
Supplementary Material
A Generalized Bayesian Inference

Parametric Bayesian inference implicitly assumes that the generative model is well-speci�ed, in
particular, the observations are generated from the assumed likelihood model. In general, this
assumption may not hold in real-world scenarios. Hence, one may wish to take into account the
discrepancy between the true DGM and the assumed likelihood. Generalized Bayesian inference
(GBI) is an approach proposed in [8] to deal with such cases.

For the simple Bayesian updating setup, consider a prior� 0 and the assumed likelihood function
g(y jx). The posterior� (x jy ) =: � (x) is given by Bayes rule

� (x) = � 0(x)
g(y jx)

Z
; (14)

whereZ :=
R

g(y jx)� 0(x)dx. [9] and [8] showed that(14) can be seen as a special case of a more
general update rule, which can be described as a solution of an optimisation problem in the space of
measures. In particular, letL (� ; � 0; y ) be a loss-function where� is a probability measure and� 0 is
the prior, a belief distribution overx can be constructed by solving

�̂ = arg min
�

L(� ; � 0; y ): (15)

To obtain Bayes-type updating rules, one needs to specify this loss function as a sum of a “data term”
and a “regularisation term” [8] given as

L(� ; � 0; y ) = � 1(�; y ) + � 2(�; � 0); (16)

where� 1 de�nes a data dependent “loss” and� 2 controls the discrepancy between the prior and the
�nal belief distribution �̂ . [8] show that the form of(16) that satis�es the von Neumann–Morgenstern
utility theorem [41] and Bayesian additivity6 is given by

L(� ; � 0; y ) =
Z

`(x; y )� (dx) + KL(� jj � 0); (17)

which leads to a Bayes-type update [8, 42], given by

� (x) = � 0(x)
G(y jx)

Z
; (18)

with G(y jx) := exp( � `(x ; y )) where`(x; y ) is some divergence measuring the discrepancy between
the observed information and the assumed model. In particular, if one assumes the real-world
likelihood, i.e. the DGM,h0, is different from the model likelihoodg and de�nes`(x; y ) as
a Kullback–Leibler (KL) divergence between the empirical likelihood~h0 (an empirical measure
constructed using the observations) and the assumed likelihoodg(y jx), the standard Bayes rule(14)
arises as a solution. To see this, we can employ the KL divergence as a loss,

KL(h0jjg) =
Z

logh0(y 0)h0(dy 0) �
Z

logg(y 0jx )h0(dy 0);

and note that the �rst term does not affect the solution of the optimisation problem(15). Hence we
arrive at the integrated loss function

~̀(x) = �
Z

logg(y 0jx )h0(dy 0): (19)

By replacing the true likelihoodh0 with its empirical approximation upon observingy , i.e., setting
h0(dy 0) � � y (dy 0), we obtain~̀(x) � `(x ; y ) = � logg(y jx), which can be plugged in to(18)
resulting in the standard Bayes update (14).

6Bayesian additivity, also referred to as coherence says that applying a sequence of updates with subsets of
the data should give rise to the same posterior distribution as single update employing all of the data.
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As previously mentioned, due to the properties of the KL divergence, the standard Bayes update is
not robust to outliers [10]. Hence, substituting the KL with a more robust divergence such as the� -
divergence, can endow inference with more robustness. Speci�cally, if` is chosen as a� -divergence,
the one step Bayes update for the likelihoodg(y jx) can be written as

� (x) = � 0(x)
G� (y jx)

Z �
; (20)

where

G� (y jx) = exp
�

1
�

g(y jx) � �
1

� + 1

Z
g(y 0jx ) � +1 dy 0

�
: (21)

One can then seeG� (y jx) as a generalised likelihood, resulting from the use of a different loss
function compared to the standard Bayes procedure. Here� is a hyperparameter that needs to be
selected depending on the degree of misspeci�cation. In general� 2 (0; 1) andlim � ! 0 G� (y jx) =
g(y jx): Thus, intuitively, small� values are suitable for mild model misspeci�cation and large�
values are suitable when the assumed model is expected to signi�cantly deviate from the true model.

