Supplementary Material: Appendix

Bayesian Deep Ensembles via the Neural Tangent Kernel

A Recap of standard and NTK parameterisations

For completeness, we recap the difference between standard and NTK parameterisations & initialisa-
tions [22, 23] for an MLP in this section.

Consider an MLP with L hidden layers of widths from ng=d to ny, respectively, and final readout
layer with ny 1 = C. For a given € R?, under the NTK parameterisation the recurrence relation
that constitutes the forward pass of the NN is then:

a9 (x,0) =z (13)
50+1) U7 O] U]
! (z,0) \/nTW a\x,0)+ opb (14)
oV(z,0) = ¢(aV(,0)) (15)

for I < L where @) and oY) are the preactivations and activations respectively at layer [, with
entrywise nonlinearity ¢(-). In the NTK parameteriation, all parameters W) ¢ R™+1*™ and
b() € R™+1 for all layers [are initialised as i.i.d. standard normal A(0,1). The hyperparameters

ow and o}, are known as the weight and bias variances respectively, and are hyperparameters of the
infinite width limit NTK ©.

On the other hand, under standard parameterisation, the recurrence relation of the NN is:

o (@.0) = 1o
& (z,0) = WO (2, 0) + b (17)
a®(@,8) = ¢(a (,0)) (18)

with Wz(l]) ~ N(0, ;-0%,) and b;l) ~ N(0,02) at initialisation. Commonly used initialisation
schemes like LeCun [53] or He [44] fall into this category.

Regardless of parameterisation, our notation from Sections 2 & 3 corresponds to f(x,0) =
allt (g, 0), with @ = {WO b0 osL = (WO pO} 7 Land L+ = {WE) p(E)},

We see that the different parameterisations yield the same distribution for the functional output
f(-,0) at initialisation, but give different scalings to the parameter gradients in the backward pass.
Sohl-Dickstein et al. [32] have recently explored further variants of these parameterisations.

B Proofs
B.1 Proof of Proposition 1

Proposition 1. 4(-) 4 GP(0,05L) and is independent of fo(-) in the infinite width limit. Thus,
Jo() = fo(-) +8() 5 GP(0,0).

Proof. For notational ease, let us define two jointly independent GPs g(-) 2 GP(0,0=) & h(:) £
GP(0,K). By independence, we have g(-) + h(-) < GP(0,0). Moreover, let &,,(+), 0 (-) and
0° denote 6(-), fo(-) and @y respectively at width parameter m € N. The infinite width limit thus

m
corresponds to m — 0.

For our purposes, it will be sufficient to prove convergence of finite-dimensional marginals,
(0 (X)), FO.(X)) A (g(X), h(X")) jointly, for arbitrary sets of inputs X', X’. Note that previ-
ous work [16, 17] has already shown that 0 (X”) 4 h(X").

14

The proof that (&,,(X), f2 (X")) <4 (g(X), h(X")) relies on Lévy’s Convergence theorem [54] and

the Cramér-Wold device (Theorem 29.4 of [55]). Using these results it is sufficient to show, denoting
px as the characteristic function of a random variable X, that:

ey, () = ey (t) 19)

where Y,,, = u' 6,,(X) + 0" fO(X")and Y = u' g(X) + v h(X’), forallt € R,u € RI*IC and
v e RO, But:

v, (t) =E [exp(itYy,)] (20)
—E [E [exp(itYy,) | ao,m}] 1)
=g, [exp(— t*u" OF L (X, X)u + itv" f2,(X"))] (22)
=exp(— t2uT Ok (X, X)u)Eg, . [exp (z’thf,?L(X’))] + 7 (23)
—E[exp(itY)] (24)

where 7,,,, defined as the difference between Egs. (23) & (22), can be shown to be o, (1) using the
Bounded Convergence theorem and the empirical NTK convergence results, and by noting that proofs
of NTK convergence [22, 23, 28, 29] are all done on a layer-by-layer basis.

The claim that fo(-) = fo(-) + () A GP(0,©) then follows by setting X = X’ and v = w.

