Causal Model (SCM) assumption in Section 2.2, which shows that
the pre-trained knowledge is essentially a confounder that causes spurious correlations between
the sample features and class labels in support set. As an intuitive example in Figure 2(b), even
though the “grass” feature is not the cause of the “Lion” label, the prior knowledge on “grass”
still confounds the classifier to learn a correlation between them.

• In Section 2.3, we illustrate a causal justification of why the proposed IFSL fundamentally works
better: it is essentially a causal approximation to many-shot learning. This motivates us to develop
three effective implementations of IFSL using the backdoor adjustment [44] in Section 3.

• Thanks to the causal intervention, IFSL is naturally orthogonal to the downstream fine-tuning
and meta-learning based FSL methods [18, 62, 27]. In Section 5.2, IFSL improves all base-
lines by a considerable margin, achieving new 1-/5-shot state-of-the-arts: 73.51%/83.21% on
miniImageNet [62], 83.07%/88.69% on tieredImageNet [49], and 50.71%/64.43% on cross-
domain CUB [65].

• We further diagnose the detailed performances of FSL methods across different similarities
between S and Q. We find that IFSL outperforms all baselines in every inch.
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2 Problem Formulations

2.1 Few-Shot Learning

We are interested in a prototypical FSL: train aK -way classi�er on anN -shot support setS, whereN
is a small number of training samples per class (e.g., N =1 or 5); then test the classi�er on a query set
Q. As illustrated in Figure 1, we have the following two paradigms to train the classi�erP(yjx ; � ),
predicting the classy 2 f 1; :::; K g of a samplex:

Fine-Tuning. We consider the prior knowledge as the sample feature representationx, encoded by
the pre-trained network
 on datasetD. In particular, we referx to the output of the frozen sub-part
of 
 and the rest trainable sub-part of
 (if any) can be absorbed into� . We train the classi�er
P(yjx ; � ) on the support setS, and then evaluate it on the query setQ in a standard supervised way.

Meta-Learning. Yet, 
 only carries prior knowledge in a way of “representation”. If the datasetD
can be re-organized as the training episodesf (Si ; Qi )g, each of which can be treated as a “sandbox”
that has the sameN -shot-K -way setting as the target(S; Q). Then, we can model the “learning
behavior” fromD parameterized as� , which can be learned by the above �ne-tuning paradigm for
each(Si ; Qi ). Formally, we denoteP� (yjx ; � ) as the enhanced classi�er equipped with the learned
behavior. For example,� can be the classi�er weight generator [19], distance kernel function ink-
NN [62], or even� 's initialization [18]. ConsideringL � (Si ; Qi ; � ) as the loss function ofP� (yjx ; � )
trained onSi and tested onQi , we can have�  arg min( �;� ) Ei [L � (Si ; Qi ; � )], and then we �x
the optimized� and �ne-tune for� on S and test onQ. Please refer to Appendix 5 for the details of
various �ne-tuning and meta-learning settings.

2.2 Structural Causal Model

From the above discussion, we can see that(�; � ) in meta-learning and� in �ne-tuning are both
dependent on the pre-training. Such “dependency” can be formalized with a Structural Causal Model
(SCM) [44] proposed in Figure 3(a), where the nodes denote the abstract data variables and the
directed edges denote the (functional) causality,e.g., X ! Y denotes thatX is the cause andY
is the effect. Now we introduce the graph and the rationale behind its construction at a high-level.
Please see Section 3 for the detailed functional implementations.

(a) (b) (c)

Figure 3: (a) Causal Graph for FSL; (b) Feature-wise illustration of
D ! C: Feature channels of pre-trained network(e.g.1 : : : 512 for
ResNet-10).X ! C: Per-channel response to an image (“school
bus”) visualized by CAM[77]; (c) Class-wise illustration forD !
C: features are clustered according to the pre-training semantic
classes (colored t-SNE plot[37]). X ! C: An image (“school
bus”) can be represented in terms of the similarities among the base
classes (“ashcan”, “unicycle”, “sign”).

D ! X . We denoteX as the fea-
ture representation andD as the pre-
trained knowledge,e.g., the datasetD
and its induced model
 . This link as-
sumes that the featureX is extracted
by using
 .

D ! C  X . We denoteC as the
transformed representation ofX in
the low-dimensional manifold, whose
base is inherited fromD. This as-
sumption can be rationalized as fol-
lows. 1) D ! C: a set of data
points are usually embedded in a low-
dimensional manifold. This �nding
can be dated back to the long history
of dimensionality reduction [59, 50].
Nowadays, there are theoretical [3,
8] and empirical [77, 71] evidences
showing that disentangled semantic manifolds emerge during training deep networks. 2)X ! C:
features can be represented using (or projected onto) the manifold base linearly [60, 9] or non-
linearly [6]. In particular, as later discussed in Section 3, we explicitly implement the base as feature
dimensions (Figure 3(b)) and class-speci�c mean features (Figure 3(c)).