B In�uence Figure

The use of the� -divergence for updating the particle �lter weights can be further motivated by
studying the in�uence pro�le of the resulting weight update. Appendix B shows the in�uence that an
observation exerts on the weights as a function of the number of standard deviations away from the
mean. The �gure compares the standard Gaussian likelihood, a Gaussian likelihood with an in�ated
variance, Student's t likelihood with 1 degree of freedom and a standard Gaussian warped by the
� -divergence for 4 values of� . The plot shows that, with the� -divergence, observations that are
close to the mean exert similar in�uence to the original standard Gaussian; however, the in�uence
decreases away from the mean. This decrease is dependent on the value of� . For the case of an
in�ated Gaussian, the in�uence of the close observations is diminished compared to the original
standard Gaussian; hence, this is not a suitable substitute to robustify the weight update since it
deviates signi�cantly from the properties of the assumed model near the mean. Finally, Student's t
likelihood exerts higher in�uence on the inlying observations near the mean, which is also different
from the assumed model.

C � -PF

C.1 Outline derivation of the loss in(9)

To arrive at the experssion of the loss in (9), recall the formula for the beta divergence [11]

D �
B (P jjQ) =

1
� (� + 1)

Z
(p� +1 (x) + �q � +1 (x) � (� + 1) p(x)q� (x))d � (x)

= CP +
1

� + 1

Z
q� +1 (x)dx �

1
�

Z
q(x)P(dx)

whereP andQ are probability measures on the measurable space(X; A ) and� is a �nite or � -�nite
measure on this space, such thatP � � andQ � � are absolutely continuous w.r.t.� andCP is
a constant independent ofQ. Finally, p = dP

d� andq = dQ
d� are densities and the Radon-Nikodym

derivatives forP andQ w.r.t. � .

Comparison with (17) yields (21) directly.

C.2 � -BPF

Here, we provide the algorithmic procedure in Algorithm 2 for the� -BPF that is investigated in this
main text.
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Figure 5: This �gure depicts the in�uence of a single observation on the particle weights for different likelihoods
or generalised likelihoods.

Algorithm 2 � -Bootstrap Particle Filter

Input: Observation sequencey1:T , number of samplesN .
Initialise: Samplef �x ( i )

0 gN
i =1 for the prior� 0(x0).

for t = 1 to T do
Sample:

~x ( i )
t � f t (x t j �x

( i )
t � 1) for i = 1 ; : : : ; N:

Weight:
w( i )

t / G�
t (~x ( i )

t ) for i = 1 ; : : : ; N:

Resample:

�x ( i )
t �

NX

i =1

w( i )
t � ~x ( i )

t
(dx t ) for i = 1 ; : : : ; N:

end for

C.3 � -APF

Here, we provide the algorithmic procedure in Algorithm 3 for the� -APF. Hereqt denotes the
proposal distribution at timet which in the case of the fully-adapted APF would be chosen to be the
conditional density ofx t givenx t � 1 andy t but in general would be chosen as some approximation of
this distribution and~G�

t (x t � 1) is chosen as an approximation of the predictive generalised likelihood,
i.e. ~G�

t (x t � 1) �
R

G�
t (x t )f t (x t jx t � 1)dx t .

As in the case of the standard APF, the use of reference points obtained from the current states
in which one sets~G�

t (x t � 1) = G�
t (� t (x t � 1)) with � t (x t � 1) =

R
x t f (x t jx t � 1)dxt is one simple

approach to this, but one which doesn't work well in full generality because it is underdispersed with
respect to the true predictive generalised likelihood (cf. [33]). In general, better performance will
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Algorithm 3 � -Auxiliary Particle Filter

Input: Observation sequencey1:T , number of samplesN .
Initialise: Samplef �x ( i )

0 gN
i =1 independently from the prior� 0(x0).

for t = 1 to T do
Sample:

k( i ) � P(i = kjy t ) / w( i )
t � 1

~G�
t ( �x ( i )

t ) for i = 1 ; : : : ; N:

�x ( i )
t � qt ( �x t j �x k ( i )

t � 1) for i = 1 ; : : : ; N:

Weight:

w( i )
t /

f t ( �x ( i )
t j �x k ( i )

t � 1)G�
t ( �x ( i )

t )

qt ( �x ( i )
t j �x k ( i )

t � 1) ~G�
t ( �x k ( i )

t � 1)
for i = 1 ; : : : ; N:

end for

of course be obtained by developing a good bespoke approximation to the predictive generalised
likelihood and the locally-optimal proposal density for any given application, but in order to provide
a simple generically-applicable strategy which is reasonably robust we suggest setting the proposal
equal to the transition density,qt = f t , and using a stabilised version of the simple approximation to
the predictive likelihood, provided by

~G�
t (x t � 1) = G�

t (� t (x t � 1)) + ct

wherect is a constant chosen, e.g. as0:05 supx G�
t (x) to avoid any instability in the weighting step.