B.2 Proof of Proposition 2

Pl'OpOSitiOll 2. For 0'220, YNTKGP = XDE 2= 2NNGP- Slmllarly, fOl" 0'2>0, YINTKGP = 2RP 2= >SNNGP-
Proof. We will prove the case for 0 > 0 as the case for 2 = 0 is similar, and one can replace
inversions of ©(X, X') and K(X, X') with generalised inverses if need be.

Let X’ be an arbitrary test set. We will first show Xgp = Xnncp. It will suffice to show that
Yrp(X, X") — Ennge (X7, X') = 0is a p.s.d. matrix. But it is not hard to check that:

Yre(X, &) — Sxnep(X, &) = UK(X, X) 4+ o2 1)U T (25)

which is clearly p.s.d, where U = ©(X’, X)(O(X, X) + o2I) 1 —K(X', X)(K(X,X)+02)" ! €
RIXIX|]

Likewise, to show YXnTk ~ 2rp We can check that:
Intk (X, &) = Sre(X, X7) = Uy + U2 A(X, X)Uy = 0 (26)
where
Up = AX X)) — AX, X)AI(X, X)A(X, X' (27)

and A = ©< = 0 is the contributions to the NTK from parameters before the final layer as before.
Finally, we need to define U, as:

Uy = (X, X)(O(X,X) + o*T) 7 — A(X, X)AY (X, X) (28)

The notation AY(X, X') denotes the generalised inverse. U; = 0 follows from standard properties
of generalised Schur complements, as does the fact that A(X', X)AI (X, X)A(X,X) = A(X', X),
which is required for Eq. (26) to hold.

O

C Alternative constructions of NTKGP baselearners

To summarise the analysis in Section 3, the criteria for an NTKGP baselearner f (+,0) is that:
1) f(-,6) 4 GP(0,0) as width increases, while 2) preserving the initial Jacobian Vg fo(-) =

Vo fo(:)-

15

A possible alternative construction would be if one could (approximately) sample a fixed
f*iQP(O, ©), and set:

Fi() = £)+ F7() = fol) (29)
It is easy to approximately sample f* for finite width NNs using a single JVP, under either standard
or NTK parameterisation, by sampling 8 independent of 8 and setting:

f*(x) = Vo f(x,00)0 (30)

Note that Eq. (29) requires computation of two forward passes f; and fo in addition to a JVP
Vo f(x,00)0. For some implementations of JVPs, such as in JAX [35], the computation of f will
come essentially for free alongside the computation of Vg f(x, 69)8, because the JVP is centered

about the same “primal” parameters 6 that are used for f. Hence, this alternative f presented in
Eq. (29) may have similar costs to our main construction in Section 3, for certain AD packages.

A second valid alternative to ft would be to replace f; with fI", which would give fh“(a:7 0,) =
Ve f(x,0)0; (where we swap 0 and 6, for notational consistency with other NTKGP methods, and

initialise at 6). Because 6 is fixed, we see that f““(-, 6,) is linear in 8,. This gives a realisation of

the “sample-then-optimize” approach [34] to give posterior samples from randomly initialised linear
models, and ensures that fgg() is an exact posterior sample (using the empirical NTK Qg as prior
kernel) irrespective of parameterisation or width. Note though, of course, the linearised regime holds
for fgi" throughout parameter space, hence for strongly convex optimisation problems like regression

tasks with observation noise, the initialisation is irrelevant. We will call fgg trained in such a way an
NTKGP-Lin baselearner.

D Regularisation in the NTKGP and RP training procedures

As stated in Lemma 3 of Osband et al. [24], suppose we are in a Bayesian linear regression setting
with linear map go(z) = z'6, model y = gg(2) + € for € ~ N(0,0?) ii.d., and parameter
prior & ~ N(0,AI,). Then, having observed training data {(z;,y;)}7;, solving the following
optimisation problem returns a posterior sample 6:

n
~ 1
0 + argmin — ‘

where §; ~ N (y;,02) and @ ~ N'(0, AL,,).