X ! Y  C . We denoteY as the classi�cation effect (e.g., logits), which is determined byX via
two ways: 1) the directX ! Y and 2) the mediationX ! C ! Y . In particular, the �rst way can be
removed ifX can be fully represented byC (e.g., feature-wise adjustment in Section 3). The second
way is inevitable even if the classi�er does not takeC as an explicit input, because anyX can be
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inherently represented byC. To illustrate, suppose thatX is a linear combination of two base vectors
plus a noise residual:x = c1b1 + c2b2 + e, any classi�erf (x) = f (c1b1 + c2b2 + e) will implicitly
exploit theC representation in terms ofb1 andb2. In fact, this assumption also fundamentally
validates unsupervised representation learning [5]. To see this, ifC 6! Y in Figure 3(a), uncovering
the latent knowledge representation fromP(Y jX ) would be impossible, because the only path left
that transfers knowledge fromD to Y : D ! X ! Y , is cut off by conditioning onX : D 6! X ! Y .

An ideal FSL model should capture the true causality betweenX andY to generalize to unseen
samples. For example, as illustrated in Figure 2(b), we expect that the “Lion” prediction is caused by
the “lion” featureper se, but not the background “grass”. However, from the SCM in Figure 3(a), the
conventional correlationP(Y jX ) fails to do so, because the increased likelihood ofY givenX is not
only due to “X causes Y” viaX ! Y andX ! C ! Y , but also the spurious correlation via 1)
D ! X , e.g., the “grass” knowledge generates the “grass” feature, and 2)D ! C ! Y , e.g., the
“grass” knowledge generates the “grass” semantic, which provides useful context for “Lion” label.
Therefore, to pursue the true causality betweenX andY , we need to use thecausal intervention
P(Y jdo(X )) [45] instead of the likelihoodP(Y jX ) for the FSL objective.

2.3 Causal Intervention via Backdoor Adjustment

By now, an astute reader may notice that the causal graph in Figure 3(a) is also valid for Many-Shot
Learning (MSL),i.e., conventional learning based on pre-training. Compared to FSL, theP(Y jX )
estimation of MSL is much more robust. For example, onminiImageNet, a 5-way-550-shot �ne-tuned
classi�er can achieve 95% accuracy, while a 5-way-5-shot one only obtains 79%. We used to blame
FSL for insuf�cient data by the law of large numbers in point estimation [14]. However, it does not
answer why MSL converges to the true causal effects as the number of samples increases in�nitely.
In other words, whyP(Y jdo(X )) � P(Y jX ) in MSL while P(Y jdo(X )) 6� P(Y jX ) in FSL?

To answer the question, we need to incorporate the endogenous feature samplingx � P(X jI )
into the estimation ofP(Y jX ), whereI denotes the sample ID. We haveP(Y jX = x i ) :=
Ex � P (X j I ) P(Y jX = x; I = i ) = P(Y jI ), i.e., we can useP(Y jI ) to estimateP(Y jX ). In Fig-
ure 4(a), the causal relation betweenI andX is purelyI ! X , i.e., X ! I does not exist, because
tracing theX 's ID out of many-shot samples is like to �nd a needle in a haystack, given the nature that
a DNN feature is an abstract and diversity-reduced representation of many samples [21]. However, as
shown in Figure 4(b),X ! I persists in FSL, because it is much easier for a model to “guess” the
correspondence,e.g., the 1-shot extreme case that has a trivial 1-to-1 mapping forX $ I . Therefore,
as we formally show in Appendix 1, the key causal difference between MSL and FSL is: MSL
essentially makesI aninstrumental variable[1] that achievesP(Y jX ) := P(Y jI ) � P(Y jdo(X )) .
Intuitively, we can see that all the causalities betweenI andD in MSL are all blocked by col-
liders1, making I and D independent. So, the featureX is essentially “intervened” byI , no
longer dictated byD, e.g., neither “yellow grass” nor “green grass” dominates “Lion” in Fig-
ure 2(b), mimicking the casual intervention by controlling the use of pre-trained knowledge.

(a) (b) (c)

Figure 4: Causal graphs with sampling process. (a) Many-Shot
Learning, whereP(Y jX ) � P (Y jdo(X )) ; (b) Few-Shot Learn-
ing whereP(Y jX ) 6� P (Y jdo(X ); (c) Interventional Few-Shot
Learning where we directly modelP (Y jdo(X )) .

In this paper, we propose to use the
backdoor adjustment [44] to achieve
P(Y jdo(X )) without the need for
many-shot, which certainly under-
mines the de�nition of FSL. The back-
door adjustment assumes that we can
observe and stratify the confounder,
i.e., D = f dg, where eachd is a strat-
i�cation of the pre-trained knowledge.
Formally, as shown in Appendix 2, the
backdoor adjustment for the graph in
Figure 3(a) is:

P (Y jdo(X = x )) =
X

d

P (Y jX = x ; D = d; C = g(x; d)) P(D = d); (1)

1In causal graph, the junctionA ! B  C is called a “collider”, makingA andC independent even though
A andC are linked viaB [44]. For example,A = “Quality”, C = “Luck”, and B = “Paper Acceptance”.
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