Such a strategy was advocated in the iterated version of this algorithm described by [43] which could
in principle also be adapted to the GBI setting.
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D Theoretical analysis

D.1 Proof of Theorem 1

This is an adaptation of a well-known proof, hence we will sketch results and provide the constant
ct;p;� .

The result is proved via induction. Fort = 0 , we have the result in the theorem trivially, as it
corresponds to the i.i.d. case and, e.g. [32, Lemma 7.3.3] provides an explicit constant. Hence, as an
induction hypothesis, we assume

k� �;N
t � 1 (' ) � � �

t � 1(' )kp �
ct � 1;p;� k' k1p

N
; (22)

wherect � 1;p;� < 1 is independent ofN . After the sampling step, we obtain the predictive particles
�x ( i )

t and form the predictive measure

� �;N
t (dx t jy1:t � 1) =

1
N

NX

i =1

� �x ( i )
t

(dx t );

and then one can show that we have [44, Lemma 1]

k� �;N
t (' ) � � �

t (' )kp �
c1;t;p;� k' k1p

N
; (23)

wherec1;t;p;� < 1 is a constant independent ofN . After the computation of weights, we construct

e� �;N
t (dx t ) =

NX

i =1

w( i )
t � �x ( i )

t
(dx t ): (24)

Following again [44, Lemma 1], one readily obtains

k� �
t (' ) � e� �;N

t (' )kp �
c2;t;p;� k' k1p

N
; (25)

where

c2;t;p;� =
2kG�

t k1 c1;t;p;�

� t (G
�
t )

< 1 ;

where we note� t (G
�
t ) > 0. Finally, performing multinomial resampling leads to a conditionally-i.i.d.

sampling case, which yields

ke� �;N
t (' ) � � �;N

t (' )kp �
c3;t;p;� k' k1p

N
: (26)

Combining (25) and (26) yields the result withct;p;� = c2;t;p;� + c3;t;p;� .

D.2 Proof of Corollary 1

We sketch here a standard argument for obtaining a strong law of large numbers fromL p error bounds.
Let us write for simplicity that

� N = � �;N
t (' ) and � = � �

t (' ): (27)

The strategy is to note that
�

lim
k !1

j� k � � j = 0
�

=
1\

l =1

�
lim

k !1
j� k � � j < 1=l

�

and hence if it can be shown that theP(fj � k � � j < 1=lg) ! 1 for everyl 2 N then the event that
� k ! � is a countable intersection of events of probability 1 and hence itself has probability 1.
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Using the Borel-Cantelli lemma (see, e.g. [45, p. 255]), to show thatP(j� k � � j � " ) ! 0 ask ! 1
it suf�ces to demonstrate that

1X

k=1

P(j� k � � j � " ) < 1 :

We do this via the generalised Markov's inequality:

P(j� k � � j � " ) �
E[j� k � � jp]

"p ;

which combined with Theorem 1 yields

P(j� k � � j � " ) �
cpk' kp

1

kp=2"p
:

Choosing anyp > 2 ensures that the rhs is summable and hence thatP(j� k � � j < " ) ! 1 ask ! 1
for any" > 0 and, by taking" = 1=l for eachl 2 N, the proof is complete.

D.3 Proof of Theorem 2

We refer to the Proposition in [33] which provides explicit expressions for sequential importance
resampling based particle �lters within the general frameworks of [32, 36]; the same argument holds
mutatis mutandisin the context of the� -BPF. We note that the asymptotic variance expression� 2

t;� (' )
is given as follows. Fort = 1 , we obtain [33]

� 2
1;� (' ) =

Z
p�

1 (x1jy1)
f 1(x1)

(' 1(x1) � ' 1)2dx1;

wheref 1(x1) :=
R

� 0(x0)f 1(x1jx0)dx0. Then, fort > 1 [33]

� 2
t;� =

Z
p�

t (x1jy1:t )2

f 1(x1)

� Z
' t (x1:t )p

�
t (x2:t jy2:t ; x1)dx2:t � ' t

� 2

dx1

+
t � 1X

k=2

Z
p�

k (x1:k jy1:t )2

p�
k � 1(x1:k � 1jy1:k � 1)f k (x k jx k � 1)