We see that when there is a homoscedastic prior N'(0, AI,,) for € that the correct weighting of L?
regularisation is H0||i = +676. In fact, even with a heteroscedastic prior ~ N(0,A) with
a diagonal matrix A € RY™” and diagonal entries {);}/_,, it is straightforward to show that

_ I
i — (90 + 98)(=0)|| + 55 10112 G

the correct setting of regularisation is HOH?\ = 0T A~16 in order to obtain a posterior sample of
6. For RP-param or NTKGP-param methods, with initial parameters 8y, we have regularisation

|6 — 00\\/2\ = (0 —6y)"A™1(8 — 6), which can be seen as a Mahalanobis distance.

For an NN in the linearised regime [23], this is related to the fact that the NTK and standard
parameterisations initialise parameters differently, yet yield the same functional distribution for
a randomly initialised NN. In the standard parameterisation, A\; will be a factor of the NN width
smaller than in the NTK parameterisation, but the corresponding feature map z will be a square
root factor of the NN width larger. Thus, solving Eq. (31) will lead to the same functional outputs
in both parameterisations, if the NN remains in the linearised regime. However, only with our
NTKGP trained baselearners f do you get a posterior interpretation to the trained NN because of the
difference between the NNGP and the NTK that standard training does not account for, and because
the linearised regime only holds locally to the parameter initialisation.

E Additional ensemble algorithms

Here, we present our ensemble algorithms for NTKGP-Lin (Algorithm 2) and NTKGP-fn (Algo-
rithm 3), to complement the NTKGP-param algorithm that was presented in Section 3.4.

16

Algorithm 2 NTKGP-Lin ensemble

Require: Data D = {X, Y}, loss function £, NN model fo : X —), Ensemble size K € N, noise
procedure: data_noise, NN parameter initialisation scheme: init(-)
fork=1,...,K do
Form { X}, YV} = data_noise(D)

Initialise), < init(")

Initialise), < init(")

Define E“(w, 0:) =Vof(x, ék)Ht and set 0y = 0,

Optimise £(/1" (X, 0;), Vi) + 1 [10; — 65> for 6; to obtain 6y,
end for . .
return ensemble {fi"(-,0;) 1K

Algorithm 3 NTKGP-fn ensemble

Require: Data D = {X, V}, loss function £, NN model fg : X —), Ensemble size K € N, noise
procedure: data_noise, NN parameter initialisation scheme: init(-)
fork=1,...,Kdo

Form { X}, YV} = data_noise(D)
Initialise 6, < init(:)
Initialise), < init(-) and denote 6}, = concat({ékSL, é,f“})
Set 0}, = concat({ﬂékgj“, é,f'“})
Define 6(x) = Vo f(x, 61)0;
Define fi(x,0;) = f(x,0;) + é(x) and set 8y = O,
Optimise £(fi(Xy, 6:), Vi) + 3 [|6:]13 for 6, to obtain 6,
end for o
return ensemble { (-, 0;)} 5,

In Algorithm 3 we seek to reinitialise fx(x, 6y) from GP(0,) to GP(0, 20) in the infinite width
limit, following the randomised prior function method of Osband et al. [24]. While there are many
ways to do this we choose to use only one JVP, with a reweighted tangent vector, for 4(-) in order to
reduce extra computational costs. It would be similarly possible to model a scaling factor (3 for the
prior function, like [24], using a single JVP with a differently reweighted tangent vector.

Note also that for the NTKGP-fn it is unreasonable to assume that the linearised NN dynamics will
hold true for the duration of training because, unlike in NTKGP-param (Algorithm 1) we regularise
towards the origin not the initialised parameters.

F Aggregating predictions from ensemble members

For completeness, we now describe how to aggregate predictions from ensemble members. Given
a test point (, y), for each baselearner NN k < K, we suppose we have a probabilistic prediction
pr(y|x) obtained from the NN output. We then treat the ensemble as a uniformly-weighted mixture
model over baselearners and combine predictions as p(y|x) = & Zle pi(y|x). For our Bayesian
deep ensembles, we can view this aggregation as a Monte Carlo approximation of the GP posterior
predictive with NTK prior.

For classification tasks, this aggregation is exactly an average of predicted probabilities. For regression
tasks, the prediction is a mixture of normal distributions, and we follow Lakshminarayanan et al.
[11] by approximating the ensembled prediction as a single Gaussian with matched moments. That
is to say, if px(y|x) ~ N(uk(x),0i(x)), then we approximate p(y|z) by N (u.(z),o%(x)) for

pa(®) = 3¢ o gk () and 02 () = 3 32, (i () — (@) + o} ().

G Comparison of memory and computation costs for ensemble methods

There is only a negligible training-time computational overhead for our NTKGP methods compared
to other ensemble methods [11, 24], for a training set of fixed size (e.g. MNIST, CIFAR-10). This

17

is because one can obtain and store our fixed additive JVPs ¢ in a single pass over the training data.
For test-time constrained applications, one can employ ensemble distillation [56] for our NTKGP
ensembles as one would for standard deep ensembles.

For completeness, we include in Table 2 (left) the computational cost of different ensemble methods
when the modified forward pass f needs to be computed on the fly for new data, though we again
stress that this is not necessary for train nor test time, as described in the paragraph above. A rule
of thumb for a library offering forward-mode AD, like JAX [35], is that a JVP costs on the order of
three standard forward passes in terms of FLOPs. We use forward-mode AD to compute JVPs as
this is known to be more memory-efficient than reverse-mode AD for JVP computation. It is worth
pointing out that our methods share the same trainable parameters as standard deep ensembles, and
so do not incur any additional computational cost in the backward pass.

Table 2: Comparison of computational and memory costs of different ensemble methods per ensemble
member. Computational costs are specified per (modified) forward pass and represent a naive
worst-case scenario (presented for completeness); a more astute approach renders only a negligible
difference between ensemble methods, as discussed in this section.

Method Computational cost Parameter sets to store
Forward passes JVPs Train time Test time
Deep ensembles 1 0 1 1
RP-param 1 0 2 1
RP-fn 2 0 2 2
NTKGP-param 1 1 3 3
NTKGP-fn 1 1 3 3

In terms of memory, both NTKGP and RP methods require storage of extra sets of parameters in
order to compute the untrainable additive functions &(-) and regularise in parameter space, displayed
in Table 2 (right). However, the activations of the extra forward pass in the Randomised prior function
method need not be stored. And moreover, forward mode JVPs are composed alongside the primitive
operations that comprise the forward pass, so the memory requirements incurred by the extra JVP are
independent of the NN depth for our NTKGP methods. Note that the memory bottleneck for large
NNs is most often from the need to store activations for the backward pass [57] and not from storing
parameter sets, hence our NTKGP ensembles are not affected by the main memory bottleneck for
large NN, relative to standard deep ensembles.

It is worth noting that our Bayesian deep ensembles still retain the distributability of standard deep
ensembles. Moreover, our computational and memory costs still scale linearly in dataset size and
parameter space dimension, enabling us to work with large scale datasets like Flight Delays [43].

Finally, in this section we only compare the costs associated to different ensemble methods. En-
sembles methods are known to be computationally expensive and there has been recent interest
in the community to derive new methods [58, 59] that reduce such costs. However, at the time of
writing, deep ensembles [11] are state-of-the-art for uncertainty quantification tasks [12], and hence
we believe a comparison of costs between ensemble methods is most appropriate for this work.

H Scaling for one-hot targets in classification

As discussed in Section 3.5 and repeated here for completeness: because d(-) is untrainable in our
NTKGP methods, it is important to match the scale of the NTK O to the scale of the one-hot targets
in multi-class classification settings. One can do this either by introducing a scaling factor x > 0 such
that we scale either: 1) f < L f and s0 © < 50, or 2) e, < ke, where e, € R is the one-hot
vector denoting class ¢ < C'. We choose option 2) for our implementation.