� Z
' t (x1:t )p

�
t (x k+1: t jy k+1: t ; x k )dx k+1: t � ' t

� 2

dx1:k

+
Z

p�
t (x1:t jy1:t )2

p�
t � 1(x1:t � 1jy1:t � 1)f t (x t jx t � 1)

(' t (x1:t ) � ' t )
2 dx1:t :

E Asymmetric Wiener velocity

In the case of simple, symmetric noise settings with additive contamination the use of heavy-tailed
likelihoods such as Student'st may be still seen as a viable alternative to robustify the inference.
However, there are some realistic settings in which such off-the-shelf heavy-tailed replacements
are not feasible or require considerable model-speci�c work. Consider, as a simple illustration,
the Wiener velocity example in Section 5.1, where the observation noise in(13) is replaced with
� t � 1[�1 ;0]N (0; 1) + 1[0;+ 1 ]N (0; 102): This simulates an asymmetric noise scenario. The
observations are further contaminated with multiplicative exponential noise, i.e.� t  � � t , for
� � Exp(1000)with probabilitypc. This sums up to a multiplicatively corrupted asymmetric noise
distribution which could, for example, represent a sensor with asymmetric noise pro�le in a failing
regime which occasionally exhibits excessive gain.

For this example, it is easy to derive a BPF with the assymetric likelihood. It is also easy to extend
this likelihood to the� -BPF case. We test BPF and the� -BPF (� = 0 :1) versus two versions of the
t-BPF, in which the likelihood is replaced with a heavy-tailed symmetric one, one set to a short scale
� = 1 and the other set to a long scale� = 10.

Figure 6 shows the results for this experiment. The BPF is unable to handle the multiplicative
exponential contamination, as can be seen by the NMSE values. It also provides poor posterior
coverage. The t-BPF fairs better with this type of contamination where we can see a trade-off between
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Figure 6: The mean metrics over state dimensions for the asymmetric Weiner velocity example withpc = 0 :1.
The left panel presents the NMSE results (lower is better) and the right panel presents the 90% empirical
coverage results (higher is better), evaluated on 100 runs. Thex-axis ticks indicate the scale used for Student'st
likelihood. The horizontal dashed line in black in the right panel indicates the 90% mark for the coverage.

accuracy and coverage depending on the chosen scale of the likelihood. This is due to the symmetry
of thet-distribution which overestimates one of the tails depending on the scale. The� -BPF does not
have this trade-off and outperforms the t-BPF on both metrics.

While one might attempt to model the noise with an asymmetric construction of thet-distributions
which approximates the noise structure, we argue that in more general settings using heavy-tailed
distributions requires approximations of the noise structure and making modelling choices which
could be arbitrarily complex. This is in contrast to specifying a single tuning parameter as in the
� -divergence case. The� -BPF requires no further modelling than the original problem and can be
used as a drop-in replacement for nearly all types of likelihood structures.

F Experiment Details

F.1 Evaluation Metrics

The following metrics metrics are used to evaluate the experiments:

The Normalised Mean Squared Error (NMSE) is computed per state dimensionj as

NMSEj =




P T

t =1 x tj � x̂ tj





2

2P T
t =1 kx tj k2

2

; (28)

with x̂ tj = 1
N

P N
i =1 �x ( i )

tj , i.e. the mean over resampled particles (trajectories).

The 90% Emprical Coverage (EC) is computed per state dimensionj as

ECj =
P T

t =1 1C t (x tj )
T

; (29)

with
Ct = f zjz 2 [q0:05(f �x ( i )

tj gN
i =1 ); q0:95(f �x ( i )

tj gN
i =1 )]g;

where q is the quantile function.

Predictive Median Absolute Error (MedAE) is computed per observation dimensionj as

MedAE = MEDIAN t 2f 1;:::;T g (jŷtj � ytj j) ; (30)

whereŷ t �
P N

i =1 wi
t gt (y jx ( i )

t ).
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Aggregation: Metrics are often presented as aggregates over the state dimensions, which are simply
the mean of the metric across the state dimensions.

F.2 Details on the implementation of the selection criterion in Section 3.3

From (11), we choseagg as the median andL as the absolute error. When the observations are
multidimensional, we take the average loss weighted by the inverse of the median of each dimension.

We compute the score for different values of� from a grid and choose� that minimises the score.
For multiple runs, we report the modal value of the� 's over all the runs.