To set &, for each ensemble method we calculated the mean squared values of baselearner outputs at
initialisation, which we define for convenience as (j, on the training set for that particular ensemble
method, and tuned 2 (based on validation accuracy) on a small linear scale centered around C(y,
where C'is the number of classes. This is in order to match the second moments of the random NNs
at initialisation with the scaled one-hot targets across the C' classes. For example, for NTKGP-param,
we set (o = 137 Lgex Oz,) € RT.

18

To illustrate the importance of x, in Figure 6 we present the corresponding results to Figure 5 where
instead of setting x dependent on the scale of each ensemble methods’ initialised baselearners, as
above, we set K = ﬁ > zcx ©(x,)ER for all ensemble methods. This is the base « value for
NTKGP-param at initialisation, but note that we did not tune neither « (around this base value) nor
weight variance (set at 03, = 2 like He initialisation [44], which has been optimised for standard
NN and hence standard deep ensembles) for Figure 6.

CIFAR-10 Test Error CIFAR-10+SVHN Error vs Confidence

©
=3

10.5

~
o

10.0

o
5

9.5
Deep ensemble
RP-param

—— RP-fn

—— NTKGP-param
—— NTKGP-fn

9.0

8.5

Classification Error (%)

Error (%) on examplesp(y|x) = T
52w
8 3

w
=3

8.0

N
o

2 4 6 8 10 0.0 0.2 0.4 0.6 0.8
Ensemble size Confidence Threshold T
Figure 6: Figure 5 but where regression target scale « is constant across ensemble methods and set to
match the second moment of the NTK on the training set at initialisation. Error bars correspond to 5
independent runs.

In Figure 6 we see a different results to Figure 5, as here our NTKGP methods suffer slightly on in-
distribution performance but also outperform the baselines methods on out-of-distribution detection.
This highlights the importance of the regression target scale when considering classification tasks,
and moreover reflects a general theme in our experiments of the trade-off between more aggressive
predictions (that tend to perform better on in-distribution) and more conservative predictions (that
tend to perform better on out-of-distribution). In our classification methodology, larger « values lead
to more confident predictions. We point out that this is an issue that affects all ensemble methods for
uncertainty quantification and is not limited to our Bayesian ensembles.

I Experimental Details & additional plots

I.1 Toy 1d example

We set ensemble size K = 20, and train on full batch GD with learning rate 0.001 for 50,000
iterations under standard parameterisation in Neural Tangents [38], with oy = 1.5 & o3 = 0.05, for
ow, op defined as in Appendix A. In Figure 7 we evaluate the impact of the ensemble size on this
toy problem for different ensemble methods. We find that, of the two methods that approximate the
analytic NTKGP mean predictor (c.f. Table 1), the analytic mean approximation of NTKGP-param
degrades compared to RP-param at small ensemble sizes, although the predictive uncertainties are
well matched even at small ensemble sizes. The degradation in mean predictor is unsurprising as
there is more (untrainable) noise in the initialised NTKGP baselearners. One simple possible solution
to this problem, which we leave for future work, is to use separate baselearners for the mean and
uncertainty predictions, like in Ciosek et al. [26].

1.2 Flight Delays

Our baselearners are MLPs with 4 hidden layers, 100 hidden units per layer and ReLLU activations,
and we use standard parameterisation with oy = 1 & o, = 0.05, and choose ensemble size K = 5.
We train for 10 epochs with learning rate 0.001, batch size 100 and Adam [60]. For all experiments,
all ensemble methods apart from standard deep ensembles [11] are L? regularised according to
Appendix D, with weight decay strength set to 10~* for standard deep ensembles.

We use a validation set of size 50k that is sampled uniformly from the training set of size 700k, and
early stop baselearner NNs based on validation set loss. Inputs and targets are standardised so that
the training data is zero mean and unit variance.

1.3 MNIST vs. NotMNIST

For all image classification experiments, we use a 90—10% split for the train-validation sets needed
for temperature scaling.