In the interest of simplicity, we use the entire observation sequence from an alternative realisation
of the same simulation to compute the score. However, in practice one might one to tune� on a
sub-sequence to avoid extra computation.

F.3 Wiener velocity model experiment details (Section 5.1)

In this section, we detail the experimental setup used to obtain the results for Section 5.1.

Simulator settings We synthesise the data with a Python simulator utilising NumPy. We discretise
the system with� � = 0 :1 and simulate it for 100 time steps, i.e. we obtain 1000 time points in

total. For the state evolution process in Equation (12), we set the transition matrixA =

"
1 0 � � 0
0 1 0 � �
0 0 1 0
0 0 0 1

#

and the transition covariance matrixQ =

" � � 3
3 0 � � 2

2 0

0 � � 3
3 0 � � 2

2
� � 2

2 0 � � 0

0 � � 2
2 0 � �

#

. For the observation process in

Equation (13), we set the observation matrixH =
�

1 0 0 0
0 1 0 0

�
and the noise covariance� = I . The

initial state of the simulator is set tox0 = [140; 140; 50; 0].

Contamination To simulate contaminated observations we apply extra i.i.d. Gaussian noise with a
standard deviation of 100.0 to the observation sequence with probabilitypc per observation.

Sampler settings We initialise the samplers by sampling from the prior given byN (x0; Q) with
x0 being the initial state of the simulator andQ as above. We set the likelihood covariance to the
simulator noise covariance and the number of samples to 1000.

Experiment settings Each experiment consists of 100 runs, where all samplers are seeded with the
same seed per run; however, the seeds vary across the runs. We use the same state sequence for all
runs obtained from the simulator as above. However, each run simulates a new observation sequence
(i.e. the observations noise changes per run).

F.4 Terrain Aided Navigation (TAN) experiment details (Section 5.2)

In this section, we detail the experimental setup used to obtain the results for Section 5.2.

Simulator settings We synthesise the data with a Python simulator utilising NumPy. We discretise
the system with� � = 0 :1 and simulate it for 200 time steps, i.e. we obtain 2000 time points in total.
For the state evolution process in Equation (12), we set the transition matrix

A =

2

6
6
6
6
6
4

1 0 0 � � 0 0
0 1 0 0 � � 0
0 0 1 0 0 � �
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3

7
7
7
7
7
5

;
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and the transition covariance matrix

Q =

2

6
6
6
6
6
4

4 0 0 0 0 0
0 4 0 0 0 0
0 0 36 0 0 0
0 0 0 0:0841 0 0
0 0 0 0 0:207936 0
0 0 0 0 0 5:29

3

7
7
7
7
7
5

:

For the observation process, we set the non-linear observation function

h(x t ) =
�

x t 3 � DEM(x t 1; x t 2)p
(x t 1 � x01)2 + ( x t 2 � x02)2

�
;

where DEM is a non-analytic Digital Elevation Map. For our simulation we set DEM to

DEM(a, b)= peaks(q � a; q � b) +
6X

i =1

� i sin(! i � q � a) cos( � q � b);

with peaks(c; d) = 200(3(1� c)2 exp(� c2 � (d+1) 2)� 10(c
5 � c3 � d5) exp(� c2 � d2)� 1

3 exp(� (x+
1)2 + y2)) , � = [300; 80; 60; 40; 20; 10], ! = [5 ; 10; 20; 30; 80; 150],  = [4 ; 10; 20; 40; 90; 150]
andq = 3

2:96� 104 . The noise covariance� = � 2I with � 2 = 400. The initial state of the simulator is
setx0 = [ � 7:5 � 103; 5 � 103; 1:1 � 103; 88:15; � 60:53; 0].

Contamination To simulate contaminated observations we apply extra i.i.d. Student's t noise with
1 degree of freedom scale� , where� is given as above. The contamination is applied to observation
instances with probabilitypc per observation.

Sampler settings We initialise the samplers by sampling from the prior given byN (x0; Q) with
x0 being the initial state of the simulator andQ as above. We set the likelihood covariance to the
simulator noise covariance and the number of samples to 3000. For the APFs, we make the same
design choices outlined in Appendix C.3, i.e. setting the proposal density to the transition density
and stabilising the predictive likelihood approximation with the given additive constant.

Experiment settings Each experiment consists of 50 runs, where all samplers are seeded with the
same seed per run; however, the seeds vary across the runs. We use the same state sequence for all
runs obtained from the simulator as above. However, each run simulates a new observation sequence
(i.e. the observation noise changes per run).

F.5 Asymmetric Wiener velocity model experiment details (Appendix E)

In this section, we detail the experimental setup used to obtain the results for Appendix E.

Simulator settings We use the same simulator settings as in Appendix F.3, but changing the
observation noise to1[�1 ;0]N (0; 1) + 1[0;+ 1 ]N (0; 102).

Contamination To simulate contaminated observations we multiplicative apply i.i.d. Exponential
noise with a scale of 1000 with probabilitypc = 0 :1 per observation.

Sampler settings We initialise the samplers by sampling from the prior given byN (x0; Q) with
x0 being the initial state of the simulator andQ as above. We set the number of samples to 1000.

Experiment settings We use the same settings as in Appendix F.3.

F.6 Air quality experiment details (Section 5.3)

In this section, we detail the setup used to obtain the results for Section 5.3.

Data The data was obtained fromhttps://www.londonair.org.uk/london/asp/
datadownload.asp . We select a time window of 200 hours. No preprocessing was per-
formed on the data.
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Kernel We use the Matérn 5/2 kernel and set the lengthscalel = 0 :03 and the signal variance
� 2

s = 32. We discretize the SDE representation of the Mateŕn 5/2 GP with stepsize� � = 0 :005to
obtain an LGSSM of the form (12)-(13), with transition matrix

A = exp(� � F) = exp(� �

"
0 1 0
0 0 1

� � 3 � 3� 2 � 3�

#

);

where� =
p

5
l and transition covariance matrixQ = P 1 � AP 1 A | , with P 1 =

"
� 2

s 0 �
0 � 0

� � 0 � 2
s � 4

#

,

where� = � 2
s � 2

3 . For the observation process in(13), the observation matrix is set toH = [1 ; 0; 0] and
the noise variace� 2 = 1 . The prior on the initial statex x is given asN (m; S), wherem| = [0 ; 0; 0]
andS = P 1 .

Sampler settings We initialise the samples by sampling from the priorN (m; S). We set the
number of samples to 1000.

Smoother settings We set the number of samples to 1000 for the FFBS smoother.

Experiment settings We repeat the sampling procedure for 100 runs, where the samplers are
seeded differently for each runs. The seeds are shared among samplers for each run. The Kalman
�lter does not require multiple runs as the solution is deterministic.
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G Further results

G.1 Wiener velocity experiment

23



24



25



26



Figure 7: The mean metrics over state dimensions for the Wiener velocity example. The top panel presents the
NMSE results (lower is better) and the bottom panel presents the 90% emprirical coverage results (higher is
better), on 100 runs. The vertical dashed line in gold indicate the value of� chosen by the selection criterion in
Section 3.3. The horizontal dashed line in black in the lower panel indicates the 90% mark for the coverage.
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Figure 8: Marginal �ltering distributions for the Kalman �lter, the BPF and the� -BPF.

Figure 9: Marginal �ltering distributions for the Kalman �lter, the BPF and the� -BPF.

Figure 10: Marginal �ltering distributions for the Kalman �lter, the BPF and the� -BPF.

Figure 11: Marginal �ltering distributions for the Kalman �lter, the BPF and the� -BPF.
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Predictive Median Absolute Error

Filter mean standard error

Kalman Filter 5.23 0.06
BPF 2.78 0.09
� = 0.0001 0.97 0.00
� = 0.0005 0.97 0.00
� = 0.001 0.97 0.00
� = 0.005 0.90 0.00
� = 0.01 0.90 0.00
� = 0.05 0.90 0.00
� = 0.1 0.90 0.00
� = 0.2 0.92 0.00
� = 0.5 72.22 12.34
� = 0.8 226.61 11.62

Table 2: Predictive results on the Weiner velocity example forpc = 0 :1. The one step ahead predictive
performance is measure by the median absolute error. The �gures are averaged across 100 runs and the standard
error on the average score is provided.
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G.2 TAN experiment

Figure 12: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 13: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.
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Figure 14: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 15: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 16: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.
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Figure 17: Marginal �ltering distributions for the BPF (top) and� -BPF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 18: Effective sample size with time for the BPF (top) and� -BPF with� = 0 :1.