19

Ensemble size 2 Ensemble size 5 Ensemble size 10 Ensemble size 20

S

Deep ensemble
o N
-
-
t {

!
’
r

|
~

| i i | |
s s Train i i 1 1 /
\ [v o \\ I . '! \ ,, \ r: \
\ 1 1 i i \
1

A

~—- Test
NTKGP analytic ~ -

|
S

[

NTKGP-param
o

Figure 7: Comparison between ensemble methods (blue) and the analytic NTKGP posterior as the
ensemble size is varied on toy example.

Baselearners are MLPs with 2-hidden layers, 200 hidden units per layer and ReLU activations. We
standardise data to have mean 0 and standard deviation 1 across flattened pixels.

For all ensemble methods, we use standard parameterisation with fixed bias standard deviation
o, = 0.05, observation noise o = 0.1 and tune weight variance 0% on a small linear scale around
o2, = 2. We set observation noise o = 0.1 for . We train for 20 epochs with batch size 100, learning
rate 0.001 and Adam [60]. We do not early stop for any classification experiment, and use the final

trained baselearners throughout.

For the analytic NTKGP results, we use the NTK in NTK parameterisation, and use the same
observation noise and bias variance as for ensemble methods. However, we fix O%V = 2 and also do
not tune target scale « (set to the base value described in Appendix A) due to computational resources.
We also use only half the test sets both for MNIST and NotMNIST due to resource requirements,
keeping the ratios of test sizes consistent in order for the error versus confidence plot Figure 3 (right)
to be comparable. To compute test and out-of-distribution predictions, having obtained the optimal
temperature scale 7™ and analytic NTKGP predictions in logit space, p(-|X,)), we approximate
the softmax class probability predictions: [softmax(z/T*)p(dz|X,)), by a Monte Carlo ensemble
approximation with 100 samples.

For all classification ensemble methods, we temperature scale on validation cross entropy for 5
epochs with batch size 100 and learning rate 0.1, whereas for analytic NTKGP we temperature scale
for 1000 epochs on full batch size 6000. Like above, we approximate the analytic NTKGP validation
predictions (for temperature scaling) by a Monte Carlo ensemble, this time of size 10. We found the
various temperature scaling training hyperparameter considerations here to be unimportant to achieve
convergence, due to the fact that the temperature scale is a scalar value.

20

1.4 CIFAR-10 vs SVHN

Baselearners are Myrtle-10 CNNs [40] with 100 channel width and ReLU activations. We use
op = 0. 01 and set observation noise o = 0.1. Like for MNIST we tune o3, on a small linear scale
around o3, = 2. We train using SGD, with momentum parameter 0.9, for 100 epochs and learning
rate 0.001, which is decayed to 0.0002 after 80 epochs. In the first 5 epochs we raise the learning rate
in linear increments from 0.0001 to 0.001. We use batch size 125. During training we apply random
crops and horizontal flips before standardisation. We do not compare to the analytic NTKGP for the
Myrtle-10 CNN due to resource requirements.

Figure 8§ displays entropy histograms for ensembles trained on CIFAR-10 and tested on in distribution
CIFAR-10 test data and out-of-distribution SVHN test data, corresponding to the same experiments
as in Figure 5. As we can see, there is a much less noticeable difference between ensemble methods
compared to the simpler MNIST vs NotMNIST case.

Deep ensemble RP-param RP-fn NTKGP-param NTKGP-fn
Ensemme size
2" | T
2
G 1
D L
Entropy values “Entropy values *Entropy values *Entropy values Entropy values
Deep ensemble RP-param RP-fn NTKGP-param NTKGP-fn

Ensemble size
2
0 =
25 — 10

M”\M’NMM/\M

Entropy values Entropy values Entropy values Entropy values Entropy values

Figure 8: Histograms of predictive entropy on CIFAR-10 (top) and SVHN (bottom) test sets for
different ensemble methods and for different ensemble sizes.

21