Figure 19: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.
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Figure 20: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 21: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 22: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.
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Figure 23: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 24: Marginal �ltering distributions for the APF (top) and� -APF (bottom) with� = 0 :1. The locations
of the most prominent (largest deviation) outliers are shown as dashed vertical lines in black.

Figure 25: Effective sample size with time for the APF (top) and� -APF with � = 0 :1.
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pc

Filter 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

BPF 16.63(0.06) 17.67(0.05) 17.88(0.06) 18.66(0.07) 19.68(0.08) 20.12(0.09) 20.96(0.08) 21.55(0.09)
t-BPF 16.33(0.05) 17.15(0.05) 17.15(0.05) 17.92(0.05) 18.72(0.06) 18.95(0.07) 19.71(0.09) 20.11(0.08)
� -BPF = 0.005 16.26(0.05) 17.01(0.05) 16.96(0.06) 17.60(0.05) 18.34(0.07) 18.48(0.06) 19.24(0.06) 19.60(0.07)
� -BPF = 0.01 16.23(0.04) 16.91(0.05) 16.65(0.05) 17.06(0.05) 17.74(0.05) 17.86(0.06) 18.43(0.05) 18.61(0.06)
� -BPF = 0.05 16.39(0.04) 16.97(0.05) 16.70(0.06) 17.23(0.06) 18.03(0.06) 17.84(0.06) 18.45(0.07) 18.78(0.08)
� -BPF = 0.1 17.46(0.05) 17.92(0.06) 17.90(0.11) 18.61(0.12) 19.49(0.11) 19.15(0.10) 19.76(0.10) 20.24(0.11)
� -BPF = 0.2 16.56(0.04) 17.07(0.05) 16.58(0.04) 17.43(0.04) 17.87(0.06) 17.85(0.05) 18.56(0.06) 18.84(0.06)
APF 15.96(0.05) 17.09(0.04) 17.34(0.05) 18.13(0.05) 19.04(0.08) 19.51(0.06) 20.67(0.07) 21.15(0.09)
� -APF = 0.005 15.71(0.04) 16.49(0.05) 16.57(0.05) 17.19(0.04) 17.80(0.05) 18.15(0.04) 18.96(0.07) 19.19(0.06)
� -APF = 0.01 15.69(0.04) 16.31(0.04) 16.31(0.04) 16.85(0.04) 17.47(0.05) 17.66(0.05) 18.46(0.05) 18.66(0.05)
� -APF = 0.05 15.69(0.04) 16.26(0.04) 16.01(0.04) 16.53(0.03) 17.17(0.05) 17.14(0.06) 17.83(0.05) 17.92(0.05)
� -APF = 0.1 15.84(0.04) 16.46(0.05) 16.16(0.04) 16.56(0.04) 17.30(0.05) 17.16(0.04) 17.89(0.05) 18.09(0.05)
� -APF = 0.2 16.90(0.06) 17.35(0.06) 17.32(0.09) 17.68(0.06) 18.78(0.08) 18.40(0.06) 18.87(0.06) 19.28(0.08)

Table 3: Predictive results on the TAN example. The one step ahead predictive performance is measure by the
median absolute error. The �gures are averaged across 50 runs and the standard error on the average score is
provided.

G.3 London air quality experiment

Table 4: GP regression NMSE (higher is better) and 90% empirical coverage for the credible intervals of the
posterior predictive distribution, on 100 runs. Thebold font indicate the statistically signi�cant best result
according to the Wilcoxon signed-rank test. All presented results are statistically different from each other
according to the test.

median (IQR)

Filter (Smoother) NMSE EC

Kalman (RTS) 0:144(0) 0:685(0)
BPF (FFBS) 0:116(0:015) 0:650(0:020)
(� = 0 :005)-BPF (FFBS) 0:102(0:014) 0:67(0:025)
(� = 0 :01)-BPF (FFBS) 0:077(0:007) 0:705(0:015)
(� = 0 :05)-BPF (FFBS) 0:063(0:003) 0:735(0:015)
(� = 0 :1)-BPF (FFBS) 0:061(0:003) 0:760(0:015)
(� = 0 :2)-BPF (FFBS) 0:059(0:002) 0:803(0:020)
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Figure 26: The GP �t on the measurement time series for one of the London air quality sensors. The top panel
shows the posterior from the Kalman (RTS) smoothing. The middle panel shows the posterior from the BPF
(FFBS). The bottom panel shows the posterior from the� -BPF (FFBS) for� = 0 :1.
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